OBJECT ORIENTED IMAGE SEGMENTATION
Dietrich W. R. Paulus

The following paper has appeared in the
Proceedings Int. Conference on Image Processing

Maastrich, April 7-9, 1992 (ISBN 0 85296 543 5)

Version: 1.5

Proc. 4th Int. Conf. on Image Processing and its Applications, Maastrich, April 7-9, 1992 (ISBN 0 85296 543 5) 482

OBJECT ORIENTED IMAGE SEGMENTATION

Dietrich Paulus

Lehrstuhl fiir Informatik 5 (Mustererkennung), Universitdt Erlangen—Niirnberg

1 Introduction

Research and application of image processing at the
present state of the art usually require exhaustive
use of computer software. Various large program-
ming environments are available for that purpose.
These — like any other large programming systems
— still suffer from what was called the “software cri-
sis” in the sixites. Interdependencies of the parts of
the programs are often poorly structured. Conse-
quently, the reuse of existing software i1s often more
difficult than rewriting the required algorithm. One
possible cure is the standardization of image process-
ing routines and data structures as currently done by

the ISO.

Modern software technology aims for high modu-
larity. Data encapsulation offers the mechanism for
structuring the interdependencies of software mod-
ules. Object oriented programming combines encap-
sulation with inheritance. Inheritance is a mecha-
nism that allows for the reuse of the code written
for the base classes in the derived class in a highly
structured way. The object oriented approach thus
1s another possible cure to the software crisis.

The basic elements of object oriented program-
ming are classes, objects and inheritance. Classes
roughly correspond to data structures in conven-
tional programming, combined with the required op-
erations. The data components of classes are called
attributes. Objects are instances of classes, 1.e. they
may be seen like a piece of memory. Objects are
accesed by messages which invoke methods. In-
heritance of methods and attributes is specified for
classes. At this level of detail we do not have to go
into the more subtle differences between classes and

types (see: [2]).
2 Related Work

Object oriented programming faciliates program-
ming of image preprocessing as well as image seg-
mentation and analysis. Up to now object oriented
systems have been proposed either mainly for pre-
processing (e.g. [3, 5]) or for image analysis (includ-
ing preprocessing, segmentation and the knowledge
based part of the analysis; e.g. [4, 1]).

Typical data structures for image preprocessing
are images or devices (e.g. frame—grabber, mouse

etc.). These are naturally modelled by classes in
an object—oriented formalism thereby allowing for a
configuration independent access of devices by the
methods of the classes.

Image analysis requires for the representation of
many other types of information; knowledge about
the particluar task domain usually has to be repre-
sented. Object oriented systems provide classes for
that purpose.

3 Data Structures for Image Segmentation

Various data structures and data types are required
for image segmentation, including all those for pre-
processing. Very simple examples are enumeration
types for color channels (like Red, Green, Blue) or
the type Gray—Level. Simple image data structures
consist of the raster data and size and bookkeeping
information.

During image segmentation simple constituents
like lines, regions, vertices, surfaces will be extracted
[9]. These have to be represented in data structures
as well. The segmentation stage usually results in
a set of objects belonging to these classes, together
with some features and relations between them. Fx-
amples of relations are groupings of lines, collinear-
ity, or parallel lines.

Data structures for a general representation of the
results of the segmentation stage can be found in the
literature; they may serve as an interface to knowl-
edge based symbolic processing and are listed in ta-
ble 1; a more complete list can be found in [10]. Any
of them uses sets or relations, which therefore have
to be represented by data structures as well.

In general the segmentation leads to segmentation
objects. They consist of simple constituents together
with relational information and associated feature
lists. We allow for a recursive definition of a seg-
mentation object SO:

SO: ((A:(Ta, RUVE))*,
(P : SO,

(S(P): R)*,
CF:R)

A segmentation object consists of:

e a list of attributes or features (A4), each repre-
sented as a pair of type (T4) and value. The

Proc. 4th Int. Conf. on Image Processing and its Applications, Maastrich, April 7-9, 1992 (ISBN 0 85296 543 5) 483

| Data Structure | Author |

Sketches [8]

Tconic—Symbolic Data Structure | [13]
RSE-Graph [7]

Line Adjacency Graph [11]
Region Adjacency Graph [11]
Spatial Data Structure [12]
Segmentation Objects [10]

Table 1: Some candidates for an interface to knowl-
edge based processing

value may be a real number (R) or some sym-
bol out of a terminal alphabet (Vr); (e.g. the
pair (colour, ‘red’));

e aset of parts (P) which are in turn instances of
segmentation objects;

e a set of structural (fuzzy) relations between

these parts (S(P));

e a measure of the certainty for the whole object
(a real number C'F).

Segmentation objects without further parts are
called ‘atomic objects’. Lines, vertices, and regions
are examples of atomic objects. For a more elabo-
rate definition of the segmentation object see [9].

Attribute—value pairs (A) allow for the represen-
tation of features. Lines with individual values for
mean contrast may serve as an example.

Relations (S(P)) are used to represent structural
properties like neighbourhood or collinearity. A
fuzzy value is used since these relations tend to be
uncertain or inaccurate in image analysis due to seg-
mentation errors or noise.

An overall measure of the quality of the segmen-
tation object may be placed in the certainty factor
(CF). This simplifies further knowledge based pro-
cessing which often has to rank competing results.

4 A New Object Oriented System

The data structures listed in section 3 can nat-
urally be extended to classes by adding methods
to them and imposing a hierarchical structure on
the classes. The system “hippos” (Hierarchy of
Picture Processing Objects, in greek letters writ-
ten as Immog) provides a large number of classes
for image preprocessing and segmentation, includ-
ing classes for the data structures mentioned in sec-
tion 3.

Points, lines, regions, and surfaces are specializa-
tions of the general concept ‘atomic object’ (Atom-
Obj) which is in turn a special case of a geometric ob-

GeoObj

|

AtomObj

AN

Point Line Region Surface Volume

Figure 1: Hierarchy of atomic objects; arrows indi-
cate the relation “specialization” and the technical
property “inheritance”.

ject (GeoObj). This hierarchical relation is mapped
to a class inheritance tree (figure 1) which is part of
the immos—class—hierarchy.

Geometric objects may be either atomic or seg-
mentation objects (SegObj), which serve as com-
pound objects. Segmentation objects consist of
parts and relations between them. By allowing geo-
mentric objects as parts of a segmentation object we
accomplish an expressive power similar to the recur-
sive description in section 3. (See figure 4 on the left
bottem for this part of the {mmoc—class—hierarchy).

The relations in a segmentation object are re-
stricted to its parts, i.e. we do not allow that parts
of a segmentation object refer to objects outside this
object via relations. Another restriction is put on
the parts; it is forbidden that a segmentation object
contains itself, even transitively. The parts of a seg-
mentation object thus form a directed acyclic graph.
It is however possible, that a segmentation object is
part of several objects at the same time. This makes
it possible to represent competing alternatives al-
ready in the segmentation stage. The relevance of
the objects may be weighted in the certainty factor.
These restrictions are checked by the methods that
add parts and relations to the segmentation objects.
These properties are depicted in figure 2.

5 Geometric Representations

Atomic objects (figure 1) may have two or three
dimensions, depending on the application. Rather
than attatching the dimensionality to the classes
we attach 1t to the objects. Every atomic object
contains a reference to an inidividual representation
which can be chosen out of various representation
classes at the time of instantiation. Chain codes,
polygons and splines are examples of representations
for lines. Any of these representation may be speci-
fied in two or three dimensions. Regions may be
represented as quad trees, binary images or by their
contours. This part of the fmmos tree is shown in

figure 3.

Proc. 4th Int. Conf. on Image Processing and its Applications, Maastrich, April 7-9, 1992 (ISBN 0 85296 543 5) 484

SO
a.) Scene
SO
SO1 SO2 L4
L1 L2 L3

b.) Hierarchy of parts

Figure 2: Example for a hierarchy of parts in seg-
mentation objects. Arrows indicate the relation
“part—of”.

Rep2d

LineRep2d

Chain Polygon Spline

Figure 3: Representation classes for geometric ob-
jects

6 External Representation of Image Objects

Standards for image representation currently cover
pictorial data only (e.g. tiff). Segmentation results
however require for the representation of symbolic
data as well as numeric and relational information.

The de-facto standard XDR (SUN) for the binary

representation of arbitrary data has be extended to
objects in fwrmosc. Every class posesses the method
xdr which interprets resp. creates an external bi-
nary representation which is independent of parti-
cular machine properties.

XDR is used for the widely used SUN-rpc (remote
procedure call) as well. Distributed image process-
ing has been incorporated in imros by the use of the
xdr-methods in combination with rpc. An example
is a frame—grabber device which can be accessed in
the network transparently.

7 Results

The system #xmos is implemented in C++ using the
NIH-Class library ([6]). Up to now, all results of
2-D segmentation could be represented in the sys-
tem. The classes for volumes and surfaces in fig-
ure 1 are however not yet completely implemented.
Three—-dimensional segmentation is under develop-
ment. An overview of the classes is given in figure 4.
In total, approximately 70 classes have been imple-
mented and tested successfully.

According to common prejudice object oriented
programming tends to be very time consuming. The
system fmmoc however performs as well as a con-
ventional programming system in the areas, where
a comparison to conventional programs has been
made. The frequent and thus time consuming access
to matrix elements — altough handled by objects
— can optionally be mapped directly to memory ad-
dresses. When compiled and linked with the ap-
propriate options, a matrix operation (e.g. an edge-
operator) performs exactly as fast as a programm
written in conventional C.

Adding an element to a large segmentation ob-
ject (over 100 parts) requires approximately 5 ms
on a 2 MIPS computer. XDR-representation may
be time consuming when large images of structured
data have to be stored. Writing a 5122—gradient—
image, 1.e. an image consisting of edge directions and
edge strength, with the xdr-method requires 44 sec-
onds instead of 1.9 seconds for writing the raw data.
We do however have to sacrifice this time since it is
essential to have machine independent storage in a
local area network of heterogenous computers. Fur-
thermore the time for reading and writing the infor-
mation is normally small compared to the time for
the real processing of images.

Proc. 4th Int. Conf. on Image Processing and its Applications, Maastrich, April 7-9, 1992 (ISBN 0 85296 543 5)

Object

Collection

Matrix

RelObj

SegObj

AtomObj

Rep3D

Rep2.5D

Represent

Rep2D

485

Graph

Rasterimage

Image3D Image2D

Figure 4: The irmos—class hierarchy Updated in respect to the print!

References

(1]

V. Cappellini, A. Del Bimbo, and A. Mecocci.
Object oriented system for image processing. In
V. Cappellini, editor, Time-Varying Image Pro-
cessing and Moving Object Recognition: Proc.
of the 3rd Int. Workshop, pages 69-74, Elsevier,
Amsterdam, 1990.

L. Cardelli and P. Wegner. On understand-
ing types, data abstraction, and polymorphism.

Computer Surveys, 17(4):471-522, 1985.

M. Dobie and P. Lewis. Data structures for im-
age processing in C. Paltern Recognition Lel-

ters, 12:457-466, 1991.

M. Flickner, M. Lavin, and D. Sujata. An
object-oriented language for image and vision
execution. In Proceedings of the 10th In-
ternational Conference on Pattern Recognition
(ICPR), Volume II, pages 561-571, Atlantic
City, 1990.

P. Gemmar and G. Hofele. An object oriented
approach for an iconic kernel system IKS. In
Proceedings of the 10th International Confer-
ence on Pattern Recognition (ICPR), Volume
11, pages 85-90, Atlantic City, 1990.

K. E. Gorlen, S. Orlow, and P. S. Plexico. Data
Abstraction and Object-Oriented Programming
m C++. John Wiley and Sons, Chichester,
1990.

[7]

[13]

A. Hanson and E. Risemann. Representation
and Control in the Construction of Visual Mod-
els. Technical Report, A Progress Report on
Visions, University of Massachusetts, Amherst,
Mass., 1976. TR 76-9, Dep. of Computer and
Information Science.

D. Marr. Representing visual information. In
A. Hanson and E. Risemann, editors, Computer
Vision Systems, pages 61-80, Academic Press,
New York, 1978.

H. Niemann. Pattern Analysis and Understand-
wng. Springer, Berlin, 1990.

D. Paulus. Objektorientierte Bildverarbeitung.
PhD thesis, Technische Fakultdt, Universitat
Erlangen—Niirnberg, Erlangen, 1991.

T. Pavlidis. Structural Pattern Recognition.
Springer, Berlin, 1977.

L. Shapiro. Design of a spatial data struc-
ture. In H. Freeman and G. Pieroni, editors,
Map Data Processing, pages 101-117, Acade-
mic Press, New York, 1980.

S. Tanimoto. An iconic/symbolic data structur-
ing scheme. In C. Cheng, editor, Pattern Recog-
nitton and Artificial Intelligence, pages 452-
471, Academic Press, New York, 1976.

