
Managing Spoken Dialogues for Information Services�Wieland EckertUniversit�at Erlangen-N�urnbergLehrstuhl f�ur Mustererkennung (Informatik 5)Martensstra�e 3, 91058 Erlangen, F.R. Germanywieland.eckert@informatik.uni-erlangen.de Scott McGlashanSocial and Computer Sciences Research GroupDepartment of SociologyUniversity of Surrey, Guildford, UK.scott@soc.surrey.ac.ukAbstractThis paper presents an approach to managing spokendialogues in information services systems. We describehow the approach, based upon a tri{partite model of in-teraction, addresses the problems of co{operativeness andportability across languages and task domains. This ap-proach has been implemented in the generic dialogue man-ager of the Sundial dialogue systems. We outline the ca-pabilities of this dialoguemanager and describe our testingmethodology.Keywords: Oral Dialogue, Dialogue Management, In-terpretation of Utterances, Cooperative System1 IntroductionManagement of spoken dialogues requires the interpreta-tion of the user utterances and the generation of systemutterances coherent with user utterances. The underly-ing model of interaction is partitioned into semantic, taskand dialogue models (cf. [4]). Utterances in di�erent lan-guages are mapped into a common semantic representa-tion language from which instances of the semantic, taskand dialogue models are constructed.Semantic interpretation of user utterances is performedagainst a semantic model of the interaction and results inthe instantiation of task concepts (cf. [6]). Task interpre-tation determines whether the user has provided su�cientinformation for retrieval of a solution from a database, orwhether further information is required. Dialogue inter-pretation evaluates the semantic interpretation against astructured dialogue model (cf. [1]). This results in thegeneration of system utterances which con�rm informa-tion extracted from the user utterance, request further in-formation, or provide a solution to the user request. Usingthis tri{partite interactional model, dialogue managementis co{operative and independent of the task and languageof the service domain.This approach has been implemented as a generic dia-logue manager component in Sundial dialogue systems(cf. [8]). The generic dialogue manager is designed to op-erate language independently in a wide variety of infor-mation dialogues. Prototypes have been built for French,English, German and Italian, and service domains include�This work was partly funded by the Commission of the Eu-ropean Community under ESPRIT contract P 2218 (Sundial).The authors are solely responsible for the views expressed inthis paper.

ight and train inquiries. Features of this dialogue man-ager include the ability to handle the speci�cation of anenquiry over multiple user utterances, negation and mod-i�cation of previous input, complex temporal reasoning,constraint relaxation and the ability to dynamically switchthe dialogue strategy so as to minimize the risk of break-down (cf. [3]). Currently, systems are being evaluatedwith respect to performance metrics such as robustness,accuracy of interpretation, and appropriacy of system re-sponse (cf. [10]). Evaluation of one Sundial system isreported in [2].2 The Sundial SystemSince an overall description of the system has already beenpresented in [9], we only provide a brief overview. Thearchitecture, adopted by all partners in the project, is il-lustrated in Figure 1. Speech input from a microphone ortelephone line is processed in the acoustic front end, op-erating on hidden markov models. Di�erent recognizersare running either on specialized hardware or general pur-pose workstations, with varying lexicon sizes between 600and 1100 words. To improve recognizer accuracy, nearlyall partners use techniques which dynamically reduce thesearch space, such as stochastic bigram models correlatedwith dialogue states. The acoustic front end delivers ei-ther a best string or a word lattice to a parser for linguisticanalysis. Various parsing methods and strategies are usedto construct syntactic and semantic representations of userutterances. In the majority of systems, the semantic rep-resentations are couched in SIL, a knowledge representa-tion language designed to provide a language and domainindependent representation of parsing results. The dia-logue manager then interprets this representation using atri-partite model of interaction, and plans a system ut-terance for generation and synthesis. Since its behaviourcan be customized for di�erent task domains, the samedialogue manager can be used in each Sundial system.3 Dialogue ManagementThe major goal of dialogue management is to manage theinteraction in a co{operative manner. To achieve this,the dialogue manager must handle a number of phenom-ena observed in human{human and (simulated) human-computer dialogues such as: anaphora and ellipses, am-biguity, topic-shifting, turn taking, strategies for dealingwith communication failure, implicit and explicit con�r-

..Grammar ..LexiconModelsMarkov-
DatabaseDomainNetworkSemantic Dialogue-ManagerParserFront EndAcousticwords

dialogueSemantic Interface Language
Speech SignalBest String / Graph / Lattice

sentationRepre- ModuleInformationtask
signalfeaturessyntacticsemanticcontextual

Figure 1: Processing Stages in Sundialmation, and appropriate answers when no database solu-tion matches the caller's enquiry.The design and implementation of the generic Sundialdialogue manager is based on the architecture in Figure 2.Dialogue management functions are distributed across �veindependent modules, each with its own knowledge bases,which communicate by message passing and operate byinterleaved control. The core functions are concentratedin three principal modules:Belief Module (BM) semantic interpretation of userutterancesTask Module (TM) task interpretation relative to ap-plication goalsDialogue Module (DM) pragmatic interpretation andplanning of system utterancesThese are described in more detail below.The remaining modules perform peripheral functions.The Linguistic Interface (LI) is responsible for the properinformation transfer to and from the parser. The LI sendspredictions to guide recognition and parsing of the nextuser utterance, and in return receives a SIL structure forinterpretation. The Message Planner (MP) is responsi-ble for communication with the generation sub{system.It receives a plan of the system utterance from the DMand maps it into a structure suitable for generation witheither a template-based or rule-based message generator.Additionally, the LI store system and user utterances in alinguistic history which can be used for anaphora resolu-tion. 3.1 Semantic InterpretationThe belief module performs semantic interpretation by us-ing the semantic description of user utterances to buildan extension of its contextual model. The contextualmodel is a semantic network constructed from two de-clarative knowledge sources. The �rst is a hierarchy of

.. SILDM Linguistic HistoryKnowledgeBeliefHistoryDialogue CATIONAPPLI{
INPUTOUTPUTSpeech LIMP Postie BMTM

Figure 2: Architecture of the Dialogue Managersurface{oriented concepts, shared with the parsing com-ponent. The second source is a hierarchy of task{orientedconcepts, known to the task module, which correspondto relations in the application database. When instancesof surface{oriented concepts are created which referencetask{oriented concepts, instances of these later conceptsare also created in the contextual model. This mappingbetween surface{oriented and task{oriented concepts isguided by inference rules associated with particular typesof concepts.For example, the user utterance ich m�ochte nach Ulmfahren is represented using the surface-oriented conceptgo. An inference rule, shown in (1), attached to this con-cept maps the value of its thegoal role (ulm) into value forthe arrival place of its journey role.(1) go: <thegoal> = <thejourney thearrival theplace>(2) journey: <thearrival theplace thecity value> = <dbtraingoalcity>(3) [id: dbtrain1, type:dbtrain, goalcity:ulm]The second rule, (2), attached to the journey concept thenmaps the value of the arrival city into the goalcity attributeof the task concept dbtrain shown in (3).The semantic representation of user utterances can beunderspeci�ed. This can be the case with deictic expres-sions, both temporal (dem n�achsten Zug nach M�unchen)and spatial (a train from there to Berlin), anaphoric ex-pressions (does it call at D�usseldorf) and elliptic (nachUlm) expression. In the course of instantiation the BMtries to link these partially speci�ed inputs to a conceptin its contextual model. In order to decide which con-cept to use, the BM constructs a set of possible linkingconcepts on the basis of recency and accessibility infor-mation as well as the concepts underlying the last systemutterance. From this set it identi�es candidates for link-ing with the input. For example, in the case of ellipsis thecandidate that matches the semantic role of the ellipsedconcept is selected.Some user utterances are not consistent with accessibleconcepts in the current contextual model. This situationarises in cases such as:(4) S: Sie wollen von M�unster nach BremenfahrenC: nicht nach Bremen, nach Ulm

GO

thegoal

Muenster

MODIFICATION
LAYER

Ulm

thegoal

Bremen

thesourceFigure 3: BM model after the input: nicht nach Bremen,nach Ulmwhere the system has misinterpreted the arrival city asBremen and the user has corrected it to Ulm. To dealwith this, the current contextual model is overlaid with anew conceptual layer which speci�es the information in-consistent with the existing layer but inherits all otherinformation from it. With (4), the new layer would con-tain the information that arrival city is Ulm but inheritthe information that the departure city is M�unster. Thisis illustrated in Figure 3.3.2 Task InterpretationThe task module is responsible for providing an inter-pretation of a task concept with respect to its model ofthe task. The TM's declarative component speci�es foreach task type, a set of dependent task parameters to-gether with necessary and default inference rules. Forexample, the task type dbtrain has the dependent pa-rameters sourcecity, goalcity, sourcetime and date. Dur-ing a dialogue, the TM consults this component to de-termine which parameters are required. In (4) the taskmodel is updated with the information that the task con-cept dbtrain is instantiated with values for the parame-ter sourcecity and goalcity (where the value ulm overridesthe value bremen). Since the parameter sourcetime is notinstantiated, TM's interpretation is that a value for thisparameter is required. Given that a default rule cannot beused | unlike date where application of a default rule re-sults in today's date being used | the TM informs the DMof the required parameter and the DM, in turn, requestsit from the user. Once the task model is instantiated withvalues for all dependent parameters, the appropriate ap-plication database is consulted and a solution presentedto the user. In this way, the TM proposes the generaldirection of the whole dialogue by successively requestingvalues for parameters and then providing a solution.One central aspect of co{operativeness is embodied inthe TM. A co{operative system provides corrective andsuggestive answers when no solution in the applicationdatabase match the user's requirements (cf. [5]). Ratherthan simply signal failure, the system can indicate thereason for failure and/or make modi�cations which maylead to a solution. The latter can be achieved by con-straint relaxation: constraints, i.e. parameter values, canbe systematically modi�ed until a solution is found. Forexample, constraint relaxation can be applied to the de-parture time parameter. If the user requests a train fromM�unster to Ulm leaving at 5pm, but no solution can befound, then the time can be incremented | 5 01, 5 02and so on | until either a threshold is encountered or asolution recovered.3.3 Pragmatic InterpretationThe dialogue module is responsible for the pragmatic in-terpretation of user input and planning of the system re-

sponse.Pragmatic interpretation is determined by a declarativecomponent which speci�es rules for updating the dialoguemodel on the basis of the semantic and pragmatic inter-pretation of user input. The dialogue model is composedof a set of dialogue ags controlling, for example, howparameters are con�rmed, and a set of dialogue goals rep-resenting the system's intentions.The semantic interpretation is used by the DM to eval-uate the set of active dialogue goals. Satis�ed goals areassigned the pragmatic status succeed, other goals are as-signed the status fail. For example, in (4) the systemutterance realizes two con�rm goals with the parame-ters sourcecity:muenster and goalcity:bremen respectively.The user's response is a re{speci�cation of the goalcity asUlm. In this instance, application of the semantic inter-pretation update rules results in both goal being assignedthe pragmatic status succeed, but, as a side-e�ect of re{speci�cation, a new goal con�rming the modi�ed parame-ter goalcity is added to the dialogue model.When the DM receives a task interpretation from theTM, it creates an appropriate goal in the dialogue model.For example, if the TM requires a value for the parametersourcetime, a request goal will be added. The DM thendecides which goals should be realized in the next systemturn. This decision is inuenced by the con�rmation ag.For example, if the model contains a request and con�rmgoals, then both will be realized if the ag is set to con�rm-plus-initiative but only the con�rm goal if the ag is setto con�rm-alone. When goals are realized, they becomethe active goals used to evaluate the user's response.Since the DM's interpretation rules take into accountthe value of repair threshold ag, the dialogue strategy isresponsive to communicative di�culties. For example, ifrepetition of an initial request goal exceeds the threshold,the system switches to a menu{style interaction:(5) S: Flight Inquiries. How can I help you?C: My boss told me to book a ight fromLondon to Paris.S: I am sorry I didn't understand you. Tellme your enquiry.C: erhm,: : :S: I still didn't understand you. Please tellme the departure city.And in situations where the user's response to a requestgoal repeatedly results in a fail status being assigned, thegoal is replaced with a spell goal and the user is asked tospell the parameter. 4 TestingAs shown in Figure 2, the dialogue manager is constructedfrom a number of modules. Since these were developed bypartners on di�erent sites, a method for testing modulesdeveloped on di�erent sites had to be devised.The test�le method exploits the centralized messagepassing of the dialogue manager architecture. Since inter-actions between modules are mediated by a central com-ponent (the `Postie'), it is possible to de�ne the exactsequence and content of messages required for the correctbehaviour of the dialogue manager in a given dialogue.Furthermore, the behaviour of each module can be de-�ned in terms of a sequence of received and transmittedmessages for a set of test dialogues. Application of thismethod ensured that modules conforming to the de�nedbehaviour would �t together, yet each module could bedeveloped and tested independently.The test�les were initially constructed manually, a timeconsuming and error prone task, from a selection of dia-

logues gathered from Wizard of Oz simulations (cf. [7]).Once the system became operational, a large set of test�leswas created through automatic logging. Consequently,any modi�cations to a module could be checked againstthe behaviour de�ned by the test dialogues and misbehav-ing modules easily identi�ed. Once the modules becamerelatively robust, this exhaustive de�nition of behaviourwas superseded by one based upon input from the parser:i.e. a dialogue was speci�ed in terms of a sequence of SILrepresentations of user input.When each version of the dialogue manager is integratedwith the rest of the system and evaluated with users, thelogged results are examined for phenomena not yet de-scribed in the test�les. New phenomena are speci�ed us-ing a test�le and the extended set of test�les de�ne theintended functionality of the next version. By adoptingthis technique, we have been able to chart the progress ofthe dialogue manager in terms of the number of correctlyprocessed test�les as shown in Figure 4.
110100 v10 v20 v30 v40 v50 v60 v70 v80 v90 v100Dialogue Manager Version

NumberofTest�les "test�les" 22 2 2 2 2 2 2 2 2 2"passed" �� � � � � � � � � �
Figure 4: Dialogue Manager ProgressOne additional bene�t of the test�le method is that itprovides a simple way of evaluating the dialogue manager.The metrics used to evaluate the whole dialogue system,while important performance ratings for components, arenot able to evaluate the dialogue manager in terms of therange of dialogue phenomena it is capable to handle cor-rectly. On the other hand, the test�les de�ne a referenceset of dialogue phenomena which can be used in this man-ner. Some of the phenomena which the current version iscapable of handling correctly are listed in Table 1.5 ConclusionWe have described an approach to dialogue managementwhich addresses the problems of co{operativeness andportability across tasks and languages. The approach,based upon a tri-partite model of interaction, has beenadopted in the generic dialogue manager of the Sundialsystems. Three independent modules are responsible forthe contextual interpretation of user utterances, the guid-ance of dialogues according to conversational principlesand task requirements. Prototype systems utilizing thisdialogue manager are operational in di�erent languages,with di�erent tasks and domains. Flexible dialogue strate-gies (including degradation to spelling of city names) con-trol the dialogue progress and are adapted to the currentrecognition performance. The Sundial dialogue manageris Europe's �rst multilingual, task independent dialoguemanager operational in four languages.

Context{dependent interpretation of utterancesProcessing ellipsesInformation transfer in a single user utteranceInformation transfer in multiple user utterancesUser can modify previous inputUser can negate previous inputComplex temporal reasoning:approximate times, intervals, temporal deixisOverinformative answers from the userSeveral phrases as inputRepetition as con�rmationDi�erent dialogue modes (guided, spelling)Switching modes dynamicallyDi�erent parameter con�rmation strategiesInitial WH{questionsInitial Yes/No{questionsTable 1: Some phenomena handled by the Dialogue Man-ager 6 AcknowledgmentsPartners in this project are CAP Gemini Innovation,CNET, CSELT, Daimler{Benz, University of Erlangen,Infovox, IRISA, LOGICA, Politechnico di Torino, Sarin,Siemens, University of Surrey. We wish to thank all thepeople who participated in fruitful work of Work Package6 (Dialogue Management).References[1] E. Bilange. A task independent oral dialogue model. InProceedings of the 5th EACL, Berlin, Germany, 1991.[2] W. Eckert, T. Kuhn, H. Niemann, S. Rieck, A. Scheuer,and E.G. Schukat-Talamazzini. A Spoken Dialogue Systemfor German Intercity Train Timetable Enquiries. In Proc.European Conf. on Speech Technology, Berlin, Germany,1993 (this issue).[3] C.R. Frankish. Conversations with computers: problemsof feedback and error correction. In Proc. European Conf.on Speech Technology, Paris, 1989.[4] B. Grosz and C. Sidner. Attention, Intensions, andthe Structure of Discourse. Computational Linguistics,12(3):175{204, July{September 1986.[5] M. Guyomard and J. Siroux. Suggestive and corrctive an-swers: A single mechanism. In Proc. Workshop The Struc-ture of Multimodal Dialogue Including Voice (held 1986 inVenaco), 1989.[6] P. Heisterkamp, S. McGlashan, and N.J. Youd. Dia-logue Semantics for a Spoken Dialogue System. In Proc.Int. Conf. on Spoken Language Processing, October 1992.Ban�, Canada.[7] C. MacDermid. Features of Naive Caller's Dialogues with aSimulated Speech Understanding and Dialogue System. InProc. European Conf. on Speech Technology, Berlin, Ger-many, 1993 (this issue).[8] S. McGlashan, N.M. Fraser, N. Gilbert, E. Bilange, P. Heis-terkamp, and N.J. Youd. Dialogue Management for Tele-phone Information Services. In Proceedings of the Interna-tional Conference on Applied Language Processing, Trento,Italy, 1992.[9] J. Peckham. Speech Understanding and Dialogue overthe Telephone: an Overview of Progress in the SUNDIALProject. In Proc. European Conf. on Speech Technology,volume 3, pages 1469{1472, 1991.[10] A. Simpson and N. Fraser. Black Box and Glass BoxEvaluation of the SUNDIAL System In Proc. EuropeanConf. on Speech Technology, Berlin, Germany, 1993 (thisissue).

