Managing Spoken Dialogues for Information Services*

Wieland Eckert
Universitat Erlangen-Nurnberg
Lehrstuhl fiir Mustererkennung (Informatik 5)
Martensstrafle 3, 91058 Erlangen, F.R. Germany

wieland.eckert@informatik.uni-erlangen.de

Abstract

This paper presents an approach to managing spoken
dialogues in information services systems. We describe
how the approach, based upon a tri—partite model of in-
teraction, addresses the problems of co—operativeness and
portability across languages and task domains. This ap-
proach has been implemented in the generic dialogue man-
ager of the SUNDIAL dialogue systems. We outline the ca-
pabilities of this dialogue manager and describe our testing
methodology.

KEyworDs: Oral Dialogue, Dialogue Management, In-
terpretation of Utterances, Cooperative System

1 Introduction

Management of spoken dialogues requires the interpreta-
tion of the user utterances and the generation of system
utterances coherent with user utterances. The underly-
ing model of interaction is partitioned into semantic, task
and dialogue models (cf. [4]). Utterances in different lan-
guages are mapped into a common semantic representa-
tion language from which instances of the semantic, task
and dialogue models are constructed.

Semantic interpretation of user utterances is performed
against a semantic model of the interaction and results in
the instantiation of task concepts (cf. [6]). Task interpre-
tation determines whether the user has provided sufficient
information for retrieval of a solution from a database, or
whether further information is required. Dialogue inter-
pretation evaluates the semantic interpretation against a
structured dialogue model (cf. [1]). This results in the
generation of system utterances which confirm informa-
tion extracted from the user utterance, request further in-
formation, or provide a solution to the user request. Using
this tri—partite interactional model, dialogue management
is co—operative and independent of the task and language
of the service domain.

This approach has been implemented as a generic dia-
logue manager component in SUNDIAL dialogue systems
(cf. [8]). The generic dialogue manager is designed to op-
erate language independently in a wide variety of infor-
mation dialogues. Prototypes have been built for French,
English, German and Italian, and service domains include

*This work was partly funded by the Commission of the Eu-
ropean Community under ESPRIT contract P 2218 (SUNDIAL).
The authors are solely responsible for the views expressed in
this paper.

Scott McGlashan
Social and Computer Sciences Research Group
Department of Sociology
University of Surrey, Guildford, UK.

scott@soc.surrey.ac.uk

flight and train inquiries. Features of this dialogue man-
ager include the ability to handle the specification of an
enquiry over multiple user utterances, negation and mod-
ification of previous input, complex temporal reasoning,
constraint relaxation and the ability to dynamically switch
the dialogue strategy so as to minimize the risk of break-
down (cf. [3]). Currently, systems are being evaluated
with respect to performance metrics such as robustness,
accuracy of interpretation, and appropriacy of system re-
sponse (cf. [10]). Evaluation of one SUNDIAL system is
reported in [2].

2 The SUNDIAL System

Since an overall description of the system has already been
presented in [9], we only provide a brief overview. The
architecture, adopted by all partners in the project, 1is il-
lustrated in Figure 1. Speech input from a microphone or
telephone line 1s processed in the acoustic front end, op-
erating on hidden markov models. Different recognizers
are running either on specialized hardware or general pur-
pose workstations, with varying lexicon sizes between 600
and 1100 words. To improve recognizer accuracy, nearly
all partners use techniques which dynamically reduce the
search space, such as stochastic bigram models correlated
with dialogue states. The acoustic front end delivers ei-
ther a best string or a word lattice to a parser for linguistic
analysis. Various parsing methods and strategies are used
to construct syntactic and semantic representations of user
utterances. In the majority of systems, the semantic rep-
resentations are couched in SIL, a knowledge representa-
tion language designed to provide a language and domain
independent representation of parsing results. The dia-
logue manager then interprets this representation using a
tri-partite model of interaction, and plans a system ut-
terance for generation and synthesis. Since its behaviour
can be customized for different task domains, the same
dialogue manager can be used in each SUNDIAL system.

3 Dialogue Management

The major goal of dialogue management is to manage the
interaction in a co—operative manner. To achieve this,
the dialogue manager must handle a number of phenom-
ena observed in human—human and (simulated) human-
computer dialogues such as: anaphora and ellipses, am-
biguity, topic-shifting, turn taking, strategies for dealing
with communication failure, implicit and explicit confir-

Repre- Information Module
sentation
i Domain task
(Database] . Dialogue-
rSemantic dialogue Manager
1
. Network | contextual

Semantic Interface Language

1 Lexicon !
Grammar,

semantic
Parser

syntactic

?
Best String / Graph / Lattice
i

FM_afk_();;__ | fwords Acoustic
| Models es?gtﬁg?s Front End

—o!

Speech Signal
C e)

|uu]
HH
[=u]

ooo0
oooo

Figure 1: Processing Stages in SUNDIAL

mation, and appropriate answers when no database solu-
tion matches the caller’s enquiry.

The design and implementation of the generic SUNDIAL
dialogue manager is based on the architecture in Figure 2.
Dialogue management functions are distributed across five
independent modules, each with 1ts own knowledge bases,
which communicate by message passing and operate by
interleaved control. The core functions are concentrated
in three principal modules:

Belief Module (BM) semantic interpretation of user
utterances

Task Module (TM) task interpretation relative to ap-
plication goals

Dialogue Module (DM) pragmatic interpretation and
planning of system utterances

These are described in more detail below.

The remaining modules perform peripheral functions.
The Linguistic Interface (LI) is responsible for the proper
information transfer to and from the parser. The LI sends
predictions to guide recognition and parsing of the next
user utterance, and in return receives a SIL structure for
interpretation. The Message Planner (MP) is responsi-
ble for communication with the generation sub-system.
It receives a plan of the system utterance from the DM
and maps it into a structure suitable for generation with
either a template-based or rule-based message generator.
Additionally, the LI store system and user utterances in a
linguistic history which can be used for anaphora resolu-
tion.

3.1 Semantic Interpretation

The belief module performs semantic interpretation by us-
ing the semantic description of user utterances to build
an extension of its contextual model. The contextual
model is a semantic network constructed from two de-
clarative knowledge sources. The first is a hierarchy of

APPLI-

CATION
e

™

;Di‘alogueé N / Belief

Speech SIL
OUTPUT INPUT

Figure 2: Architecture of the Dialogue Manager

surface—oriented concepts, shared with the parsing com-
ponent. The second source is a hierarchy of task—oriented
concepts, known to the task module, which correspond
to relations in the application database. When instances
of surface—oriented concepts are created which reference
task—oriented concepts, instances of these later concepts
are also created in the contextual model. This mapping
between surface—oriented and task—oriented concepts is
guided by inference rules associated with particular types
of concepts.

For example, the user utterance ich mochte nach Ulm
fahren is represented using the surface-oriented concept
go. An inference rule, shown in (1), attached to this con-
cept maps the value of its thegoal role (ulm) into value for
the arrival place of its journey role.

(1) go: <thegoal> = <thejourney thearrival theplace>

(2) Jjourney: <thearrival theplace thecity value> = <dbtrain
goalcity >

(3) [id: dbtrainl, type:dbtrain, goalcity:ulm]

The second rule, (2), attached to the journey concept then
maps the value of the arrival city into the goalcity attribute
of the task concept dbtrain shown in (3).

The semantic representation of user utterances can be
underspecified. This can be the case with deictic expres-
sions, both temporal (dem ndchsten Zug nach Miunchen)
and spatial (a train from there to Berlin), anaphoric ex-
pressions (does it call at Diisseldorf) and elliptic (nach
Ulm) expression. In the course of instantiation the BM
tries to link these partially specified inputs to a concept
in its contextual model. In order to decide which con-
cept to use, the BM constructs a set of possible linking
concepts on the basis of recency and accessibility infor-
mation as well as the concepts underlying the last system
utterance. From this set 1t identifies candidates for link-
ing with the input. For example, in the case of ellipsis the
candidate that matches the semantic role of the ellipsed
concept is selected.

Some user utterances are not consistent with accessible
concepts in the current contextual model. This situation
arises in cases such as:

(4) S: Sie wollen von Minster nach Bremen
fahren
C: nicht nach Bremen, nach Ulm

MODIFICATION

thegoal LAYER
thegoal

Muenster Bremen

thesource

Ulm

Figure 3: BM model after the input: nicht nach Bremen,
nach Ulm

where the system has misinterpreted the arrival city as
Bremen and the user has corrected it to Ulm. To deal
with this, the current contextual model is overlaid with a
new conceptual layer which specifies the information in-
consistent with the existing layer but inherits all other
information from it. With (4), the new layer would con-
tain the information that arrival city is Ulm but inherit
the information that the departure city is Munster. This
is illustrated in Figure 3.

3.2 Task Interpretation

The task module is responsible for providing an inter-
pretation of a task concept with respect to its model of
the task. The TM’s declarative component specifies for
each task type, a set of dependent task parameters to-
gether with necessary and default inference rules. For
example, the task type dbtrain has the dependent pa-
rameters sourcecity, goalcity, sourcettme and date. Dur-
ing a dialogue, the TM consults this component to de-
termine which parameters are required. In (4) the task
model is updated with the information that the task con-
cept dbtrain is instantiated with values for the parame-
ter sourcecity and goalcity (where the value ulm overrides
the value bremen). Since the parameter sourcetime is not
instantiated, TM’s interpretation is that a value for this
parameter is required. Given that a default rule cannot be
used — unlike date where application of a default rule re-
sults in today’s date being used — the TM informs the DM
of the required parameter and the DM, in turn, requests
it from the user. Once the task model is instantiated with
values for all dependent parameters, the appropriate ap-
plication database 1s consulted and a solution presented
to the user. In this way, the TM proposes the general
direction of the whole dialogue by successively requesting
values for parameters and then providing a solution.

One central aspect of co—operativeness 1s embodied in
the TM. A co—operative system provides corrective and
suggestive answers when no solution in the application
database match the user’s requirements (cf. [5]). Rather
than simply signal failure, the system can indicate the
reason for failure and/or make modifications which may
lead to a solution. The latter can be achieved by con-
straint relaxation: constraints, i.e. parameter values, can
be systematically modified until a solution i1s found. For
example, constraint relaxation can be applied to the de-
parture time parameter. If the user requests a train from
Miunster to Ulm leaving at bpm, but no solution can be
found, then the time can be incremented — 5 01, 5 02
and so on — until either a threshold is encountered or a
solution recovered.

3.3 Pragmatic Interpretation

The dialogue module is responsible for the pragmatic in-
terpretation of user input and planning of the system re-

sponse.

Pragmatic interpretation is determined by a declarative
component which specifies rules for updating the dialogue
model on the basis of the semantic and pragmatic inter-
pretation of user input. The dialogue model is composed
of a set of dialogue flags controlling, for example, how
parameters are confirmed, and a set of dialogue goals rep-
resenting the system’s intentions.

The semantic interpretation is used by the DM to eval-
uate the set of active dialogue goals. Satisfied goals are
assigned the pragmatic status succeed, other goals are as-
signed the status fail. For example, in (4) the system
utterance realizes two confirm goals with the parame-
ters sourcecity:muenster and goalcity:bremen respectively.
The user’s response is a re—specification of the goalcity as
Ulm. In this instance, application of the semantic inter-
pretation update rules results in both goal being assigned
the pragmatic status succeed, but, as a side-effect of re—
specification, a new goal confirming the modified parame-
ter goalcity is added to the dialogue model.

When the DM receives a task interpretation from the
TM, it creates an appropriate goal in the dialogue model.
For example, if the TM requires a value for the parameter
sourcetime, a request goal will be added. The DM then
decides which goals should be realized in the next system
turn. This decision is influenced by the confirmation flag.
For example, if the model contains a request and confirm
goals, then both will be realized if the flag is set to confirm-
plus-initiative but only the confirm goal if the flag is set
to confirm-alone. When goals are realized, they become
the active goals used to evaluate the user’s response.

Since the DM’s interpretation rules take into account
the value of repair threshold flag, the dialogue strategy is
responsive to communicative difficulties. For example, if
repetition of an initial request goal exceeds the threshold,
the system switches to a menu—style interaction:

(5) S: Flight Inquiries. How can I help you?
C: My boss told me to book a flight from
London to Paris,

S: Tam sorry I didnt understand you. Tell
me Yyour enquiry.

C: erhm,. ..

S: I stdl didn’t understand you. Please tell

me the departure city.

And in situations where the user’s response to a request
goal repeatedly results in a fail status being assigned, the
goal is replaced with a spell goal and the user is asked to
spell the parameter.

4 Testing

As shown in Figure 2, the dialogue manager is constructed
from a number of modules. Since these were developed by
partners on different sites, a method for testing modules
developed on different sites had to be devised.

The testfile method exploits the centralized message
passing of the dialogue manager architecture. Since inter-
actions between modules are mediated by a central com-
ponent (the ‘Postie’), it is possible to define the exact
sequence and content of messages required for the correct
behaviour of the dialogue manager in a given dialogue.
Furthermore, the behaviour of each module can be de-
fined in terms of a sequence of received and transmitted
messages for a set of test dialogues. Application of this
method ensured that modules conforming to the defined
behaviour would fit together, yet each module could be
developed and tested independently.

The testfiles were initially constructed manually, a time
consuming and error prone task, from a selection of dia-

logues gathered from Wizard of Oz simulations (cf. [7]).
Once the system became operational, a large set of testfiles
was created through automatic logging. Consequently,
any modifications to a module could be checked against
the behaviour defined by the test dialogues and misbehav-
ing modules easily identified. Once the modules became
relatively robust, this exhaustive definition of behaviour
was superseded by one based upon input from the parser:
i.e. a dialogue was specified in terms of a sequence of SIL
representations of user input.

When each version of the dialogue manager is integrated
with the rest of the system and evaluated with users, the
logged results are examined for phenomena not yet de-
scribed in the testfiles. New phenomena are specified us-
ing a testfile and the extended set of testfiles define the
intended functionality of the next version. By adopting
this technique, we have been able to chart the progress of
the dialogue manager in terms of the number of correctly
processed testfiles as shown in Figure 4.

100 ' Number . E
o) 7

r of ; .

- Testfiles . 1

10 & 4
”testfiles” -O- - E

I 7passed” w—]
1E | | | | | | | | L

v10 v20 v30 v40 vbH0 v60 v70 v80 v90 v100

Dialogue Manager Version

Figure 4: Dialogue Manager Progress

One additional benefit of the testfile method is that it
provides a simple way of evaluating the dialogue manager.
The metrics used to evaluate the whole dialogue system,
while important performance ratings for components, are
not able to evaluate the dialogue manager in terms of the
range of dialogue phenomena it is capable to handle cor-
rectly. On the other hand, the testfiles define a reference
set of dialogue phenomena which can be used in this man-
ner. Some of the phenomena which the current version is
capable of handling correctly are listed in Table 1.

5 Conclusion

We have described an approach to dialogue management
which addresses the problems of co—operativeness and
portability across tasks and languages. The approach,
based upon a tri-partite model of interaction, has been
adopted in the generic dialogue manager of the SUNDIAL
systems. Three independent modules are responsible for
the contextual interpretation of user utterances, the guid-
ance of dialogues according to conversational principles
and task requirements. Prototype systems utilizing this
dialogue manager are operational in different languages,
with different tasks and domains. Flexible dialogue strate-
gies (including degradation to spelling of city names) con-
trol the dialogue progress and are adapted to the current
recognition performance. The SUNDIAL dialogue manager
is Europe’s first multilingual, task independent dialogue
manager operational in four languages.

Context—dependent interpretation of utterances
Processing ellipses
Information transfer in a single user utterance
Information transfer in multiple user utterances
User can modify previous input
User can negate previous input
Complex temporal reasoning;:

approximate times, intervals, temporal deixis
Overinformative answers from the user
Several phrases as input
Repetition as confirmation
Different dialogue modes (guided, spelling)
Switching modes dynamically
Different parameter confirmation strategies
Initial WH—-questions
Initial Yes/No—questions

Table 1: Some phenomena handled by the Dialogue Man-
ager

6 Acknowledgments

Partners in this project are CAP Gemini Innovation,
CNET, CSELT, Daimler-Benz, University of Erlangen,
Infovox, IRISA, LOGICA, Politechnico di Torino, Sarin,
Siemens, University of Surrey. We wish to thank all the
people who participated in fruitful work of Work Package
6 (Dialogue Management).

References

[1] E. Bilange. A task independent oral dialogue model. In
Proceedings of the 5th EACL, Berlin, Germany, 1991.

[2] W. Eckert, T. Kuhn, H. Niemann, S. Rieck, A. Scheuer,
and E.G. Schukat-Talamazzini. A Spoken Dialogue System
for German Intercity Train Timetable Enquiries. In Proc.
FEuropean Conf. on Speech Technology, Berlin, Germany,
1993 (this issue).

[3] C.R. Frankish. Conversations with computers: problems
of feedback and error correction. In Proc. Furopean Conf.
on Speech Technology, Paris, 1989.

[4] B. Grosz and C. Sidner. Attention, Intensions, and
the Structure of Discourse. Computational Linguistics,
12(3):175-204, July—September 1986.

[5] M. Guyomard and J. Siroux. Suggestive and corrctive an-
swers: A single mechanism. In Proc. Workshop The Struc-
ture of Multimodal Dialogue Including Voice (held 1986 in
Venaco), 1989.

[6] P. Heisterkamp, S. McGlashan, and N.J. Youd. Dia-
logue Semantics for a Spoken Dialogue System. In Proc.

Int. Conf. on Spoken Language Processing, October 1992.
Banff, Canada.

[7] C. MacDermid. Features of Naive Caller’s Dialogues with a
Simulated Speech Understanding and Dialogue System. In
Proc. Furopean Conf. on Speech Technology, Berlin, Ger-
many, 1993 (this issue).

[8] S. McGlashan, N.M. Fraser, N. Gilbert, E. Bilange, P. Heis-
terkamp, and N.J. Youd. Dialogue Management for Tele-
phone Information Services. In Proceedings of the Interna-
tional Conference on Applied Language Processing, Trento,
Ttaly, 1992.

[9] J. Peckham. Speech Understanding and Dialogue over
the Telephone: an Overview of Progress in the SUNDIAL
Project. In Proc. European Conf. on Speech Technology,
volume 3, pages 1469-1472, 1991.

[10] A. Simpson and N. Fraser. Black Box and Glass Box
Evaluation of the SUNDIAL System In Proc. European
Conf. on Speech Technology, Berlin, Germany, 1993 (this
issue).

