
A Bayesian Approach to Learn and Classify 3D Objects fromIntensity ImagesJ. Hornegger and H. NiemannLehrstuhl f�ur Mustererkennung, Universit�at Erlangen{N�urnberg,Martensstr. 3, D{91058 Erlangen, GermanyAbstractThis contribution treats the problem of learning andrecognizing 3D objects using 2D views. We present anew Bayesian approach to 3D computer vision basedon the Expectation{Maximization{Algorithm, wherelearning and classi�cation of objects correspond to pa-rameter estimation algorithms. We give a formal de-scription of di�erent learning and recognition stagesand conclude the associated statistical optimizationproblems for each Bayesian decision. The trainingstage is supposed to be unsupervised in the sense thatno explicit feature matching among di�erent views isnecessary. Finally, the experimental part of the pa-per considers the special case, where observable pointfeatures are assumed to be normally distributed andthe object and its projections are modeled by mixturedensity functions.1 Introduction and MotivationObject recognition systems are often expected to havethe capability of learning and recognizing 3D objectsfrom 2D views without the use of previously computedgeometric models, like CAD data bases. We presenta Bayesian solution to the mentioned learning prob-lem using segmented intensity images. The approachis the �rst which strictly applies the Expectation{Maximization{Algorithm (EM{Algorithm) [1] forthat purpose. Both, the learning and the recognitionstage of objects are stated as optimization problems,i.e. the maximization of a posteriori probabilities. Thealgorithms are �rst described on a high level of ab-straction. If the parametric statistical distributions offeatures are known, the explicit formulas for imple-mentation purposes can be derived, but this causesin general some di�cult mathematical problems, i.e.solving de�nite integrals or the computation of matrixderivatives. The special case of normally distributedmodel features is discussed and evaluated by experi-

ments. The model features and their projections aretherefore represented as a family of mixture densityfunctions (see also [3]). The EM{Algorithm approxi-mates the maximum{likelihood estimates for these in-complete data problems based on the observable pro-jected 2D point features.2 The ProblemIt is a well known result from decision theory thatBayesian classi�ers are optimal due to the minimiza-tion of the error probability [2]. Hence, the design ofa classi�cation system aims to get very close to thistheoretical minimum error bound. In the case of 3Dobject recognition, the classi�cation process includesboth the assignment of a subset of observable imagefeatures to a model and the computation of the ob-ject's pose, described by a rotation matrix and a trans-lation vector. Let C = fC1;C2; : : : ;Cug be the setof all available models and let each model C� be rep-resented by a set of features fC�;1;C�;2; : : : ;C�;n�g,where � 2 f1; 2; : : :; ug: Furthermore, we denote ob-servable image features of the j{th (1 � j � J) scenewith Oj = fOj;1;Oj;2; : : : ;Oj;mjg. Those scene fea-tures which do not correspond to any model featureare assigned to the special background feature C�;0.Due to the fact that segmentation results show in-stabilities concerning di�erent views and varying illu-mination conditions (see Fig.1), in the following boththe model features and the observable scene primitivesare assumed to be statistical random variables havingparameterized density functions. Let the parametersfor the model set C be B = fB1;B2; : : :Bug. Theparameters concerning each model C� are given byB� = fa�;1;a�;2; : : : ;a�;n�g. The relation betweenthe densities of model and image features is given by adensity transform determined by the rotation, trans-lation and the projection properties. Therefore, if asuitable statistical model for each 3D object exists,the process of learning corresponds to the estimation



of the parameter set B from the transformed observ-able random variables. Indeed, the set of training dataX , whereupon the computation of B is based on, candi�er considerably: The sample set may include thematching between features of di�erent views, it mayhave pose information for each view, or it may containbackground features. Thus, we have di�ernt stagesof unsupervised learning processes. The fundamen-tal problem of learning for recognition purposes is themaximization of the probability p(X jB) for di�erenttypes of observations with respect to the parameter setB. The recognition of an object modeled by C� in agiven view Oj is also carried out by the maximizationof a posteriori probabilities { this time with respectto rotation and translation parameters. In contrastto the learning stage, di�erent classi�cation goals {like multiple object recognition or localisation { causedi�erent optimization problems. The set of observ-able data is restricted to image features, thereby. Thefollowing section will describe an iterative parameterestimation algorithm where the relation between ob-servable image features and the unknown 3D structureof objects is included.3 Mathematical FrameworkWe have seen that there may occur several di�erentlevels of learning and classi�cation problems concern-ing the domain of 3D object recognition. The asso-ciated statistical optimization problems di�er in thedata which are either observable or unknown through-out the training or the recognition stage. The learningand classi�cation of 3D objects can thus be consideredas a parameter estimation problem from incompletedata. Dempster et al. [1] developed a widely usedalgorithm for solving those incomplete data estima-tion problems { the EM{Algorithm. Assume that ameasure space M =X [Y of complete data is givenand a measurable mapping from the complete dataM into the incompleteX is de�ned; let Y denote thehidden, i. e. non observable, information. In [1] it isshown that instead of computing a maximum likeli-hood estimation for p(X jB) we can use the conjec-ture between observable and non{observable data bymaximizing the followingKullback Leibler statistics re-garding the reestimation bB of the actual parametersB:Q(B; bB) = Z log p(X;Y j bB) p(Y jX;B) dY :Let us summarize the abstract statistical formulationof the 3D object recognition and learning problem:First, we have to model the object's representation

in form of a parameterized density function with re-spect to the parameter set B and the complete data {including observable and non observable components.In a second step, the mapping from complete into theincomplete data domain has to be de�ned. Finally,the conditioned expectation Q(B; bB) has to be com-puted and iteratively maximized until the algorithmconverges to a stationary point.4 Gaussian Object FeaturesIn this section we use the abstract theoretical frame-work of the previous section and design and implementa 3D object recognition system including the capabil-ity of learning objects based on a special model con-cerning the distributions of features. If a 3D objectundergoes a rigid transformation and the locations ofthe chosen features in the image obey the same rigidmapping, we call those features attached features. Wesuppose that the used features in the 3D space andtheir corresponding features in the image{plane aresimply attached, normally distributed point features.The transformation of model points into image spaceis constrained to a�ne functions. For example, themultiplication of a 3Dmodel point with a rotation ma-trix, addition with the vector, and subsequent scaledorthogonal projection satis�es this restriction. A com-mon problem in 3D computer vision constitutes thephenomenon of occlusion. Therefore, we weight eachpoint feature with its probability of occurring in a 2Dprojection. The statistical dependency between fea-tures is neglected, and it is presumed that the match-ing among scene and model features is unknown. Eachscene feature may correspond to each model primitivewith a certain probability. The set of transformedmodel features of each learning view is considered asa parametric mixture \population" of points. Thismotivates the description of the complete 3D objectby a mixture density function. The probability forobserving the set Oj of image features including theobject C� under the rotation Rj and translation tjby applying the independency assumption isp(Oj jRj; tj;B�)=mjYk=1 n�Xi=0 p(C�;i) p(Oj;kjRj; tj;a�;i):During the learning stage it is assumed that the train-ing images include only one object corresponding toa known model C� with a homogeneous background,and the parameter set B� = fa�;1;a�;2; : : : ;a�;n�ghas to be estimated. The number of model featuresn� for C� is expected to be given by the user. If theKullback{Leibler statistics Q(B�; bB�) is computed



for learning 3D objects from J views and if the gra-dient information is used for the computation of ex-trema, we get the following training formulas for theGaussian mixture density: The weight for each modelprimitive C�;i is iteratively computed bybp(C�;l) = 1J mj JXj=1 mjXk=1 p(C�;l jOj;k;Rj; tj;a�;l);and for the reestimation of the mean vector �i we getwith Di;j = RjKiRTj :b�i = 0@ JXj=1 mjXk=1 p(C�;ijOj;k;a�;i)RTj Di;j�1Rj1A�1JXj=1 mjXk=1 p(C�;ijOj;k;a�;i)RTj Di;j�1 (Oj;k � tj) :Finally, the covariances can be learned by searchingsuccessively the zero crossings ofJXj=1 mjXk=1 p(C�;ijOj;k;a�;i)RTj bD�1i;j ( bDi;j�S) bD�1i;jRjwith respect to the components of cKi. In this non-linear function we set bDi;j = RjcKiRTj and S =(Oj;k � Rj�i � tj)(Oj;k � Rj�i � tj)T . During thetraining, the algorithm expects both the observableimage features Oj and the a�ne transformation givenby Rj and tj . The computational e�ciency of theclassi�cation module is more important than the run-time behavior of the training, because the estimationof the parameter set is done once and o�{line. Inthe pose estimation phase, the parameters to be com-puted are the rotation and translation of the object.The use of the EM{Algorithm provides no closed formsolution for the iterative estimation of the pose para-meters. Thus numerical optimization techniques areused to maximize the probability function.5 Experimental ResultsThe learning process is supported by a robot wherea camera is mounted on its hand. The rotation andtranslation parameters for each view in the learningstage are computed using the position of the cali-brated robot's camera. In Fig. 1 three di�erent exam-ple training views are shown. For each object we take50 views to estimate the mean vectors of 3D point fea-tures, their covariances, and their weights. The num-ber of components of the mixture density has to be

Fig. 1: Segmentation results of di�erent 2D viewsgiven to the system. The initialization of means re-sults from the �rst view, where the depth values foreach point are set to zero; all covariance matrices arechosen to be equal at the beginning of the trainingmodule and all features are assumed to be uniformlyweighted. Dempster et al. [1] propose that the con-vergence of the EM{Algorithm is very slow. In ourexperiments 10 iterations were necessary in the worstcase for the convergence of the EM learning procedure.The computation of the global maximum of the den-sity function with respect to pose parameters requiresactually 5{10 minutes on a HP 735 Workstation (124MIPS) using an adaptive random search technique,wherein explicit feature matching is avoided.6 ConclusionsThe experiments show that the developed statisticalapproach to the recognition problem of 3D objects pro-vides promising results for the selected examples. Infuture, we have to �nd more sophisticated statisticalmodels for 3D objects and their related projections.The e�ect of occlusion is not satis�ably modeled in theactual mixture density assumption. Further researchshould also be concentrated on robust parameter esti-mation techniques using a limited set of sample data.The initialization of the parameter at the beginningof the iterative optimization will also be an essentialfactor for the improvement of the proposed statisticalapproach. The suggested technique using the EM{Algorithm seems to allow a substantial contributionfor building robust 3D object recognition systems withthe capability of automatic learning from examples.This optimism is moreover motivated by the successin the �eld of speech recognition using the concept ofHidden Markov Models which is a special case appli-cation of the EM{Algorithm [2].7 References1. A.P. Dempster, N.M. Laird, and D.B. Rubin. Max-imum Likelihood from Incomplete Data via the EMAlgorithm. Journal of the Royal Statistical Society,Series B (Methodological), 39(1):1{38, 1977.2. H. Niemann. Pattern Analysis and Understanding.Springer, Heidelberg, 1990.3. W. M. Wells III. Statistical Object Recognition.PhD thesis, MIT, Department of Electrical Engineer-ing and Computer Science, Massachusetts, February1993.


