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Abstract

This contribution treats the problem of learning and
recognizing 3D objects using 2D views. We present a
new Bayesian approach to 3D computer vision based
on the Erpectation—-Mazimization—Algorithm, where
learning and classification of objects correspond to pa-
rameter estimation algorithms. We give a formal de-
scription of different learning and recognition stages
and conclude the associated statistical optimization
problems for each Bayesian deciston. The training
stage is supposed to be unsupervised in the sense that
no explicit feature matching among different views is
necessary. Finally, the experimental part of the pa-
per considers the special case, where observable point
features are assumed to be normally distributed and
the object and its projections are modeled by mizture
density functions.

1 Introduction and Motivation

Object recognition systems are often expected to have
the capability of learning and recognizing 3D objects
from 2D views without the use of previously computed
geometric models, like CAD data bases. We present
a Bayesian solution to the mentioned learning prob-
lem using segmented intensity images. The approach
is the first which strictly applies the Expectation—
Maximization—-Algorithm (EM-Algorithm) [1] for
that purpose. Both, the learning and the recognition
stage of objects are stated as optimization problems,
i.e. the maximization of a posteriori probabilities. The
algorithms are first described on a high level of ab-
straction. If the parametric statistical distributions of
features are known, the explicit formulas for imple-
mentation purposes can be derived, but this causes
in general some difficult mathematical problems; i.e.
solving definite integrals or the computation of matrix
derivatives. The special case of normally distributed
model features is discussed and evaluated by experi-

ments. The model features and their projections are
therefore represented as a family of mixture density
functions (see also [3]). The EM-Algorithm approxi-
mates the maximum-likelihood estimates for these in-
complete data problems based on the observable pro-
jected 2D point features.

2 The Problem

It 1s a well known result from decision theory that
Bayesian classifiers are optimal due to the minimiza-
tion of the error probability [2]. Hence, the design of
a classification system aims to get very close to this
theoretical minimum error bound. In the case of 3D
object recognition, the classification process includes
both the assignment of a subset of observable image
features to a model and the computation of the ob-
ject’s pose, described by a rotation matrix and a trans-
lation vector. Let C = {Cy,C4,...,Cy} be the set
of all available models and let each model C be rep-
resented by a set of features {Cx1,Cr2,...,Cxn,},
where k € {1,2,..., u}. Furthermore, we denote ob-
servable image features of the j—th (1 < j < .J) scene
with O; = {0;1,0j32,...,0; n,}. Those scene fea-
tures which do not correspond to any model feature
are assigned to the special background feature C, g.
Due to the fact that segmentation results show in-
stabilities concerning different views and varying illu-
mination conditions (see Fig.1), in the following both
the model features and the observable scene primitives
are assumed to be statistical random variables having
parameterized density functions. Let the parameters
for the model set C be B = {By,B>,...B,}. The
parameters concerning each model C, are given by
B, = {ax1,8452,...,85n,} The relation between
the densities of model and image features is given by a
density transform determined by the rotation, trans-
lation and the projection properties. Therefore, if a
suitable statistical model for each 3D object exists,
the process of learning corresponds to the estimation



of the parameter set B from the transformed observ-
able random variables. Indeed, the set of training data
X, whereupon the computation of B is based on, can
differ considerably: The sample set may include the
matching between features of different views, it may
have pose information for each view, or it may contain
background features. Thus, we have differnt stages
of unsupervised learning processes. The fundamen-
tal problem of learning for recognition purposes is the
maximization of the probability p(X|B) for different
types of observations with respect to the parameter set
B. The recognition of an object modeled by C, in a
given view O); is also carried out by the maximization
of a posteriori probabilities — this time with respect
to rotation and translation parameters. In contrast
to the learning stage, different classification goals —
like multiple object recognition or localisation — cause
different optimization problems. The set of observ-
able data is restricted to image features, thereby. The
following section will describe an iterative parameter
estimation algorithm where the relation between ob-
servable image features and the unknown 3D structure
of objects is included.

3 Mathematical Framework

We have seen that there may occur several different
levels of learning and classification problems concern-
ing the domain of 3D object recognition. The asso-
clated statistical optimization problems differ in the
data which are either observable or unknown through-
out the training or the recognition stage. The learning
and classification of 3D objects can thus be considered
as a parameter estimation problem from incomplete
data. Dempster et al. [1] developed a widely used
algorithm for solving those incomplete data estima-
tion problems — the EM—-Algorithm. Assume that a
measure space M = X UY of complete data is given
and a measurable mapping from the complete data
M into the incomplete X is defined; let Y denote the
hidden, i. e. non observable, information. In [1] it is
shown that instead of computing a maximum likeli-
hood estimation for p(X|B) we can use the conjec-
ture between observable and non—observable data by
maximizing the following Kullback Leibler statistics re-
garding the reestimation B of the actual parameters

B:
QB.B) = [log p(X,Y | B)p(Y | X, B)dY.
Let us summarize the abstract statistical formulation

of the 3D object recognition and learning problem:
First, we have to model the object’s representation

in form of a parameterized density function with re-
spect to the parameter set B and the complete data —
including observable and non observable components.
In a second step, the mapping from complete into the
incomplete data domain has to be defined. Finally,
the conditioned expectation Q(B, B) has to be com-
puted and iteratively maximized until the algorithm
converges to a stationary point.

4 Gaussian Object Features

In this section we use the abstract theoretical frame-
work of the previous section and design and implement
a 3D object recognition system including the capabil-
ity of learning objects based on a special model con-
cerning the distributions of features. If a 3D object
undergoes a rigid transformation and the locations of
the chosen features in the image obey the same rigid
mapping, we call those features attached features. We
suppose that the used features in the 3D space and
their corresponding features in the image—plane are
simply attached, normally distributed point features.
The transformation of model points into image space
is constrained to affine functions. For example, the
multiplication of a 3D model point with a rotation ma-
trix, addition with the vector, and subsequent scaled
orthogonal projection satisfies this restriction. A com-
mon problem in 3D computer vision constitutes the
phenomenon of occlusion. Therefore, we weight each
point feature with its probability of occurring in a 2D
projection. The statistical dependency between fea-
tures is neglected, and it is presumed that the match-
ing among scene and model features is unknown. Each
scene feature may correspond to each model primitive
with a certain probability. The set of transformed
model features of each learning view is considered as
a parametric mixture “population” of points. This
motivates the description of the complete 3D object
by a mixture density function. The probability for
observing the set O; of image features including the
object C, under the rotation I; and translation ¢;
by applying the independency assumption is

mj ne

p(O;| Ry, 15, Bo) =[] D p(Cri) p(O; 4| Ry 1), an ).
k=11:=0

During the learning stage it is assumed that the train-
ing images include only one object corresponding to
a known model Cy with a homogeneous background,
and the parameter set B, = {ax1,0x2,...,0xn,}
has to be estimated. The number of model features
n, for C is expected to be given b}y the user. If the
Kullback-Leibler statistics Q(B,, B,) is computed



for learning 3D objects from J views and if the gra-
dient information is used for the computation of ex-
trema, we get the following training formulas for the
Gaussian mixture density: The weight for each model
primitive Cy ; is iteratively computed by

J mj
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and for the reestimation of the mean vector g1, we get
with Di,j = R]'KZ'R]»TZ
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Finally, the covariances can be learned by searching
successively the zero crossings of

J mj
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with respect to the components of K In this non-
linear function we set D” = R; K R and § =
(Ojr — Rjp; — )0 — Rjp; — t; )T. During the
training, the algorithm expects both the observable
image features O; and the affine transformation given
by R; and t;. The computational efficiency of the
classification module is more important than the run-
time behavior of the training, because the estimation
of the parameter set is done once and off-line. In
the pose estimation phase, the parameters to be com-
puted are the rotation and translation of the object.
The use of the EM—-Algorithm provides no closed form
solution for the iterative estimation of the pose para-
meters. Thus numerical optimization techniques are
used to maximize the probability function.

5 Experimental Results

The learning process is supported by a robot where
a camera 1s mounted on its hand. The rotation and
translation parameters for each view in the learning
stage are computed using the position of the cali-
brated robot’s camera. In Fig. 1 three different exam-
ple training views are shown. For each object we take
50 views to estimate the mean vectors of 3D point fea-
tures, their covariances, and their weights. The num-
ber of components of the mixture density has to be
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Fig. 1: Segmentation results of different 2D views
given to the system. The initialization of means re-
sults from the first view, where the depth values for
each point are set to zero; all covariance matrices are
chosen to be equal at the beginning of the training
module and all features are assumed to be uniformly
weighted. Dempster et al. [1] propose that the con-
vergence of the EM—-Algorithm is very slow. In our
experiments 10 iterations were necessary in the worst
case for the convergence of the EM learning procedure.
The computation of the global maximum of the den-
sity function with respect to pose parameters requires
actually 510 minutes on a HP 735 Workstation (124
MIPS) using an adaptive random search technique,
wherein explicit feature matching is avoided.

6 Conclusions

The experiments show that the developed statistical
approach to the recognition problem of 3D objects pro-
vides promising results for the selected examples. In
future, we have to find more sophisticated statistical
models for 3D objects and their related projections.
The effect of occlusion is not satisfiably modeled in the
actual mixture density assumption. Further research
should also be concentrated on robust parameter esti-
mation techniques using a limited set of sample data.
The initialization of the parameter at the beginning
of the iterative optimization will also be an essential
factor for the improvement of the proposed statistical
approach. The suggested technique using the EM-
Algorithm seems to allow a substantial contribution
for building robust 3D object recognition systems with
the capability of automatic learning from examples.
This optimism is moreover motivated by the success
in the field of speech recognition using the concept of
Hidden Markov Models which 1s a special case appli-
cation of the EM—Algorithm [2].

7 References

1. A.P. Dempster, N.M. Laird, and D.B. Rubin. Max-
imum Likelihood from Incomplete Data via the EM
Algorithm. Journal of the Royal Statistical Society,
Series B (Methodological), 39(1):1-38, 1977.

2. H. Niemann. Pattern Analysis and Understanding.
Springer, Heidelberg, 1990.

3. W. M. Wells III. Statistical Object Recognition.
PhD thesis, MIT, Department of Electrical Engineer-
ing and Computer Science, Massachusetts, February
1993.



