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The Missing Information Principle in ComputerVisionJ. Hornegger, H. NiemannLehrstuhl f�ur Mustererkennung (Informatik 5)Universit�at Erlangen{N�urnbergMartensstr. 3, D{91058 Erlangen, Germanyemail: fhornegger,niemanng@informatik.uni-erlangen.deAbstractCentral problems in the �eld of computer vision are learning object models fromexamples, classi�cation, and localization of objects. In this paper we will motivatethe use of a classical statistical approach to deal with these problems: the missinginformation principle. Based on this general technique we derive the ExpectationMaximization algorithm and deduce statistical methods for learning objects frominvariant features using Hidden Markov Models and from non{invariant featuresusing Gaussian mixture density functions. The derived training algorithms will alsoinclude the problem of learning 3D objects from two{dimensional views. Further-more, it is shown how the position and orientation of a three{dimensional objectcan be computed. The paper concludes with some experimental results.Keywords: Expectation Maximization algorithm, Hidden Markov Models, statisticalobject recognition1 IntroductionObject recognition systems are expected to be robust with respect to instabilities ofsegmentation results. Moreover, those systems should also provide capabilities of learning,i. e. the algorithms should be able to acquire knowledge of a new object from sampledata. The e�ciency of an object recognition system is based on a reliable classi�cationand localization of objects. These requirements suggest the use of statistical methods in a1



Proc. of the 2nd German{Slovenian{Workshop, Ljubljana, June, 1994 2natural manner. If the features are treated as random variables or vectors, their behaviorin varying segmentation results can be described by probability functions. Thus, completeobject models are represented as density functions. The process of learning correspondsto the computation of the parameters of the density function or the application of non{parametric estimation techniques in the non{parametric case. Reliability is achieved, ifthe Bayesian decision rule is applied, since it is known from decision theory that theBayesian classi�er is optimal with respect to the probability of misclassi�cation.Classical pattern recognition theory [8] is based on the assumption that each patternof a class can be characterized by one feature vector of a �xed dimension. The statisticalmodel of one object is thus described by a single density function. An object, in general,cannot be represented by a single feature vector; commonly, a sequence of features or aset of features is required for the demanded discriminental power. Hence, more generaltechniques and algorithms have to be used to deal with the training and recognitionproblem of objects.This contribution motivates that many image recognition problems can be under-stood as an incomplete data estimation problem. We introduce a general mathematicalframework to manage those issues. The described abstract algorithm is applied to threedi�erent problem domains: we introduce Hidden Markov Models for learning from featuresequences of varying length, we suggest a statistical approach to the problem of learningthree{dimensional structure from 2D views, and �nally, it is shown how the proposedrecipe can be used to compute the position and orientation of a known object in a givenscene. The paper concludes with some experimental results and additional remarks.2 Incomplete Data Estimation ProblemsThe features which can be computed for a given image frequently do not provide thecomplete information. For instance, if we use the model based approach for object recog-nition, it is a priori not known which image feature corresponds to which model feature.In the case of three{dimensional vision problems from 2D views the range informationis additionally missing. If there is an heterogeneous background, the partition of objectand background features is also a component of hidden information for the classi�cationalgorithm.These examples demonstrate, that a lot of image recognition problems can be de-composed using the following colloquial paraphrase of the Missing Information Principle[13]:



Proc. of the 2nd German{Slovenian{Workshop, Ljubljana, June, 1994 3Observable Information = Complete Information � Missing InformationObviously, this general statement provides no algorithms. We will use statistical prin-ciples and deduce an algorithmic framework, which admits to deal with incomplete dataestimation problems. Let us assume that a parametric probability function is given bythe parameter set B = fa1;a2; : : : ;ang. We denote the observable data by the randomvariableX and the missing data by Y . The goal of a training algorithm is the estimationof the parameters B using exclusively the observable information. Nevertheless, thereexist relations between observable and hidden data, which might be advantageous for thelearning process in some cases. Using a maximum likelihood approach to estimate theparameter set B, the probability functionP (X jB) = P (X;Y jB)P (Y jX;B) (1)has to maximized. Frequently, it is computationally worthwhile to use the logarithm ofthe probability function L(X;B) = log P (X jB) for the optimization process. Thus, wehave log P (X jB) = log P (X ;Y jB)� log P (Y jX;B) (2)which indeed corresponds to a mathematical formalization of the missing informationprinciple: the complete information is described by log P (X;Y jB) and log P (Y jX;B)represents the missing part. An iterative algorithm for the computation of B can bederived if we use the conditional expectation of the logarithmic likelihood function (2)with respect to the actual estimate of B and the observable set of random variables X.The reestimations are denoted by B̂. The application of the de�nition of the conditionalexpectation results in the following key{equationE[L(X; B̂) jX;B] = L(X; B̂) = Q(B; B̂)�H(B; B̂); (3)whereQ(B; B̂) = Z P (Y jX;B) log P (X ;Y j B̂) dY (4)and H(B; B̂) = Z P (Y jX;B) log P (Y jX; B̂) dY : (5)Using Jensen's inequality [11] it can be shown that an increase of the Q{function (4)corresponds to a decrease of the H{function (5). Consequently, it is su�cient to optimize



Proc. of the 2nd German{Slovenian{Workshop, Ljubljana, June, 1994 4Initialize BWHILE B 6= B̂E{STEP: compute Q(B; B̂)M{STEP: compute B̂ = argmaxB̂ Q(B; B̂)Figure 1: A structogram for the EM{Algorithmmerely the Kullback{Leibler statistics Q(B; B̂). An iterative algorithm for the optimiza-tion of L(X; B̂) is the Expectation Maximization Algorithm described in Figure 2. Thisalgorithm was developed by Dempster e. a. [3]. The properties of the EM{algorithm aresummarized in [3, 12, 17]. The positive characteristics of the EM{algorithm are basedon the constant storage requirements and on the observation that in many applicationsa decomposition in much easier optimization problems occurs. The disadvantages of thisiterative estimation procedure are the slow convergence rate and the restriction for thecomputation of local maxima. A comparison of maximum likelihood estimates with theiterative EM{algorithm can be found in [2].The missing information principle can be summarized by the following steps: Firstof all, you have to de�ne a suitable statistical model for the given problem to be solved.Then, the observable and hidden information can be derived and the computation ofprobability functions P (X;Y jB) and P (Y jX;B) has to be done. Before the EM{iterations are carried out, one has to choose an appropriate maximization technique ofthe Kullback{Leibler statistics.The remaining parts of this contribution are dedicated to the application of this ab-stract algorithm to di�erent computer vision problems.3 ApplicationsThis section describes three di�erent applications of the missing information principle inthe �eld of image processing. We introduce Hidden Markov Models, which are broadlyused for the classi�cation of speech signals, and derive training formulas for estimatingthe parameters. The second and third application describes recent results dealing withthe problem of learning 3D objects from 2D views and the localization of a known 3Dobject in an observed scene.
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Figure 2: Ergodic Hidden Markov Model; each state emits probabilistic output symbols.3.1 Learning from Feature SequencesIf an object in a scene can be associated with a feature sequenceO =< O1;O2; : : : ;On >,a classi�cation system is needed which can compute the a posteriori probability for ob-serving the special feature sequence of length n. An established statistical model fordealing with the problem of classifying feature sequences are stochastic automata, espe-cially Hidden Markov Models (HMMs). The stochastic automata consist of a set of states,transitions among these states, and emission probabilities for elements of a given alpha-bet. The probabilistic behavior of a HMM with N states fS1; : : : ; SNg can be describedby a triplet � = (�;A;B), where � = (�1; �2; : : : ; �N) is the vector of probabilities forthe generation of a sequence of output elements to start at a special state. The state tran-sition matrix A = (ai;j)0<i�N;0<j�N includes the probabilities ai;j to change from stateSi to state Sj. The third element of the triplet � is a matrix B = (bi(vl))0<i�N;0<l<Lincluding discrete probabilities for a �nite output alphabet fv1; v2; : : : ; vLg. An exampleof a Hidden Markov Model is shown in Figure 3.1. Let us assume that the observablefeature sequence for a given object is produced by one automaton. The parameter setB of Figure 2 corresponds to the parameters �;A and B of the Hidden Markov Model.Following the missing information principle, we have to determine what is known andwhat is hidden for the training process. Obviously, the parameter estimation procedureis unsupervised inasmuch as the state sequence, which produces the sequence of outputsymbols, is not observable. Thus X = O and Y = s, where O represents the sequence ofobservable output symbols and s is the non{observable state sequence. Thus, the needed



Proc. of the 2nd German{Slovenian{Workshop, Ljubljana, June, 1994 6probabilities for the complete and the missing information areP (s;O j�) = �s1 n�1Yt=1 ast;st+1 nYt=1 bst(ot); (6)and P (s jO;�) = P (s;O j�)P (O j�) = �s1 n�1Yt=1 ast;st+1 nYt=1 bst(ot)Xs �s1 n�1Yt=1 ast;st+1 nYt=1 bst(ot) : (7)Due to the fact that the unobservable data represent discrete state sequences, the integral(4) becomes a sum over all admissible state sequences.Q(�; �̂) = Xs P (s jO;�) log P (s;O j �̂) (8)The calculation of the maximum of the Kullback{Leibler statistics in each iteration is aconstraint optimization problem, because the parameters are discrete probabilities. Wecompute the zero crossings of the �rst derivative with respect to the parameters �̂si, âst;st+1and b̂st(ot) by taking into consideration Lagrange multipliers.r�̂Q(�; �̂) =Xs P (s jO;�)r�̂ log P (s;O j �̂)= Xs P (s jO;�)r�̂ log �̂s1 + n�1Xt=1 log âst;st+1 + nXt=1 log b̂st(ot)! (9)Evidently, the derivatives separate di�erent variables and we obtain a closed form solutionof the reestimation procedure for the required parameters.�̂i = P (s1 = Si;O j�)P (O j�) (10)âi;j = n�1Xt=1 P (st = Si; st+1 = Sj ;O j�)NXj=1 n�1Xt=1 P (st = Si; st+1 = Sj;O j�) (11)b̂i(oj) = Xt2ft jot=ojgP (st = Si;O j�)nXt=1P (st = Si;O j�) : (12)These formulas are the basis of the well known Baum{Welch algorithm [1] and can nowbe used for training the parameters of the HMM.



Proc. of the 2nd German{Slovenian{Workshop, Ljubljana, June, 1994 73.2 Learning 3D Objects from 2D ViewsIn the previous section we assumed that it is possible to associate with each object afeature sequence, independent of its localization in the image. Let us assume the moregeneral case that a three{dimensional object is characterized by its 3D vertices, by meansof rotation, translation and subsequent projection 2D{point{features can be observed (seeFigure 3.2). In [7] it is shown that there exists no ordering on these projected points,
projection (no inverse)

3D modeltransformed modelsegmentedgrey level image3D rotation and translation
Figure 3: From the 3D model to the 2D scenewhich is conform to the 3D ordering. Thus, the observable object of the j{th view(1 � j � J) has to be represented by a set of features Oj = fOj;1;Oj;2; : : : ;Oj;mjg. Theset of the correlated model features is denoted by C� = fC�;1;C�;2; : : : ;C�;n�g. Thematching function �� assigns to each observed feature Oj;k a model primitive C�;i. Dueto segmentation errors and noise, point features show some instabilities, which can bemodeled by assuming that each point feature is normally distributed [15]. One observablepoint might be assigned to any model feature. Therefore, the probability of observing onespecial point Oj;k can be written asP (Oj;k jB) = n�Xi=0P (��(Oj;k) = C�;i)P (Oj;k j ��(Oj;k) = C�;i;B): (13)



Proc. of the 2nd German{Slovenian{Workshop, Ljubljana, June, 1994 8If statistical independency of point features is assumed, then the probability of observinga set of features can be computed by multiplying the single probabilities of (13).Let us now postulate that the two{dimensional distribution of the described features isthe result of the transformation and projection of the three{dimensional features C�, i. e.a mapping of three{dimensional Gaussian distributed random vectors. If the projectionis orthogonal, i. e. the complete mapping of a three{dimensional model variable C�;i intothe observed scene feature Oj;k can be described by an a�ne transformOj;k = RC�;i + t; (14)where R 2 IR2�3 and t 2 IR2, the resulting random vector is again normally distributed.Let �i and K i be the mean and covariance of the i{th component of the 3D Gaussianmixture density. For the transformed random variables the following is valid: Oj;i isnormally distributed with the mean R�i + t and the covariance Di := RK iRT [11].Now we have introduced a rudimentary statistical model for our learning problem: Theprojected features are modeled by mixture densities and each view j provides an a�nemapping characterized by Rj and tj . The parameter set to be estimated are the weightsP (��(Oj;k) = C�;i), means �i, and covariances K i of each component of the mixturedensity function, B = fP (��(Oj;k) = C�;i);�i;K i j 1 � i � n�g. The next step in theapplication of the missing information principle is the determination of the observable andmissing information, and the de�nition of the probability functions needed for computingthe Kullback{Leibler statistics for this application. Obviously, the set of 2D point featuresOj is observable for each view. The known rotation and translation of the object in theimage has not to be summarized as an observation, because they are not modeled asrandom variables. Hidden for each view is the the set of assignments of model and scenepoints. Consequently, we haveP (Oj;k; ��(Oj;k) = C�;i jB) = P (��(Oj;k) = C�;i)qdet 2�Di;j eu; (15)where u = �12 (Oj;k �Rj�i � t)T D�1i;j (Oj;k �Rj�i � t), andP (��(Oj;k) = C�;i jOj;k;B) = P (Oj;k; ��(Oj;k) = C�;i jB)n�Xi=1 P (Oj;k; ��(Oj;k) = C�;i jB) : (16)Using the Dwyer{Macphail matrix derivative calculus [16], the zero crossings of thegradient of the associated Kullback{Leibler statistics can be computed with respect tothe unknown parameters. As in the previous case of subsection 4.1, we get three types



Proc. of the 2nd German{Slovenian{Workshop, Ljubljana, June, 1994 9of estimation formulas for the unknown parameters. For the weights and the means weobtain closed form solutions, see (17) and (18);P̂ (C�;l) = 1J mj JXj=1 mjXk=1P (C�;l jOj;k;Rj ; tj ;a�;l); (17)�̂i = 0@ JXj=1 mjXk=1P (C�;i j Oj;k;a�;i)RTjD�1i;jRj1A�1JXj=1 mjXk=1P (C�;i j Oj;k;a�;i)RTjD�1i;j (Oj;k � tj) : (18)We de�ne S = (Oj;k �Rj�i � tj)(Oj;k �Rj�i � tj)T and get the following non{linearequation for the computation of the covariance matrices:JXj=1 mjXk=1P (C�;i j Oj;k;a�;i)RTj D̂�1i;j (D̂i;j � S)D̂�1i;jRj = 0: (19)These formulas admit the training of 3D objects from 2D views presupposed a goodsegmentation algorithm for detecting vertices is available and the capability of computingthe objects pose for each view is given.3.3 Estimation of Pose ParametersAside from the problem of learning from examples, the recognition and localization ofobjects is another central requirement of a recognition system. In the following, the issueof computing the position and orientation of a known object in a scene including hetero-geneous background is done by applying the missing information principle. Analogous tothe learning process, a three{dimensional object is modeled using a n{dimensional Gauss-ian mixture density function, where n is the dimension of the model features. Again, thefeatures might vertices, for instance. In contrast to the previous section, the means, co-variances, and weights are known parameters and the components of the rotation andtranslation constitute the parameter set B, which has to be estimated throughout theEM{iterations. The observable image of the scene includes both features of the object andthe background. All features corresponding to the background are assigned to the specialmodel feature C�;0. Following the results described in [15] the background features are



Proc. of the 2nd German{Slovenian{Workshop, Ljubljana, June, 1994 10uniformly distributed; for the abstract mathematical formulation, we generalize that thebackground features underly an arbitrary distribution, which has to be independent ofthe rotation and translation parameters.The known information is the set of two{dimensional point features. Unknown isagain the matching of model and image features, which also indicates the partition ofbackground and object features. The a priori probability of observing one element Oi ofa set of image features thus isP (Oi jB) = mjXl=0 P (Oi; �(Oi) = C�;l jB)= P (�(Oi) = C�;0)P (Oi j �(Oi) = C�;0;B)+ mjXl=1 P (�(Oi) = C�;l)P (Oi j �(Oi) = C�;l;B); (20)This results in the following Kullback{Leibler statisticsQ(B; B̂) = mXi=1 n�Xl=0 P (Oi; �(Oi) = C�;l jB)P (Oi jB) log P (Oi; �(Oi) = C�;l j B̂): (21)The next fundamental problem is the selection of a suitable optimization technique. Dueto the fact that the function for optimization has a lot of local extrema, local gradienttechniques will a priori not be applicable for the computation of the maximum. Fur-thermore, the maximization problem does not fall into optimization problems in lowerdimensional search spaces like in previous applications. Therefore, it is suggested to useglobal, iterative optimization techniques within the EM{iterations and the estimation ofpose parameters can be decomposed into two iterations.An interesting side e�ect results from the fraction P (Oi; �(Oi) = C�;l jB)=P (Oi jB),which obviously yields a probability measure for the unknown matching between modeland scene features.4 Experimental ResultsThe application of the missing information principle results in the described iterativealgorithms of section 3, which are implemented on a HP 735 in C++ for experimentalevaluations using the object oriented image processing system �̀���o&, described in [9].The following subsections brie
y summarize and discuss the achieved results.
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.Figure 4: Original gray{level image (children toys) used for the experimental evaluation(left) and resulting closed polygons of the contour (right). Polygons are used for thecomputation of the a�ne invariant feature sequences.object number of states3 4 5 6 7monkey 9 8 9 8 8gira�e 7 7 7 8 8elephant 8 8 8 5 4camel 5 5 5 3 5rate in % 72 72 72 60 62Table 1: Recognition results using Hidden Markov Models with di�erent numbers of states4.1 Hidden Markov Models for Object RecognitionIn the �rst part of our experiments we implemented and tested Hidden Markov Modelsfor 2D object recognition problems. The basic constraint for the use of Hidden MarkovModels is the limitation to classi�cation problems, where objects can be represented byfeature sequences. We decided to use a�ne invariant features, described in [6], based onclosed contour lines of 2D objects. Hence, the sequence of features does not change if theobject is rotated and translated. We took four objects, shown in Figure 4, and trainedHidden Markov Models with di�ering numbers of states using 50 samples for each object.The classi�cation results for 10 images of each object are shown in Table 4.1. For ane�cient computation of the a priori probabilities for a given observation and a Hidden



Proc. of the 2nd German{Slovenian{Workshop, Ljubljana, June, 1994 12Markov Model we use the forward{backward algorithm [10].The disappointing recognition rates are not based on the chosen features. In [6] it isshown that the correct classi�cations increase, if we leave out the ordering on the featuresequence.4.2 Training and Localization of 3D ObjectsIn contrast to Hidden Markov Models, the use of mixture density functions for objectlearning, recognition, and localization purposes is a new technique. The described al-gorithms are actually tested using synthetical data. For the estimation of parameter setincluding means, covariances, and weights, an initialization of the density function for eachfeature is required. The number of features and initial estimates of parameters have to begiven before the EM{iterations can start (see Figure 2). Presently, we use views where noocclusion occurs. For simple polyedric objects the method produces satisfactory results,if we determine the number of needed object features using one view. The mean vectorsare initialized by the observable 2D point features, where the depth value is de�ned to bezero. Empirically, 40{50 views are su�cient for learning an object, which is representedwith 15 characteristic features. Although the convergence rate of the EM{algorithm wasexpected to be considerably low (see [3]), the learning process converges after 10 itera-tions, in average. The time needed for one iteration using a C++ implementation of thelearning formula (18), which is suitable for arbitrary dimensions of feature vectors, takes97:98 seconds with 50 training views. The memory requirements are constant for eachiteration.The experiences with methods for pose estimation using the computed density func-tions showed that the EM approach is only suitable for re�nements of good initial poseparameters. For the localization of objects where no a priori information of the object'spose is available, the EM{algorithm yields translation and rotation parameters of no use,even if global optimization techniques are used within each EM{iteration. One conceiv-able application of EM{iterations for pose estimates might be the localization in imagesequences, where the initial pose of an object is given by the object's pose in the previousimage [4].Promising results are achieved by applying an adaptive random search technique de-scribed in [14] to the log likelihood function (2) for the observable data. We trained thedensity function for 5 di�erent objects with 15 features and used these results for eval-uating the algorithms for computing the position and orientation. The pose estimates



Proc. of the 2nd German{Slovenian{Workshop, Ljubljana, June, 1994 13for arti�cially rotated and translated objects succeeded in all tested cases. The actualimplementation needs about 10 minutes to �nd the global maximum of the multivariatefunctions, which depend on three rotation angles and both components of the translationvector.5 Future WorkThe promising approach to treat the 3D object recognition problem using gray{levelimages will be used for realizing a system, which can learn and classify simple polyedricobjects. For the implementation of the training stage we will use a robot, where a camerais mounted on its hand. This device will admit the computation of pose parameters foreach training view. A brief introduction into the actual realized components of the systemcan be found in [5]. Theoretical work has to be done with respect to the optimizationtechniques of the estimation of pose parameters.6 ConclusionsThis contribution introduces the missing information principle and shows how this tech-nique can be applied to di�erent computer vision tasks. Characteristically, it is shownthat the Hidden Markov Models, which are intensively used in the �eld of speech recog-nition, are based on the same theoretical foundation like the new statistical approach todeal with the 3D object recognition problem introduced in subsections 3.2 and 3.3. Itshould be emphasized that the learning procedure for 3D objects from two{dimensionalavoids an explicit matching between features.The experimental results show, that the EM{algorithm is not unlimited suitable forall appearing incomplete data estimation problems (subsection 3.3). For improving thethree{dimensional object recognition system a more sophisticated statistical model for3D objects might be useful, because statistical dependencies between several features andocclusion are not modeled in the actual framework. Finally, the extension to more generalfeatures like lines or polygons will be as necessary as the implementation of training andrecognition formulas for perspective projection.References1. L. E. Baum and J. A. Eagon. An inequality with applications to statistical predictionfor functions of Markov processes and to a model for ecology. Bull. Amer. Math. Soc.,
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