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Abstract

Central problems in the field of computer vision are learning object models from
examples, classification, and localization of objects. In this paper we will motivate
the use of a classical statistical approach to deal with these problems: the missing
information principle. Based on this general technique we derive the Expectation
Maximization algorithm and deduce statistical methods for learning objects from
invariant features using Hidden Markov Models and from non-invariant features
using Gaussian mixture density functions. The derived training algorithms will also
include the problem of learning 3D objects from two—-dimensional views. Further-
more, it is shown how the position and orientation of a three—dimensional object

can be computed. The paper concludes with some experimental results.

Keywords: Expectation Maximization algorithm, Hidden Markov Models, statistical

object recognition

1 Introduction

Object recognition systems are expected to be robust with respect to instabilities of
segmentation results. Moreover, those systems should also provide capabilities of learning,
i. e. the algorithms should be able to acquire knowledge of a new object from sample
data. The efficiency of an object recognition system is based on a reliable classification

and localization of objects. These requirements suggest the use of statistical methods in a
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natural manner. If the features are treated as random variables or vectors, their behavior
in varying segmentation results can be described by probability functions. Thus, complete
object models are represented as density functions. The process of learning corresponds
to the computation of the parameters of the density function or the application of non—
parametric estimation techniques in the non—parametric case. Reliability is achieved, if
the Bayesian decision rule is applied, since it is known from decision theory that the
Bayesian classifier is optimal with respect to the probability of misclassification.

Classical pattern recognition theory [8] is based on the assumption that each pattern
of a class can be characterized by one feature vector of a fixed dimension. The statistical
model of one object is thus described by a single density function. An object, in general,
cannot be represented by a single feature vector; commonly, a sequence of features or a
set of features is required for the demanded discriminental power. Hence, more general
techniques and algorithms have to be used to deal with the training and recognition
problem of objects.

This contribution motivates that many image recognition problems can be under-
stood as an incomplete data estimation problem. We introduce a general mathematical
framework to manage those issues. The described abstract algorithm is applied to three
different problem domains: we introduce Hidden Markov Models for learning from feature
sequences of varying length, we suggest a statistical approach to the problem of learning
three-dimensional structure from 2D views, and finally, it is shown how the proposed
recipe can be used to compute the position and orientation of a known object in a given

scene. The paper concludes with some experimental results and additional remarks.

2 Incomplete Data Estimation Problems

The features which can be computed for a given image frequently do not provide the
complete information. For instance, if we use the model based approach for object recog-
nition, it is a priori not known which image feature corresponds to which model feature.
In the case of three-dimensional vision problems from 2D views the range information
is additionally missing. If there is an heterogeneous background, the partition of object
and background features is also a component of hidden information for the classification
algorithm.

These examples demonstrate, that a lot of image recognition problems can be de-

composed using the following colloquial paraphrase of the Missing Information Principle

[13]:
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Observable Information = Complete Information — Missing Information

Obviously, this general statement provides no algorithms. We will use statistical prin-
ciples and deduce an algorithmic framework, which admits to deal with incomplete data
estimation problems. Let us assume that a parametric probability function is given by
the parameter set B = {a;,as,...,a,}. We denote the observable data by the random
variable X and the missing data by Y. The goal of a training algorithm is the estimation
of the parameters B using exclusively the observable information. Nevertheless, there
exist relations between observable and hidden data, which might be advantageous for the
learning process in some cases. Using a maximum likelihood approach to estimate the
parameter set B, the probability function
P(X.,Y |B)

P(X | B) P(Y[X,B) (1)

has to maximized. Frequently, it is computationally worthwhile to use the logarithm of
the probability function L(X, B) =log P(X | B) for the optimization process. Thus, we

have
log P(X|B) = log P(X,Y|B)—log P(Y | X, B) (2)

which indeed corresponds to a mathematical formalization of the missing information
principle: the complete information is described by log P(X,Y | B) and log P(Y | X, B)
represents the missing part. An iterative algorithm for the computation of B can be
derived if we use the conditional expectation of the logarithmic likelihood function (2)
with respect to the actual estimate of B and the observable set of random variables X.
The reestimations are denoted by B. The application of the definition of the conditional

expectation results in the following key—equation

E[L(X,B)|X,B]=L(X,B)=Q(B,B) — H(B, B), (3)
where

Q(B,B) = /P(Y|X,B) log P(X,Y | B)dY (4)
and

H(B,B) = /P(Y|X,B) log P(Y | X, B)dY. (5)

Using Jensen’s inequality [11] it can be shown that an increase of the Q—function (4)

corresponds to a decrease of the H—function (5). Consequently, it is sufficient to optimize
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Initialize B
WHILE B+ B
E-STEP: compute Q(B, B)

M-STEP: compute B = arg max p Q(B, B)

Figure 1: A structogram for the EM-Algorithm

merely the Kullback—Leibler statistics Q(B, B) An iterative algorithm for the optimiza-
tion of L(X, B) is the Frpectation Mazimization Algorithm described in Figure 2. This
algorithm was developed by Dempster e. a. [3]. The properties of the EM-algorithm are
summarized in [3, 12, 17]. The positive characteristics of the EM-algorithm are based
on the constant storage requirements and on the observation that in many applications
a decomposition in much easier optimization problems occurs. The disadvantages of this
iterative estimation procedure are the slow convergence rate and the restriction for the
computation of local maxima. A comparison of maximum likelihood estimates with the
iterative EM-algorithm can be found in [2].

The missing information principle can be summarized by the following steps: First
of all, you have to define a suitable statistical model for the given problem to be solved.
Then, the observable and hidden information can be derived and the computation of
probability functions P(X,Y | B) and P(Y | X, B) has to be done. Before the EM-
iterations are carried out, one has to choose an appropriate maximization technique of
the Kullback—Leibler statistics.

The remaining parts of this contribution are dedicated to the application of this ab-

stract algorithm to different computer vision problems.

3 Applications

This section describes three different applications of the missing information principle in
the field of image processing. We introduce Hidden Markov Models, which are broadly
used for the classification of speech signals, and derive training formulas for estimating
the parameters. The second and third application describes recent results dealing with
the problem of learning 3D objects from 2D views and the localization of a known 3D

object in an observed scene.
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Figure 2: Ergodic Hidden Markov Model; each state emits probabilistic output symbols.

3.1 Learning from Feature Sequences

If an object in a scene can be associated with a feature sequence O =< O1,0,,...,0, >,
a classification system is needed which can compute the a posteriori probability for ob-
serving the special feature sequence of length n. An established statistical model for
dealing with the problem of classifying feature sequences are stochastic automata, espe-
cially Hidden Markov Models (HMMs). The stochastic automata consist of a set of states,
transitions among these states, and emission probabilities for elements of a given alpha-
bet. The probabilistic behavior of a HMM with NV states {S,..., Sy} can be described
by a triplet A = (&, A, B), where ® = (71, 72,...,7y) is the vector of probabilities for
the generation of a sequence of output elements to start at a special state. The state tran-
sition matrix A = (a;;)oci<no<j<n includes the probabilities a;; to change from state
Si to state S;. The third element of the triplet A is a matrix B = (b;(v))o<i<no<i<L
including discrete probabilities for a finite output alphabet {vq,vy,...,vp}. An example
of a Hidden Markov Model is shown in Figure 3.1. Let us assume that the observable
feature sequence for a given object is produced by one automaton. The parameter set
B of Figure 2 corresponds to the parameters w, A and B of the Hidden Markov Model.
Following the missing information principle, we have to determine what is known and
what is hidden for the training process. Obviously, the parameter estimation procedure
is unsupervised inasmuch as the state sequence, which produces the sequence of output
symbols, is not observable. Thus X = O and Y = s, where O represents the sequence of

observable output symbols and s is the non-observable state sequence. Thus, the needed
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probabilities for the complete and the missing information are

n—1 n
P(s,O|A) = 7 H Usys04, H bs, (01), (6)
=1 =1

and

n—1 n
P(S O | A) Tsq H sy 5041 H bst(ot)
P(S | ()7 A) _ 9 — =1 =1 (7)

PO|N) P : -
Z sy H sy 5041 H bst(ot)
s =1 t=1

Due to the fact that the unobservable data represent discrete state sequences, the integral

(4) becomes a sum over all admissible state sequences.
QA A) = Y P(s|0,A) log P(5,0|N) (8)
s

The calculation of the maximum of the Kullback—Leibler statistics in each iteration is a
constraint optimization problem, because the parameters are discrete probabilities. We
compute the zero crossings of the first derivative with respect to the parameters 7, s, s,

and ?)St(ot) by taking into consideration Lagrange multipliers.

ViQAX) =3 P(s|0,A)V;log P(s,0 | A)
S

n—1 n
= ZP(S |O,A) V5 (log Ts, + Z log as,s,,, + Zlog bst(ot)) 9)
S t=1 t=1

Evidently, the derivatives separate different variables and we obtain a closed form solution
of the reestimation procedure for the required parameters.
P(s1 = 5,0|A)

P(O]A)

A

(10)

n—1
ZP(St:SZ',St+1:S]‘,O|A)
aij = Nt:nl—l (11)

ZZP(St:Si7St+1 :S],O|A)

j=11t=1

S P(s;=S5,0|\)

te{t|0,=0,)

bi(o;) = - . (12)
Y P(si=S,0|N)

These formulas are the basis of the well known Baum—Welch algorithm [1] and can now

be used for training the parameters of the HMM.
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3.2 Learning 3D Objects from 2D Views

In the previous section we assumed that it is possible to associate with each object a
feature sequence, independent of its localization in the image. Let us assume the more
general case that a three-dimensional object is characterized by its 3D vertices, by means
of rotation, translation and subsequent projection 2D—point—features can be observed (see

Figure 3.2). In [7] it is shown that there exists no ordering on these projected points,

3D model

3D rotation and translation

transformed model

%

projection (no inverse)

segmented
grey level image

Figure 3: From the 3D model to the 2D scene

which is conform to the 3D ordering. Thus, the observable object of the j—th view
(1 <j < J) has to be represented by a set of features O; = {0;1,0;,,...,0;,,}. The
set of the correlated model features is denoted by C, = {C,1,C,3,...,Cyn.}. The
matching function (, assigns to each observed feature O, a model primitive C, ;. Due
to segmentation errors and noise, point features show some instabilities, which can be
modeled by assuming that each point feature is normally distributed [15]. One observable
point might be assigned to any model feature. Therefore, the probability of observing one

special point O, can be written as

(Ojx | B) = ZP ((Ojk) = Cri) P(O; k[ (:(Oj k) = Cpi, B). (13)
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It statistical independency of point features is assumed, then the probability of observing
a set of features can be computed by multiplying the single probabilities of (13).

Let us now postulate that the two—dimensional distribution of the described features is
the result of the transformation and projection of the three-dimensional features C,, 1. e.
a mapping of three-dimensional Gaussian distributed random vectors. If the projection
is orthogonal, 1. e. the complete mapping of a three-dimensional model variable C, ; into

the observed scene feature O, can be described by an affine transform
O,, = RC,, +t, (14)

where R € IR**® and t € IR?, the resulting random vector is again normally distributed.
Let g, and K; be the mean and covariance of the :—th component of the 3D Gaussian
mixture density. For the transformed random variables the following is valid: O;; is
normally distributed with the mean R p; + t and the covariance D; := RK;R" [11].
Now we have introduced a rudimentary statistical model for our learning problem: The
projected features are modeled by mixture densities and each view j provides an affine
mapping characterized by R; and t;. The parameter set to be estimated are the weights
P((:(O;x) = C,;), means g, and covariances K; of each component of the mixture
density function, B = {P((s(O;x) = C,.),p;, Ki|1 <1 < ng}. The next step in the
application of the missing information principle is the determination of the observable and
missing information, and the definition of the probability functions needed for computing
the Kullback—Leibler statistics for this application. Obviously, the set of 2D point features
O; is observable for each view. The known rotation and translation of the object in the
image has not to be summarized as an observation, because they are not modeled as
random variables. Hidden for each view is the the set of assignments of model and scene

points. Consequently, we have

P(Cﬁ(oj,k) = Cﬁ,i) o

PO, ((0;5)=C,;|B) = , 15
where u = —2 (O, — R;p; — t)T D;jl (O;x — R;p; — t), and
j K j = Cﬁi B
P((A0) = i [0, B) = Qi el Qi) = Cril B (16)

ZP ],kaH ):CH,Z|B)

Using the Dwyer-Macphail matrix derivative calculus [16], the zero crossings of the
gradient of the associated Kullback—Leibler statistics can be computed with respect to

the unknown parameters. As in the previous case of subsection 4.1, we get three types
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of estimation formulas for the unknown parameters. For the weights and the means we

obtain closed form solutions, see (17) and (18);

ZZP(CHJ|O]7k7Rj7tj7aﬁJ)7 (17)

J
Z P(C,w' | O]‘J“ CL,@Z’)R}WDZ} (Oj,k — t]‘) . (18)

We define S = (O, — R;u; — t;)(O;, — R;pu; — t;)T and get the following non-linear

equation for the computation of the covariance matrices:

J my _ R L
S P(Cyi | Ojpran)RI D, (Di; — S)D, R; = 0. (19)

1k=1

J

These formulas admit the training of 3D objects from 2D views presupposed a good
segmentation algorithm for detecting vertices is available and the capability of computing

the objects pose for each view is given.

3.3 Estimation of Pose Parameters

Aside from the problem of learning from examples, the recognition and localization of
objects is another central requirement of a recognition system. In the following, the issue
of computing the position and orientation of a known object in a scene including hetero-
geneous background is done by applying the missing information principle. Analogous to
the learning process, a three—dimensional object is modeled using a n—dimensional Gauss-
ian mixture density function, where n is the dimension of the model features. Again, the
features might vertices, for instance. In contrast to the previous section, the means, co-
variances, and weights are known parameters and the components of the rotation and
translation constitute the parameter set B, which has to be estimated throughout the
EM-iterations. The observable image of the scene includes both features of the object and
the background. All features corresponding to the background are assigned to the special

model feature C, 4. Following the results described in [15] the background features are
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uniformly distributed; for the abstract mathematical formulation, we generalize that the
background features underly an arbitrary distribution, which has to be independent of
the rotation and translation parameters.

The known information is the set of two—dimensional point features. Unknown is
again the matching of model and image features, which also indicates the partition of
background and object features. The a priori probability of observing one element O; of
a set of image features thus is

mj

P(O;|B) = ZP 0,,((0;) = C,,| B)
= P(C(Oz) w0) P(O:[((O;) = Cy o, B)
+ 3 P(C(01) = C)) P(O;|((0y) = Cr1, B), (20)

=1

This results in the following Kullback-Leibler statistics

0B.B) = 303 MBI RE) oy P0.C(0) = €l B). (1)

The next fundamental problem is the selection of a suitable optimization technique. Due
to the fact that the function for optimization has a lot of local extrema, local gradient
techniques will a priori not be applicable for the computation of the maximum. Fur-
thermore, the maximization problem does not fall into optimization problems in lower
dimensional search spaces like in previous applications. Therefore, it is suggested to use
global, iterative optimization techniques within the EM—iterations and the estimation of
pose parameters can be decomposed into two iterations.

An interesting side effect results from the fraction P(O;,((O;) = C,,;| B)/P(O;| B),
which obviously yields a probability measure for the unknown matching between model

and scene features.

4 Experimental Results

The application of the missing information principle results in the described iterative
algorithms of section 3, which are implemented on a HP 735 in C++ for experimental
evaluations using the object oriented image processing system irroc, described in [9].

The following subsections briefly summarize and discuss the achieved results.
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Figure 4: Original gray—level image (children toys) used for the experimental evaluation

(left) and resulting closed polygons of the contour (right). Polygons are used for the

computation of the affine invariant feature sequences.

object number of states
31415167
monkey 91819 |8 ]38
giraffe T 7T 7|88
elephant 8|1 8|8 |5 |4
camel 51551315
rate in % || 72 | 72 | 72 | 60 | 62

Table 1: Recognition results using Hidden Markov Models with different numbers of states

4.1 Hidden Markov Models for Object Recognition

In the first part of our experiments we implemented and tested Hidden Markov Models
for 2D object recognition problems. The basic constraint for the use of Hidden Markov
Models is the limitation to classification problems, where objects can be represented by
feature sequences. We decided to use affine invariant features, described in [6], based on
closed contour lines of 2D objects. Hence, the sequence of features does not change if the
object is rotated and translated. We took four objects, shown in Figure 4, and trained
Hidden Markov Models with differing numbers of states using 50 samples for each object.
The classification results for 10 images of each object are shown in Table 4.1. For an

efficient computation of the a priori probabilities for a given observation and a Hidden
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Markov Model we use the forward-backward algorithm [10].
The disappointing recognition rates are not based on the chosen features. In [6] it is
shown that the correct classifications increase, if we leave out the ordering on the feature

sequence.

4.2 Training and Localization of 3D Objects

In contrast to Hidden Markov Models, the use of mixture density functions for object
learning, recognition, and localization purposes is a new technique. The described al-
gorithms are actually tested using synthetical data. For the estimation of parameter set
including means, covariances, and weights, an initialization of the density function for each
feature is required. The number of features and initial estimates of parameters have to be
given before the EM—iterations can start (see Figure 2). Presently, we use views where no
occlusion occurs. For simple polyedric objects the method produces satisfactory results,
if we determine the number of needed object features using one view. The mean vectors
are initialized by the observable 2D point features, where the depth value is defined to be
zero. Empirically, 40-50 views are sufficient for learning an object, which is represented
with 15 characteristic features. Although the convergence rate of the EM-algorithm was
expected to be considerably low (see [3]), the learning process converges after 10 itera-
tions, in average. The time needed for one iteration using a C++ implementation of the
learning formula (18), which is suitable for arbitrary dimensions of feature vectors, takes
97.98 seconds with 50 training views. The memory requirements are constant for each
iteration.

The experiences with methods for pose estimation using the computed density func-
tions showed that the EM approach is only suitable for refinements of good initial pose
parameters. For the localization of objects where no a priori information of the object’s
pose is available, the EM—algorithm yields translation and rotation parameters of no use,
even if global optimization techniques are used within each EM-iteration. One conceiv-
able application of EM—iterations for pose estimates might be the localization in image
sequences, where the initial pose of an object is given by the object’s pose in the previous
image [4].

Promising results are achieved by applying an adaptive random search technique de-
scribed in [14] to the log likelihood function (2) for the observable data. We trained the
density function for 5 different objects with 15 features and used these results for eval-

uating the algorithms for computing the position and orientation. The pose estimates
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for artificially rotated and translated objects succeeded in all tested cases. The actual
implementation needs about 10 minutes to find the global maximum of the multivariate
functions, which depend on three rotation angles and both components of the translation

vector.

5 Future Work

The promising approach to treat the 3D object recognition problem using gray—level
images will be used for realizing a system, which can learn and classify simple polyedric
objects. For the implementation of the training stage we will use a robot, where a camera
is mounted on its hand. This device will admit the computation of pose parameters for
each training view. A brief introduction into the actual realized components of the system
can be found in [5]. Theoretical work has to be done with respect to the optimization

techniques of the estimation of pose parameters.

6 Conclusions

This contribution introduces the missing information principle and shows how this tech-
nique can be applied to different computer vision tasks. Characteristically, it is shown
that the Hidden Markov Models, which are intensively used in the field of speech recog-
nition, are based on the same theoretical foundation like the new statistical approach to
deal with the 3D object recognition problem introduced in subsections 3.2 and 3.3. It
should be emphasized that the learning procedure for 3D objects from two—dimensional
avoids an explicit matching between features.

The experimental results show, that the EM—-algorithm is not unlimited suitable for
all appearing incomplete data estimation problems (subsection 3.3). For improving the
three—dimensional object recognition system a more sophisticated statistical model for
3D objects might be useful, because statistical dependencies between several features and
occlusion are not modeled in the actual framework. Finally, the extension to more general
features like lines or polygons will be as necessary as the implementation of training and

recognition formulas for perspective projection.
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