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Proc. Pattern Recognition in Practice, Vlieland, Netherlands, June 1{3, 1994 1This contribution describes a statistical approach for learning and classi�cation of two{dimensional objects based on segmented grey{level images. The research concentrates onthe application of HiddenMarkov Models in the �eld of computer vision. For that purpose,the theory of Hidden Markov Models is shortly introduced with emphasis on di�erenttypes of stochastic automata. In the experiments we evaluate several types of HiddenMarkov Models with respect to a�ne invariant geometric features. The implementationuses an object{oriented class hierarchy for di�erent variants of Hidden Markov Models.The paper concludes with a discussion of Hidden Markov Models for 3{D computer visionpurposes.1. INTRODUCTIONFor classi�cation purposes, knowledge about the objects is necessary, which can be ac-quired and represented in various ways. One possibility is the explicit representation ofknowledge for a particular problem domain [9]. In some cases, the knowledge base canthen be generated automatically in a knowledge{acquisition phase using learning sets ofimages. Distortions and noise in the input data are inevitable and may cause problemsfor the algorithms. However, statistical learning algorithms exist which are robust withrespect to variations of the input data. Consequently, a statistical approach for learningobjects seems natural. In the area of speech analysis, the statistical approach has beenvery successful; stochastic automata | especially Hidden Markov Models (HMMs) | arean established tool for that purpose.The following paper is dedicated to the problem of learning 2{D objects by examplesand the design of e�cient recognition algorithms based on information extracted fromtraining samples. The used technique is based on HMMs combined with a�ne invariantgeometric features. Image segmentation and representation and training of the HMMsare implemented following the object{oriented programming paradigm. The experimentsare based on four di�erent object classes, where for each object class 50 images andthe corresponding extracted features are used for estimating the model parameters. Thecontribution concludes with a discussion of the practical results and the consideration ofa statistical approach to solve the 3{D object recognition problem from 2{D views.2. STATISTICAL OBJECT RECOGNITIONTheoretical aspects of statistical pattern recognition and classi�catin are well developed[5]. Current research in this �eld focuses on the investigation of e�cient and robustalgorithms for practical recognition systems [8]. Most classi�cation algorithms are basedon Bayesian decision theory, where the decision relies on the a posteriori probability ofthe classes. Let us assume, we have classes 
1;
2; : : : ;
n and observe a feature vector c,then we decide for class 
k, if
k = argmax
i P (
i j c): (1)A statistical classi�cation system is expected to provide the capability of learning thestatistical properties of classes, for instance the density functions, from training sam-ples. Additionally, Bayesian classi�ers should also allow an e�cient computation of the aposteriori probabilities P (
i j c) for each class 
i.



23. HIDDEN MARKOV MODELSIn the following section we will brie
y introduce the basic concepts of HMMs and referthe interested reader to the literature for more details [11].3.1. De�nitionsHidden Markov Models are widely used in the �eld of speech recognition. They are sto-chastic automata including states, transitions among states, and emission probabilities forelements of a given alphabet. An HMM with N states fS1; : : : ; SNg can thus be describedby a triplet � = (�;A;B), where � = (�1; �2; : : : ; �N) is the vector of probabilities forthe generation of a sequence of output elements to start at a special state. The state tran-sition matrix A = (ai;j)0<i�N;0<j�N includes the probabilities ai;j to change from stateSi to state Sj. The third element is either a matrix B = (bi(vl))0<i�N;0<l<L includingdiscrete probabilities for a �nite output alphabet fv1; v2; : : : ; vLg or a vector of densityfunctions for an in�nite continuous output alphabet.Each HMM can generate sequences of output symbols. The name Hidden MarkovModel is due to the fact that for an observed sequence of output symbols the underlyingstate sequence is unknown. Figure 1 shows two examples of HMMs of di�erent topologies.S1�3 S2S3 �3�2a11 a22 a33a22a11 S1 S3S2a12a21a31 a32a13 a23a33 a12 a23�2�1 �1
Figure 1. Ergodic and \left right" Hidden Markov Model; each state emits probabilisticoutput symbols.3.2. AlgorithmsDuring the training phase, the parameters of an HMM � have to be estimated such thatfor all observed learning sequences Oi (1 � i � L) the probability P (Oi j�) that model �generates Oi is maximized. In the recognition stage the decision rule, i.e. the a posterioriprobability P (�j jO) for an observed feature sequence O has to be computed for eachHMM �j, in order to �nd out which HMM most likely created the feature sequence.



Proc. Pattern Recognition in Practice, Vlieland, Netherlands, June 1{3, 1994 3The parameter estimation algorithm is inasmuch unsupervised, since due to the natureof HMMs it is not known which state sequence has generated the sequence of outputsymbols.The computation of the parameters for the HMM � is done iteratively using the Ex-pectation Maximization Algorithm (EM{Algorithm, [2]). For that purpose, the Kullback{Leibler quantityQ(�; �̂) = LXi=1Xs P (s jOi;�) logP (s;Oi j �̂) (2)is computed for an initial estimation of �. Herein s = s1s2 : : : sT varies over all possiblestate sequences which may have produced the output symbols of the i{th observationOi = o1o2 : : : oT (T may be di�erent for every i). Q(�; �̂) is maximized with respectto the parameter set �̂. After the maximization step the reestimated model parameters� := �̂ are substituted. Both steps have to be repeated until no change in parametersoccurs, i. e. � = �̂.P (s;O j�) = �s1 T�1Yt=1 ast;st+1 TYt=1 bst(ot); (3)Since for an arbitrary observation O equation (3) holds, the learning formulas canbe computed using numerical or combinatorial optimization techniques. For example,computation of the zero crossings of the �rst derivatives with respect to the unknownparameters will yield the well known estimation formulas for HMMs with discrete, timeindependent probabilities [11].The decision rule for recognition depends on the computation ofP (� jO) = P (�)P (O j�)P (O) ; (4)where the complexity of determining P (O j�) is bounded by O(N2T ) when the forward{backward algorithm [8] is used. The optimal state sequence for an observation O can becomputed using the Viterbi algorithm [11].4. OBJECT ORIENTED IMPLEMENTATION OF HMMSWith respect to the de�nition of HMMs given in the previous section, di�erent variantscan be distinguished. Types of HMMs are distinguished by the special form of occurringstatistical measures �, A and B and the topology of the stochastic automata. Forinstance, the transition probabilities ai;j can be time dependent; those HMMs are callednon{stationary. The output alphabet of an HMM can be discrete or continuous; thus,the measure B represents either discrete probabilities or continuous density functions.For example, the statistical behavior of a state can be modelled by a Gaussian densityor a mixture of Gaussian densities. Restrictions on possible transitions induce di�erenttopologies. Left right HMMs are used in speech recognition algorithms and satisfy theconstraint that the state index increases with increasing time.



4 Object{oriented programming currently seems to be the most promising tool for soft-ware management. The similarities in the deduced estimation formulas and classi�cationalgorithms suggest the use of polymorphism and inheritance, and for realization of HMMalgorithms in class hierarchies.The algorithm for computing the a posteriori probabilities for an observed featuresequence and the optimal state sequence can be described in terms of the variables �;A;and B, independent of the topology or the special form of the statistical measures. Thus,the forward{backward algorithm and the Viterbi algorithm should be implemented in ahigher level of the inheritance tree. Dependent on the properties of the output densityor the statistical behavior of the transitions the learning formulas have to be computed.These training algorithms have to be implemented in derived, more specialized classes.A hierarchy of HMM classes has been implemented and tested. An abstract base classHMM provides the interfaces for an abstract speci�cation of training and classi�cationalgorithms, like the Viterbi algorithm. Two class subtrees are derived from this class; oneis used for the implementation of discrete HMMs which implement B as a matrix; theother subtree describes continuous HMMs and is further subdivided into classes for variousdensities in B. Left right HMMs are special cases of any of those classes. The whole classhierarchy is integrated in an object{oriented environment for image segmentation andanalysis (ANIMALS, [10]).5. AFFINE INVARIANT FEATURESApplications of HMMs are restricted to those pattern recognition problems, where orderedsequences of features can be constructed. The extracted features of a speech signal are,for instance, a priori time ordered and thus satisfy this central prerequisite. Since objectsin an observed scene have several degrees of freedom such as translation or rotation, asequence of features associated with each object needs to be invariant with respect to thiskind of transformations, if the goal is to identify them in varying scenes using HMMs.In [4] a�ne invariant features are introduced which are based on simple contours ofobjects. A contour is called simple, if there are no intersections of the contour with itself.A local form of a simple contour is de�ned as a closed polygon a;pk; : : : ;pl; b;a, whichis part of the polygon approximation of the complete contour determined by the pointsequence p0;p1; : : : ;pn�1. Figure 2 shows a part of a simple contour and a local form andalso indicates the possible locations for a and b.Obviously, proportions of areas are a�ne invariant. For example, let c be the center ofgravity of the local form. The quotient �1 of the area Fc of the triangle abc and the areaF of the local form is obviously an a�ne invariant feature.Now the question arises, how the points a and b have to be chosen for a given localform and how many local forms have to be computed for each contour. For each quadru-ple (pk�1;pk;pl;pl+1) the points a and b are chosen such that the quotient �1 will beminimized. This process produces a large set of local forms. The selection of local formsout of this set is guided by the following criterion: all local forms whose area is greateror equal to half of the area of the complete contour's area are canceled. Furthermore,triangular local forms are not admissible.The resulting set of local forms provides a set of a�ne invariant features, which is
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Figure 2. Examples of a local form in di�erent scaling, rotation, and positionnaturally ordered by the processing order of the polygon. Thus, we can associate witheach contour a sequence of features and HMMs can be used for training and classi�cationpurposes.6. EXPERIMENTAL RESULTSIn the experiments we choose four di�erent objects (see Figure 3). Using a trainingdata set of 50 input images per object, di�erent types of HMMs are trained from thesequences of extracted a�ne invariant features. We compute both �1 for each contour.The classi�cation results using 10 images of each object which are not included in thesample set are shown in Table 1. The used type of HMMs is the continuous versionproducing normally distributed output in each state. Each column shows the numberof correctly classi�ed objects. The last line summarizes the recognition rate related tothe number of states. The increase of correct decisions using \left right" models is aremarkable result which is due to the fact that ergodic models have more transitions andthus more parameters which have to be estimated. The higher the number of parametersis, the larger the sample set has to be for good estimates. Conspicuously, in all casesin which the classi�cation result is wrong, the correct object has the second highest aposteriori probability.Since the features associated with a contour of an object are real numbers, discreteHMMs cannot be used in a direct manner. Discrete feature values can be computed usingvector quantization techniques [8].The same experiment was carried out with the Expectation Maximization Algorithmapplied to Gaussian mixture densities and an unordered set of features. The overallrecognition rate was approximately 93%. This means that the introduction of an orderingfor the features has decreased the recognition rate rather than increasing it.Non{stationary HMMs as introduced in [6] expect feature sequences of equal length foreach observed scene. The sequences of features in our experiments have di�erent size {
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.Figure 3. The image shows the original grey{level image (children toys) and the rightimage the resulting closed polygons of the contour of each object.object number of states3 4 5 6 7monkey 9 8 9 8 8gira�e 7 7 7 8 8elephant 8 8 8 5 4camel 5 5 5 3 5rate in % 72 72 72 60 62 object number of states3 4 5 6 7monkey 9 8 9 8 8gira�e 7 7 7 7 7elephant 9 9 9 9 9camel 5 5 5 5 6rate in % 75 72 75 72 75Table 1Continuous, ergodic (left) and \left right" (right) HMM with Gaussian output densitiesfrom 1 up to 14 { and thus the mentioned type of HMM was not tested.All these experiments can easily be carried out using other types of invariant features.Applications to three{dimensional object recognition problems might be for instance theuse of geometric 3{D invariants like mean and Gaussian curvatures of surfaces in rangeimages, which are viewpoint independent features.7. SUMMARY AND CONCLUSIONSThis contribution shows that statistical methods are suitable for object recognition pur-poses. The experimental evaluation is based on two{dimensional object recognition prob-lems without the computation of the object's location. Real images were used. However,the constraint that only invariant features can be used is profound, since apart from theclassi�cation of an object, the computation of its location is further a central problemof computer vision. Actually, this cannot be solved using the proposed approach withHMMs, not even in the discussed two{dimensional object recognition problem. One con-



Proc. Pattern Recognition in Practice, Vlieland, Netherlands, June 1{3, 1994 7ceivable extension might be the introduction of parameterized output densities regardingthe object's location. Nevertheless, this would cause maximization problems for para-meter estimation which do not provide an analytical solution. The computation of thea posteriori probabilities will also be of higher complexity, because the search space isenlarged by the location parameters. Additionally, the introduced method is currentlylimited to images which include only one object with a homogeneous background.In order to use HMMs, the inclusion of structural information about the objects as anordered sequence of features was required. However, only few invariant geometric featuresof the described type can be found in the objects, e.g. only three for the monkey object.This is not su�cient for a stable parameter estimation of the HMMs (e.g. 70 parametersfor a 7 state HMM) and explains why the HMM experiments reveal lower recognition ratesthan expected. Further research for features is required; ideally they should be chosen insuch a way that the length of the feature sequence of a given object is �xed. In this case,non{stationary HMMs can be used which are shown to have higher recognition accuracy[6].For the recognition of three{dimensional objects from 2{D views HMMs are not suitable,because occlusion and the missing depth information lead to the result that there do notexist any geometric invariant features for 3{D objects in 2{D images. Consequently, theuse of a view based approach is necessary, i. e. for each possible view of an object anHMM has to be introduced. The relation between the possible number of views of anobject and the resulting recognition errors are discussed in [1].We summarize that HMMs can be naturally implemented in an object{oriented pro-gramming environment, and provide high 
exibility and programming comfort. Trainingalgorithms can thereby be programmed in an abstract manner for several types of HMMs.Furthermore, we conclude that HMMs in their existing form cannot be used for solvingthe 3{D object recognition problem from two{dimensional images apart from the viewbased attempt. Thus, it seems to be indispensable to �nd a more appropriate statisticalframework for building a Bayesian classi�er for 3{D object recognition purposes. A �rstpromising approach can be found in [3,7].ACKNOWLEDGEMENTSpecial thanks to E.G. Schukat{Talamazzini who carried out the EM{experiments formixture density functions.REFERENCES1. T. M. Breuel. Geometric Aspects of Visual Object Recognition. PhD thesis, MIT,Department of Brain and Cognitive Sciences, Massachusetts, 1992.2. A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum Likelihood from Incom-plete Data via the EM Algorithm. Journal of the Royal Statistical Society, Series B(Methodological), 39(1):1{38, 1977.3. J. Denzler, R. Be� J. Hornegger, H. Niemann, and D. Paulus. Learning, tracking andrecognition of 3D objects. In V. Graefe, editor, International Conference on IntelligentRobots and Systems { Advanced Robotic Systems and Real World, volume 1, pages 89{96, 1994.
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