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This contribution describes a statistical approach for learning and classification of two—
dimensional objects based on segmented grey—level images. The research concentrates on
the application of Hidden Markov Models in the field of computer vision. For that purpose,
the theory of Hidden Markov Models is shortly introduced with emphasis on different
types of stochastic automata. In the experiments we evaluate several types of Hidden
Markov Models with respect to affine invariant geometric features. The implementation
uses an object—oriented class hierarchy for different variants of Hidden Markov Models.
The paper concludes with a discussion of Hidden Markov Models for 3-D computer vision
purposes.

1. INTRODUCTION

For classification purposes, knowledge about the objects is necessary, which can be ac-
quired and represented in various ways. One possibility is the explicit representation of
knowledge for a particular problem domain [9]. In some cases, the knowledge base can
then be generated automatically in a knowledge—acquisition phase using learning sets of
images. Distortions and noise in the input data are inevitable and may cause problems
for the algorithms. However, statistical learning algorithms exist which are robust with
respect to variations of the input data. Consequently, a statistical approach for learning
objects seems natural. In the area of speech analysis, the statistical approach has been
very successful; stochastic automata — especially Hidden Markov Models (HMMs) — are
an established tool for that purpose.

The following paper is dedicated to the problem of learning 2-D objects by examples
and the design of efficient recognition algorithms based on information extracted from
training samples. The used technique is based on HMMs combined with affine invariant
geometric features. Image segmentation and representation and training of the HMMs
are implemented following the object—oriented programming paradigm. The experiments
are based on four different object classes, where for each object class 50 images and
the corresponding extracted features are used for estimating the model parameters. The
contribution concludes with a discussion of the practical results and the consideration of
a statistical approach to solve the 3-D object recognition problem from 2-D views.

2. STATISTICAL OBJECT RECOGNITION

Theoretical aspects of statistical pattern recognition and classificatin are well developed
[5]. Current research in this field focuses on the investigation of efficient and robust
algorithms for practical recognition systems [8]. Most classification algorithms are based
on Bayesian decision theory, where the decision relies on the a posteriori probability of
the classes. Let us assume, we have classes 21,€)5, ..., ), and observe a feature vector ¢,
then we decide for class €y, if

O = argr%axP(QAc). (1)

A statistical classification system is expected to provide the capability of learning the
statistical properties of classes, for instance the density functions, from training sam-
ples. Additionally, Bayesian classifiers should also allow an efficient computation of the a
posteriori probabilities P(£); | ¢) for each class ;.



3. HIDDEN MARKOV MODELS

In the following section we will briefly introduce the basic concepts of HMMs and refer
the interested reader to the literature for more details [11].

3.1. Definitions
Hidden Markov Models are widely used in the field of speech recognition. They are sto-
chastic automata including states, transitions among states, and emission probabilities for
elements of a given alphabet. An HMM with NV states {57,..., Sy} can thus be described
by a triplet A = (&, A, B), where w = (71, 7a,...,%y) is the vector of probabilities for
the generation of a sequence of output elements to start at a special state. The state tran-
sition matrix A = (a;;)o<i<no<j<n includes the probabilities a;; to change from state
Si to state S;. The third element is either a matrix B = (b;(v1))o<i<no<i<r including
discrete probabilities for a finite output alphabet {vq, vy, ..., v} or a vector of density
functions for an infinite continuous output alphabet.

Each HMM can generate sequences of output symbols. The name Hidden Markov
Model is due to the fact that for an observed sequence of output symbols the underlying
state sequence is unknown. Figure 1 shows two examples of HMMs of different topologies.
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Figure 1. FErgodic and “left right” Hidden Markov Model; each state emits probabilistic
output symbols.

3.2. Algorithms

During the training phase, the parameters of an HMM A have to be estimated such that
for all observed learning sequences O; (1 < ¢ < L) the probability P(O;|A) that model A
generates O; is maximized. In the recognition stage the decision rule, i.e. the a posteriori
probability P(X;|O) for an observed feature sequence O has to be computed for each
HMM A;, in order to find out which HMM most likely created the feature sequence.
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The parameter estimation algorithm is inasmuch unsupervised, since due to the nature
of HMMs it is not known which state sequence has generated the sequence of output
symbols.

The computation of the parameters for the HMM X is done iteratively using the Ez-
pectation Mazimization Algorithm (EM-Algorithm, [2]). For that purpose, the Kullback—
Leibler quantity

QAA) = SN P(s|0;,A) log P(s, 0] X) (2)

=1 8

is computed for an initial estimation of A. Herein s = s1s;...s7 varies over all possible
state sequences which may have produced the output symbols of the :—th observation
O; = 010y...07 (T may be different for every 7). Q()\,S\) is maximized with respect
to the parameter set X. After the maximization step the reestimated model parameters
X := X are substituted. Both steps have to be repeated until no change in parameters
occurs, i. e. A = A

T—1 T
P(s,O|A) = 7 H Usys04, H bs, (01), (3)
t=1 t=1

Since for an arbitrary observation O equation (3) holds, the learning formulas can
be computed using numerical or combinatorial optimization techniques. For example,
computation of the zero crossings of the first derivatives with respect to the unknown
parameters will yield the well known estimation formulas for HMMs with discrete, time
independent probabilities [11].

The decision rule for recognition depends on the computation of

PA)P(O]A)

P(N0) = =55 )

where the complexity of determining P(O | A) is bounded by O(N?*T) when the forward-
backward algorithm [8] is used. The optimal state sequence for an observation O can be
computed using the Viterbi algorithm [11].

4. OBJECT ORIENTED IMPLEMENTATION OF HMMS

With respect to the definition of HMMs given in the previous section, different variants
can be distinguished. Types of HMMs are distinguished by the special form of occurring
statistical measures w, A and B and the topology of the stochastic automata. For
instance, the transition probabilities a; ; can be time dependent; those HMMs are called
non—stationary. The output alphabet of an HMM can be discrete or continuous; thus,
the measure B represents either discrete probabilities or continuous density functions.
For example, the statistical behavior of a state can be modelled by a Gaussian density
or a mixture of Gaussian densities. Restrictions on possible transitions induce different
topologies. Left right HMMs are used in speech recognition algorithms and satisfy the
constraint that the state index increases with increasing time.



Object—oriented programming currently seems to be the most promising tool for soft-
ware management. The similarities in the deduced estimation formulas and classification
algorithms suggest the use of polymorphism and inheritance, and for realization of HMM
algorithms in class hierarchies.

The algorithm for computing the a posteriori probabilities for an observed feature
sequence and the optimal state sequence can be described in terms of the variables 7, A,
and B, independent of the topology or the special form of the statistical measures. Thus,
the forward—backward algorithm and the Viterbi algorithm should be implemented in a
higher level of the inheritance tree. Dependent on the properties of the output density
or the statistical behavior of the transitions the learning formulas have to be computed.
These training algorithms have to be implemented in derived, more specialized classes.

A hierarchy of HMM classes has been implemented and tested. An abstract base class
HMM provides the interfaces for an abstract specification of training and classification
algorithms, like the Viterbi algorithm. Two class subtrees are derived from this class; one
is used for the implementation of discrete HMMs which implement B as a matrix; the
other subtree describes continuous HMMs and is further subdivided into classes for various
densities in B. Left right HMMs are special cases of any of those classes. The whole class
hierarchy is integrated in an object—oriented environment for image segmentation and

analysis (ANIMALS, [10]).

5. AFFINE INVARIANT FEATURES

Applications of HMMs are restricted to those pattern recognition problems, where ordered
sequences of features can be constructed. The extracted features of a speech signal are,
for instance, a priori time ordered and thus satisfy this central prerequisite. Since objects
in an observed scene have several degrees of freedom such as translation or rotation, a
sequence of features associated with each object needs to be invariant with respect to this
kind of transformations, if the goal is to identify them in varying scenes using HMMs.

In [4] affine invariant features are introduced which are based on simple contours of
objects. A contour is called simple, if there are no intersections of the contour with itself.
A local form of a simple contour is defined as a closed polygon a,p,,...,p;,b,a, which
is part of the polygon approximation of the complete contour determined by the point
sequence Py, Py, -.-.,P,_1- Figure 2 shows a part of a simple contour and a local form and
also indicates the possible locations for @ and b.

Obviously, proportions of areas are affine invariant. For example, let ¢ be the center of
gravity of the local form. The quotient x; of the area F. of the triangle abe and the area
F' of the local form is obviously an affine invariant feature.

Now the question arises, how the points @ and b have to be chosen for a given local
form and how many local forms have to be computed for each contour. For each quadru-
ple (py_1, Py, Pr> Pry1) the points @ and b are chosen such that the quotient x; will be
minimized. This process produces a large set of local forms. The selection of local forms
out of this set is guided by the following criterion: all local forms whose area is greater
or equal to half of the area of the complete contour’s area are canceled. Furthermore,
triangular local forms are not admissible.

The resulting set of local forms provides a set of affine invariant features, which is
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Figure 2. Examples of a local form in different scaling, rotation, and position

naturally ordered by the processing order of the polygon. Thus, we can associate with
each contour a sequence of features and HMMs can be used for training and classification
purposes.

6. EXPERIMENTAL RESULTS

In the experiments we choose four different objects (see Figure 3). Using a training
data set of 50 input images per object, different types of HMMs are trained from the
sequences of extracted affine invariant features. We compute both k; for each contour.
The classification results using 10 images of each object which are not included in the
sample set are shown in Table 1. The used type of HMMs is the continuous version
producing normally distributed output in each state. Each column shows the number
of correctly classified objects. The last line summarizes the recognition rate related to
the number of states. The increase of correct decisions using “left right” models is a
remarkable result which is due to the fact that ergodic models have more transitions and
thus more parameters which have to be estimated. The higher the number of parameters
is, the larger the sample set has to be for good estimates. Conspicuously, in all cases
in which the classification result is wrong, the correct object has the second highest a
posteriori probability.

Since the features associated with a contour of an object are real numbers, discrete
HMMs cannot be used in a direct manner. Discrete feature values can be computed using
vector quantization techniques [8].

The same experiment was carried out with the Expectation Maximization Algorithm
applied to Gaussian mixture densities and an unordered set of features. The overall
recognition rate was approximately 93%. This means that the introduction of an ordering
for the features has decreased the recognition rate rather than increasing it.

Non-stationary HMMs as introduced in [6] expect feature sequences of equal length for
each observed scene. The sequences of features in our experiments have different size —



Figure 3. The image shows the original grey—level image (children toys) and the right
image the resulting closed polygons of the contour of each object.

object number of states object number of states
TT1[5]6 7 TT15]6]7
monkey 91819 | 8| 8 || monkey 91819 |88
giraffe T 7| 7|8 |8 || giraffe TLTNT T
elephant 8 | 8| 8| 5 | 4 ||elephant 9179191919
camel 515153 ] 5 || camel 51515516
ratein % || 72 | 72 | 72 1 60 | 62 || ratein % || 75 | 72 | 75 | 72 | 75

Table 1
Continuous, ergodic (left) and “left right” (right) HMM with Gaussian output densities

from 1 up to 14 — and thus the mentioned type of HMM was not tested.

All these experiments can easily be carried out using other types of invariant features.
Applications to three-dimensional object recognition problems might be for instance the
use of geometric 3-D invariants like mean and Gaussian curvatures of surfaces in range
images, which are viewpoint independent features.

7. SUMMARY AND CONCLUSIONS

This contribution shows that statistical methods are suitable for object recognition pur-
poses. The experimental evaluation is based on two—dimensional object recognition prob-
lems without the computation of the object’s location. Real images were used. However,
the constraint that only invariant features can be used is profound, since apart from the
classification of an object, the computation of its location is further a central problem
of computer vision. Actually, this cannot be solved using the proposed approach with
HMMs, not even in the discussed two—dimensional object recognition problem. One con-



Proc. Pattern Recognition in Practice, Vlieland, Netherlands, June 1-3, 1994 7

ceivable extension might be the introduction of parameterized output densities regarding
the object’s location. Nevertheless, this would cause maximization problems for para-
meter estimation which do not provide an analytical solution. The computation of the
a posteriori probabilities will also be of higher complexity, because the search space is
enlarged by the location parameters. Additionally, the introduced method is currently
limited to images which include only one object with a homogeneous background.

In order to use HMMs, the inclusion of structural information about the objects as an
ordered sequence of features was required. However, only few invariant geometric features
of the described type can be found in the objects, e.g. only three for the monkey object.
This is not sufficient for a stable parameter estimation of the HMMs (e.g. 70 parameters
for a 7 state HMM) and explains why the HMM experiments reveal lower recognition rates
than expected. Further research for features is required; ideally they should be chosen in
such a way that the length of the feature sequence of a given object is fixed. In this case,
non-stationary HMMs can be used which are shown to have higher recognition accuracy
[6].

For the recognition of three—dimensional objects from 2-D views HMMs are not suitable,
because occlusion and the missing depth information lead to the result that there do not
exist any geometric invariant features for 3-D objects in 2-D images. Consequently, the
use of a view based approach is necessary, i. e. for each possible view of an object an
HMM has to be introduced. The relation between the possible number of views of an
object and the resulting recognition errors are discussed in [1].

We summarize that HMMs can be naturally implemented in an object—oriented pro-
gramming environment, and provide high flexibility and programming comfort. Training
algorithms can thereby be programmed in an abstract manner for several types of HMMs.
Furthermore, we conclude that HMMs in their existing form cannot be used for solving
the 3-D object recognition problem from two—dimensional images apart from the view
based attempt. Thus, it seems to be indispensable to find a more appropriate statistical
framework for building a Bayesian classifier for 3—-D object recognition purposes. A first
promising approach can be found in [3,7].
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