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ABSTRACT

In this paper we present two new techniques for language
modeling in speech recognition. The first technique is based
on ergodic discrete density Hidden Markov Models (HMM)
which can be applied to bigrams based on word categories.
This statistical approach of the so-called Markov bigrams
enables an efficient unsupervised learning procedure for the
bigram probabilities with the well-known Baum-Welch al-
gorithm. Furthermore, maximizing the model-conditional
probability is equivalent to minimizing the perplexity of
the training corpus. The second technique is based on poly-
grams which are an extension of the bigram (n = 2) or
trigram (n = 3) grammars to any possible value of n. Ac-
cording to the smoothing techniques for bigram or trigram
models; the probabilities of the n-grams in the polygram
model are interpolated using the relative frequencies of all
n’-grams with n’ < n. Both techniques were evaluated on
the ATIS corpus by computing the test set perplexity. Fur-
thermore we integrated the Markov bigrams as well as the
polygrams into our word recognizer for continuous speech.
Experimental results on a German database are discussed
using the N-best paradigm to reorder the generated word
sequences according to the sentence probability of the lan-
guage model.

1. INTRODUCTION

It has been shown in the past years that the considera-
tion of linguistic constraints by language models during the
recognition process is very important to achieve a good sys-
tem performance. The language model provides informa-
tion to guide the recognizer through the search space by
discarding unlikely word sequences. Typically, the linguis-
tic constraints are modeled by statistical language models
where the a priori probability P(w) of a word sequence
W= WiWs ... Wy is computed [2].

Let V = {Wi1,Wa,...,Wz} be a vocabulary of L words.
The a priori probability P(w) for the word sequence w =
wiWs . .. Wy With w; € V can be expressed as a product of
the conditional probabilities P(w¢|wiws ... we—1):

m

Pw) = Plw)-[]Pwlwiws...wia) (1)
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The sequence wyws ... we—1 is called the history of the un-
derlying stochastic process for P(w). The probability P(w)
can be approximated by restricting the history to the pre-
ceding n — 1 words, which leads to the concept of n-gram
models, with:

P(wiws .. wp) = P(wn) - [ Plwi| weengr . wicr) (2)

(n—1)

Usually, the n-gram probabilities P(wi|wi—pnt1 ... wi—1) are
estimated by the relative frequencies according to the for-
mula:

. #H(Wimnt1 ... we)
P(wt | Wt—n e We— ) = (3)
i ' E #(wt_n+1 s We—1 ’U)

veV

where #(.) denotes the frequency of a certain n-gram. The
more context is considered, the larger the training corpus
has to be to guarantee a robust parameter estimation of the
L™ n-gram probabilities. Even if a huge training corpus is
available and the history is restricted to one or two preced-
ing words, there will be a large amount of possible bi- or
trigrams which will never occur in the training data. As
a consequence, the probabilities of these n-grams would be
zero, which can be embarrassing in the recognition process.

A solution to this problem is given by two different meth-
ods. One approach is to explicitly reduce the parameter
space by building equivalence classes where each word be-
longs to one or more classes [9]. Another approach is to
increase the robustness of the estimated conditional n-gram
probabilities P(w¢|wi—ny1 ... wi—1) by backing-off the sta-
tistics of unseen events [7], by linear interpolation of lower-
order models [4], or by co-occurrence smoothing [5].

In the first method, the probability for the observation
of the word sequence w can be expressed by the following
equation:

Pw)= Y []Plelercs...coma) - Plwde)  (4)

ceCm™ t=1

C={C1,Cs,...,Cx} is aset of K word categories or parts
of speech (POS) and ¢ = cicz...cm denotes a sequence
of word categories according to the word chain w. In the
equation above, we assumed that the membership of word
wy 1s independent of the membership of the categories of the
preceding words. Restricting the history to the last word
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leads to the special case of a bigram model:

P(w) =Y T] Plwiled) - Pledleim) (5)

ceCm™ t=1

In comparison to the word-based n-grams the main ad-
vantage of the category model is based on the fact that the
parameter space can be reduced drastically, because typi-
cally the number of categories is significantly lower than the
number of words. On the other hand, there are two draw-
backs of the category model. First, a set of categories has to
be defined and second, the training corpus has to be tagged
in advance. Both problems can be solved automatically us-
ing agglomerative clustering methods [8], iterative Viterbi
alignment [12], or the Baum-Welch re-estimation procedure
[11, 3].

In this paper we present two new methods for statistical
language modeling. The concept of the Markov bigrams en-
ables an unsupervised learning procedure of a bigram model
based on word categories using an ergodic discrete density
HMM. The polygrams are an extension of the well-known
bi- or trigrams where a history of more than two words can
be considered. This concept enables us to capture longer
context information as in phrases like ”Show me the flights
from ...”. Also in the word polygram approach, word cat-
egories can be used to reduce the parameter space. Both
methods will be evaluated on the ATIS MADCOW [10] cor-
pus with respect to the test set perplexity. Furthermore, we
integrated both language models into a continuous speech
recognizer and we will present experimental results for a
German speech database.

2. MARKOV BIGRAMS

Assuming no deterministic tagging of word sequences in
word classes, the a priori probability P(w) of a word se-
quence w is computed according to equation (5). Since
this formula describes a first order Markov process, the bi-
gram model can be represented as an ergodic discrete den-

sity HMM A = (IL, A, B) with

ai; = Plee=0Cjleimr =)
b]k = P(’wt:Wk|Ct:C])
7 = Pla=C)

The hidden states represent the possible categories and the
output of the HMM A represents the words. The transition
probabilities are summarized in the KxK matrix A = [a;;]
where a;; defines the bigram probability P(C;|C;) between
category C; and C;. The conditional word probabilities
P(W|C;) that word Wy belongs to category Cj is repre-
sented in a K'xL matrix B = [b;x]. As a consequence each
word may belong to each category.

Given the HMM parameters A = (II, A, B), the probabil-
ity P(w) of a word sequence w can be computed by the for-
ward algorithm and the well-known Baum- Welch algorithm
can be used for parameter training. Since the categories are
treated as hidden states, the probabilities can be estimated
in an unsupervised manner which means that no tagging of
the training corpus is necessary. Only the number of dif-
ferent word classes has to be chosen in advance. According
to the maximum likelihood criterion of the Baum-Welch al-
gorithm, maximizing the model conditioned probability is
equivalent to minimizing the perplexity

1

R/ P(wiws ... W)

or(wiws ... wy) =

of the training sequence wiws ... wn.

As 1t is well known, the complexity of the parameter
training via the Baum-Welch algorithm is approximately
O(K?m). This is due to the fact, that the a¢(5) probabili-
ties for 1 <t < m,1 < j < K are computed by

K

ars1(f) =Y ar(i)aibu, (6)
=1

The main effort of the formula above is the computation of
the N products a;;b;.,. Especially, using an ergodic model
in which all transition probabilities a;; are non-zero, results
in large computational effort. We developed a method to
reduce the complexity of the Baum- Welch algorithm signif-
icantly. Following the observation that only a few products
in equation (6) exceed zero, we define for each category C;
and each word Wy a set of categories Q(z, k) by

Qi k) ={y [ aij - bjr <0 -p(i, k)}
with p(i, k) = max{ai; - bjr}
J

6 defines a threshold with 0 < 8 < 1. Q(i, k) summarizes all
categories C; with the highest transition probability from
category C; to C; and emitting word Wj. In the following
experiments we adjust § in such a way that |Q(3, k)| = p,
e.g. 8 = 0(1, k). The revised computation of the o (and j)
variables according to

N

Z at(i)aij wat+1

at+1(j) = i=1
0 ] Q Q(la wt+1)

leads to a complexity of O(pKm). A similar technique is
used for the update procedure during training. Experiments
on ATIS have shown that p = 8 is sufficient to accelerate
the training procedure significantly without any increase of
the perplexity.

J € Q(1, wiq1)

3. POLYGRAMS

As mentioned in the introductory section it seems worth-
while to consider word histories of arbitrary size in order
to capture even long-spanning statistical dependencies be-
tween words. Therefore we propose a method in which
the conditional word probabilities on the right hand side of
equation (1) are evaluated without artificially cutting down
the word history ) to a prespecified maximum size as is the
case in equation (2).

For that purpose the complete set of training data sta-
tistics has to be stored, which consists of the occurrence
counts of all polygrams (i.e. unigrams, bigrams, trigrams,
and so forth) observed at least once in the training ma-
terial. From the polygram counts we compute maximum

likelihood (ML) estimates P(wp|w: ... wn—1) of the condi-
tional n-gram probabilities using equation (3). This esti-
mate, however, will obviously disappear if the accompany-
ing polygram w, ... w, was absent in the training set. Thus,
a smoothed distribution is substituted into the language
model equation which is obtained as a linear combination of
ML estimates of conditional probabilities with successively
reduced word history:

~ 1 N
Plwp|wi ... wn_1) = )\o~f—|—)\1~P(wn)
+Z)\z . P(wn|wn_,‘+1 .. .wn_l)

1=2

(7)



For a vocabulary of size I, the expression % represents the
uniform (or the zero-gram) distribution.

The interpolation coefficients Ao, ..., Ay, have to fulfill the
condition Z)‘i = 1. They are optimized through several
EM iterations [6] performed on a cross-validation corpus
which has been chosen different from the training set and
the test set. For a more concise modeling, a functional
dependence of the weights from the word history $) is in-
troduced by:

Ai = Xi(9) = Ai(max{v|#(wn—o ..

Our policy simply examines whether the sequence of the
last v history words is observed in the training data; it
vielded the best results so far. Any further specialization
of the interpolation weights led to an overadaptation of the
language model to the cross-validation data, whilst showing
no improvement of the test perplexity.

A polygram model can be based on words as well as on
non-overlapping word categories. The latter case is for-
malized by equation (4); note however that the summa-
tion becomes obsolete because word categories have been
assumed unique. After mapping the word items of the train-
ing data to category labels, the conditional category poly-
grams are estimated by linear interpolation (equation (7)).
The category-dependent word probabilities are computed
from the occurrence counts using Jeffrey’s formula:

. wn_1) > 0})

Plwnlen) = (#(wn)+1) / > (#(v)+1)

vVECH

4. EXPERIMENTS ON ATIS

We performed experiments on the ATIS text corpus as
part of a collaboration with the Centre de Recherche In-
formatique de Montréal (CRIM) within the German BMFT
project KaN INF 18. For training we used the ATIS2 MAD-
COW corpus [10]. The development set for estimating the
polygram weights consisted of the evaluation set of NOV92.
The evaluation set of FEB92 was used for computing the
test set perplexity ¢,.

For the experiments with Markov bigrams we varied the
number of categories from 1 to 400 (see Table 1). The ini-
tialization of the parameters was done randomly. The out-
put probabilities of unknown words in the training set was
set to 1072 for each category. The more categories are dis-
tinguished, the smaller are the perplexities ¢,. Using more
than 400 categories did not result in smaller perplexities.

#cat 1 50 100 150 200 300 400

Pz 181.9 36.0 25.2 223 21.2 21.0 19.9

Table 1. Perplexities for Markov bigrams on ATIS

For the experiments with word-based polygrams we var-
ied the maximum length n of n-grams considered in the
model (see Table 2). It appears that hexagrams (n = 6) are
sufficient to capture the context information in phrases or
idioms. The consideration of more context information did
not result in smaller perplexities.

n 1 2 3 4 5 6 o0
we | 173.8 23.3 176 171 170 16.9 16.9

Table 2. Perplexities for word-based polygrams on ATIS

Putting only city names, months, weekdays, and different
numeral classes in altogether nine single categories results

in a small improvement with ¢, = 16.6 A comparison of
the word-based polygrams and the category-based Markov
bigramsindicates that the consideration of more context in-
formation results in lower perplexities. However, if the con-
text of the polygrams is restricted to bigrams, the category-
based approach of the Markov bigrams is superior. We
achieved an improvement of about 15% from perplexity 23.9
to 19.9 using Markov bigrams. This is due to the fact, that
for the Markov bigrams the context information is coded in
the category set and the affiliation of a word to a category
is extremely ambiguous (each word belongs to each cate-
gory) which is expressed by the category-dependent word
probabilities P(W;|C5).

5. THE RECOGNITION SYSTEM

The speech signal is sampled at 16 kHz, quantized with 14
bit and partitioned into 10 msec frames. For each frame a
256 point FFT with non-overlapping windows is computed.
The result of the feature extraction module is a vector in
the ??* consisting of 11 mel-cepstrum coefficients, the corre-
sponding delta mel-cepstral coefficients, and one coefficient
for the energy and delta energy. The derivatives are com-
puted using linear regression in a 9 frame neighborhood.
The principal phonetic subword unit of the semi continu-
ous HMM based recognizer is the polyphone representing
a generalized context—dependent subword unit surrounded
by arbitrary context size. [13]. The context items may also
include suprasegmental markers or even word boundaries.
This ensures that large-scaled contextual effects are prop-
erly statistically modeled. Design of the models and train-
ing of the HMM parameters is performed by the ISADORA
system [14]. In the baseline system, we modeled all words
and polyphones (syllable markers are included in the con-
texts) if their number of occurrence exceeds a threshold of
50. Using a test vocabulary of 1081 words results in 2991
subword units and 8674 probability density functions. For
the experiments, we used a vector quantizer with 220 classes
which was initialized by merging 44 phone—specific Gauss-
ian 5—mixtures. This codebook was re-estimated three
times by semi-continuous Baum-Welch training. Language
modeling was incorporated using a standard bigram based
on 95 different word categories which were defined accord-
ing to morphological, syntactic, and semantic characteris-
tics [15]. Only a few words belong to exactly two categories.

For training, we used about 11 hours of speech data spo-
ken by 31 female and 48 male speakers. Each of the speakers
uttered a unique set of 100 different application dependent
sentences in the discourse domain of time table inquiries
for trains. The development set (DEV) consists of 400 ut-
terances spoken by 1 female and 3 male speakers. Each of
these speakers uttered the same corpus of 100 application
dependent sentences. The test set (TEST) of about 1.5
hours of speech contains 1,400 different application depen-
dent sentences spoken by 10 female and 10 male speakers.
The sentences in the test set cover 4 different situational
contexts whereas all sentences in the development set as
well as in the training set represent inetial dialog utterances
from the train time table domain exclusively.

6. EXPERIMENTAL RESULTS

In this section, we present experimental results for our con-
tinuous speech word recognizer using the proposed language
models in the N-best paradigm to reorder the generated
word sequences according to the sentence probability of the
language model. The Markov bigrams as well as the poly-
grams were trained on 2,027 sentences with 10,890 words.



The development set to determine the weights A; via cross
validation consists of 100 sentences with 800 words. We in-
vestigated word-based as well as category-based polygrams.
The category set for the polygrams consists of 129 differ-
ent word categories which are an extension of the category
definition of the standard bigram used in the recognizer
during search. Words which are in more than one cate-
gory were put in a single category. For the experiments
with the Markov bigrams, we adjust the number of possible
categories to K = 95 (as in the standard bigram) and the
initialization of the parameters was done randomly.

After the N best sentences were generated, each word
sequence w is rescored according to

score(w) = P(o|w) - P(w)™ - w7 8)

P(o|w) denotes the acoustic score, w denotes the word
penalty to adjust deletions and insertion and « terms a
weight to balance the acoustical and linguistical score. «
and w were adjusted on the development set.

[ lg-model — [ standard  w-poly c-poly markov |
Yz 108.5 85.7 53.9 84.4
Wa 86.0 86.2 89.6 87.2
SA 47.7 46.0 55.8 49.3

Table 3. Perplexities for polygrams on ATIS

Table 3 summarizes the results achieved on the test set
TEST. The word accuracy and sentence accuracy corre-
sponds to the best scored word sequence according to equa-
tion (8). ¢ is the test set perplexity of the language model.
Note, that the category-based polygrams (c-poly) are supe-
rior to the word-based polygrams (w-poly) which is based
on the fact that the generalization of the category-based
polygrams is better if only a small training corpus is avail-
able. In comparison to the output of the recognizer with the
standard bigram the word accuracy could be increased from
86.0% to 89.6% or, equivalently, the word error rate was re-
duced by 26%. The use of the Markov bigrams (markov)
only results in a small increase of the recognition perfor-
mance which is due to the fact that the context is restricted
to the preceding word.

Furthermore, it can be seen in Table 3, that a better
perplexity @, on a test set will lead to a better recognition
performance.

7. CONCLUSIONS

We presented two new techniques for language modeling.
The Markov bigrams enable an unsupervised learning pro-
cedure using the Baum Welch algorithm to estimate a
category-based bigram model. The categories are extremely
ambiguous, because each word belongs to each category.
Since the categories are treated as hidden states, the bi-
gram parameters can be learned unsupervised. On the other
hand, the ergodic HMM requires a large amount of com-
putational effort. For parameter training, an acceleration
algorithm was given which works quite well.

The polygrams are an extension of the well known bi-
and trigrams by considering arbitrarily large context infor-
mation. The training of polygram models is completed in
relatively short time, and the competing language models
(standard bigrams and Markov bigrams) were outperformed
by polygrams with respect to test set perplexity as well as
word accuracy. Polygrams can not only be used to rescore
n-best sentence hypotheses but also for certain recognition
task, e.g. the recognition of phrase boundaries [1].
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