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1 Motivation and System OverviewSpeech is the preferred and natural means of communication for humans. This is a good reason forbuilding systems that communicate with users via speech. An interesting domain for such speechunderstanding systems is information dialogs where the user wants to get some information byasking the system which takes the role of a \competent person" in the �eld of interest. In orderto make such a communication process possible it is important that the system \understands"the utterances of the dialog partner and reacts to the understood information according to theexpectations of the partner.A speech recognition system will become a speech understanding system only if it incorporatesa component for the interpretation of the meaning. Such an understanding component built forthe Speech Understanding and Dialog System EVAR is described in this paper. For an overviewof EVAR see [21], for a more precise description of the recognition component of EVAR see [11].Understanding requires an adequate representation of the meaning. This analysis in most systemsis done after the recognition phase by �nding an interpretation in the dialog context for thegenerated word chains. The linguistic levels, syntax (the structural relations between the wordsof an utterance), semantics (the interpretation of the meaning of an utterance), and pragmatics(�nding truth values for the semantic interpretations in a concrete situation), are represented inmost natural language (NL) systems for the analysis of written language and also in some speechunderstanding systems (see for instance [6, 8, 17, 33]) using representation techniques like thepredicate calculus (e.g. [1, 10]), frames, or semantic networks (e.g. [7, 2, 31]).At least for the recognition phase in systems for speech understanding statistical methods areused ([6, 15, 3, 18]). The disadvantage of these statistical methods is that they do not help to�nd a representation of the meaning of an utterance. They are adequate only to recognize theuttered sequence of words, using some linguistic knowledge to restrict the possible combinationsof words to word chains. The resulting chains do not have to be grammatically correct even ifthey are very similar to the spoken utterance (e.g. di�er only in one word or in one ending ofa word). Therefore, the chain cannot necessarily be interpreted syntactically and semantically.For this reason in recent systems knowledge-based techniques are being used, either after therecognition process (e.g. [8, 33]) or to control the recognition process itself with context-basedexpectations (e.g. [17, 10]).Only a few systems use the semantic features to control the analysis at the recognition level (e.g.[30, 8]). Here such an approach is presented: all levels of linguistic knowledge can be used bothto control the analysis process or for the interpretation of word chains. For this all the knowledge2



is integrated in a homogeneous knowledge base. The control algorithm used for the analysis isde�ned within the representation scheme. It does not depend on the application.One of the aims in developing EVAR is to have a system structure where linguistic and non-linguistic expectations could be used not only for the interpretation but also for the recognitionprocess (see [4, 26]). This seems to be necessary because otherwise too many syntactic constituentscan be found with the number of word hypotheses generated during the recognition process (see[14]). Words actually spoken don't need to be within these hypotheses and the interpretationcould correct the wrong hypotheses or add the correct ones. This surely is not possible withouta feedback to the speech signal. In [33] the conclusion is: \The only possible alternative I can seeis to control the analysis from the very top of all the knowledge and search just for the eventsthe system is interested in." This is taken into account in the system architecture of EVAR: Asemantic network is used with an integrated control algorithm in which high-level task-speci�cknowledge can be represented on di�erent levels of abstraction. These levels re
ect the syntax,semantics, pragmatics, and dialog knowledge. The strategy of the analysis is goal-directed usingthe acoustic evidence for hypotheses in an e�cient way.The application domain of EVAR is inquiries about German intercity train connections. Thecommunication is to proceed via telephone and thus other channels of communication (e.g. visual)are excluded. This restriction to use speech implies a wide range of grammatical constructions inorder to be able to represent all possible facts to be given to the dialog partner in a natural way.A special problem with spoken dialogs is that grammatical rules di�er from those used in writtentext (e.g. see [9]): The structures of sentences are not as complex as in written text, but a lotof utterances are grammatically incomplete. Usually, after an initial utterance, dialogs consist(nearly) exclusively of sentence fragments which can only be interpreted - as it is also the case foranaphoric constituents like pronouns - within the dialog context. The analysis of utterances in aspeech understanding system thus has to be controlled or at least supported by the context, i.e.by expectations about the possible structure and meaning of the actual user utterance. Spokenlanguage dialog systems similar to ours were presented in [35, 36, 34, 16, 20].The paper is organized as follows. In section 2 the linguistic knowledge used in EVAR is presented.Section 3 gives a brief description of knowledge representation in the semantic network systemERNEST as well as the representation of linguistic and dialog knowledge. How this knowledge isused in the analysis process is described in section 4. Results and a short outlook will concludethe paper. 3



2 Linguistic KnowledgeFor understanding a user utterance, the following levels of linguistic and domain dependentknowledge are distinguished:Morpho-Syntactic Knowledge: It is used to search for and to build up simple syntactic con-stituents, i.e. syntactic units containing only one \nucleus" which can be the head of other words(e.g. \the next train"). The generation of complex constituents like \the next train | withcourse | to the south" is only done with additional semantic knowledge in order to preventthe generation of too many syntactically correct constituent hypotheses which are semanticallyinconsistent. Using only syntactic knowledge, the word \south" in the above example could de-pend on \course", \course" on \train" which is the semantically correct interpretation. However,it would also be possible to subordinate both \south" and \course" directly to \train" whichsemantically is not correct.Syntactic-Semantic Knowledge: First the semantic knowledge is used to check the semantic con-sistency between the words of a word chain. Second the generation of longer word chains (i.e.complex constituents, see above, and whole sentences) is supported by both syntactic and se-mantic knowledge in order to use linguistic (i.e. here semantic) restrictions as early as possible.Pragmatic Knowledge: In order to �nd an adequate answer to a user utterance it has to beinterpreted within a special domain of application. In the system EVAR this is the domain ofintercity trains, departures, arrivals, prices etc.Dialog Knowledge: A user utterance has also to be interpreted within the situational context.That comprises both the knowledge of how to behave in the situation of an information request,what kind of utterance may follow each one, but also the consideration of the dialog history inorder to be able to resolve references and to �nd the expected reaction.In the following we �rst give an overview of the knowledge needed for the analysis of one utterance.Following the contextual knowledge and the dialog model of the system are presented.2.1 Analysis of An Utterance2.1.1 Morpho-Syntactic KnowledgeA constituent grammar containing 8 di�erent types of constituents is used for the morpho-syntactic analysis. All these constituents are used in information requests. The constituent gram-mar does not comprise constructions which are used only for metacommunicative purposes like4



polite phrases or greetings. These are modeled in an additional \dialog grammar" which is di-rectly referred to by the dialog module of the system (see section 3.3). Subordinate clauses,coordinations (with the exception of temporal adjuncts like \between 10 and 11 o' clock"), andnegations are not considered so far. The constituents are:NG noun group{ with a noun as nucleus:\the/which/a big suitcase"; the article and the adjective couldbe left out; numbers or ordinals can be added; chains of adjectives are possible, alsowith modifying adverbs, e.g. \a very big rather new suitcase"; there are no noun orprepositional groups dependent on the head noun (see above).{ with apposition: e.g. \the intercity train 'Deichgraf'/number 163" (only for trains).{ pronouns (re
exive, personal, or interrogative) or proper nouns are noun groups ontheir own (only without additions, i.e., not \the beautiful Hamburg").{ no coordinations (e.g., \Peter and John"); no comparisons (\as you") or adverbialmodi�cations (\only you").PNG prepositional group{ preposition with noun group: e.g., \on Tuesday", \during this weekend"; no postponedprepositions.{ preposition with adverb: e.g. \since today/when".ADJUG predicative or adverbial adjective group: e.g. \(very/how) fast", \soonest"; no comparisons(\as fast as possible").ADVG adverbial group: e.g. \when", \as always", \today".UHRZ time of day: e.g. \between 10 and 12 o' clock", \�ve minutes to ten", \at what time".DATUM date: e.g. \on Wednesday the 4th of April 1990".INFG in�nitive group: e.g. \(he started) to work"; no words dependent on the in�nitive; no passiveconstructions.VG verbal group: e.g. \comes", \have written".2.1.2 Semantic-Syntactic Knowlege: Semantic ConsistencyTo check the semantic compatibility between words of a word chain a semantic classi�cationsystem is used where semantic classes are assigned to single words, e.g. \Location" to \Ham-burg", or \Transport" to \train", or \Movement" and \Process" to \to leave". These classes are5



ordered hierarchically, for example, the class \Thing" comprises the class \Transport", i.e. theword \train" can represent also the class \Thing" (see Figure 1). For some words (prepositions,adjectives) there exist selectional restrictions for the combinations possible with other words,especially nouns. The required compatibility is de�ned via the classi�cation tree (see Figure 1):If there is a connection from X to Y in the direction from the root to the leaves then Y is com-patible with X, e.g. \Transport" is compatible with \Thing" and \Concrete", but not vice-versa.For example the word \fast" in the meaning of \a fast train" requires a noun which describes anobject with the property that it can be moved or can move itself (e.g., of the class \Transport"but not of \Location" as the noun \town"). So the noun phrase \the fast town" has to be rejectedas semantically inconsistent. noun�� ��Concrete(((((((( AbstracthhhhhhhhThing��� Location AnimateHHH Worth��� Classifying TimeHHHTransport Human��� BeastHHHFigure 1: Hierarchy of Semantic Classes for nouns (part)The checking of the selectional restrictions is also used to disambiguate di�erent semantic (local)interpretations: e.g., the constituent \mit dem n�achsten Zug" ("with the next train") in Germanrepresents 4*2*2=16 di�erent combinations of the possible semantic interpretations of the lexemesmit, n�achsten, and Zug. This results from the number of meanings represented in our lexicon.But only one is semantically consistent (mit selecting a noun with the class \Thing", n�achsterselecting a noun with the class \Animate" or \Thing" or \Location", and the noun Zug with theclass \Transport" or \Location"). All the other possible combinations do not have a commonintersection of the noun's semantic class with the given selections of the preposition and theadjective. Since \Transport" is a specialization of \Thing" the meaning of the whole constituentcan even be determined to be \Transport" because this is the only possible meaning �tting toall three words.There are also other semantic features which can be used to check the semantic consistency of aword chain:� Most nouns in German cannot be used with singular number but without article. To decidewhich singular noun does not need an article semantic knowledge is needed. Constituent6



hypotheses consisting only of a singular noun (noun groups) or of a singular noun witha preposition (prepositional groups) are acceptable only if the head noun is a mass nounwith the semantic class \Continuous" (e.g. \water", \grass") or \Quantitative" (e.g. \withmoney"), or if it describes a profession, some function, the nationality (e.g. \teacher",\Dutch"), a property (e.g. \commodity", \speed"), a state (e.g. \illness"), or a process.� There are also the additional semantic features TYPE and REFERENCE which are as-signed to a constituent if it contains a word with special properties. For instance a con-stituent which contains the article \a" like \a train" has the attribute TYPE \inde�nite",a constituent which contains the pronoun \my" like \my car" has the attribute TYPE\possessive", a constituent which contains a superlative adjective like \the earliest train"has the attribute TYPE \de�nite", or a constituent which contains a word referring tosomething in the actual situation like \here" or \my opinion" has the attribute REFER-ENCE \deictic". Not all the values of these features can be combined, for example thecardinal number \one" with the attribute TYPE \inde�nite" cannot be used together withthe superlative \next". So the constituent \one next train" is not acceptable semantically.2.1.3 Semantic-Syntactic Knowlege: Complex Constituents and SentencesThe search for complex constituents and sentences is done using syntactic and semantic knowledgebased on the valency theory (see e.g. [32]) and the case theory (see [5]).The main idea is that the syntactic and semantic structures of a sentence are essentially deter-mined by its head verb. The property to call for a certain number and kind of complementarynoun groups or prepositional groups to build up an adequate sentence is called valency. Themorpho-syntactic and semantic descriptions of the complements constitute a verb frame withslots (called actants) to be �lled by actual phrases. For each expected phrase a functional role (adeep case) can be given. Since the caseframes di�er from word to word, this information have tobe contained in the lexicon of the system. The lexical knowledge base in EVAR provides caseframeentries for verbs but also for nouns and adjectives. Usually, alternative meanings correspond todi�erent caseframes. A relatively detailed case system with about 30 domain independent cases isused (e.g. Agent, Instrument, Cause). Examples for caseframes are given in Figure 2. For instancethe caseframe \Verbindung.1.5" (connection) has two slots. Both are optional, i.e., they need notbe realized. Both slots have to be �lled with a constituent which has the syntactic type \preposi-tional group" where the semantic class of the noun has to be compatible with \Location". If thefunctional role of the constituent is \ Source" then the semantic class of the preposition has to7



fahren.1.1 (\The train is going from Hamburg to Munich")Instrument: noun group (nominative), Transport, obligatorySource: prepositional group (Origin), Location, optionalGoal: prepositional group (Direction), Location, optionalfahren.1.2 (\I am going by train from Hamburg to Munich")Agent: noun group (nominative), Animate, obligatoryInstrument: prepositional group (prep.=\mit"), Transport, optionalSource: prepositional group (Origin), Location, optionalGoal: prepositional group (Direction), Location, optionalAbfahrt.1.1 (\the departure of the train at Hamburg for Munich")Object: noun group (genitive), Transport, optionalLocation: prepositional group (Place), Location, optionalTime: prepositional group (Moment), Time, optionalVerbindung.1.5 (\a connection from Hamburg to Munich")Source: prepositional group (Origin), Location, optionalGoal: prepositional group (Direction), Location, optionalFigure 2: Caseframes (examples)be compatible with \Origin", otherwise if the functional role is \ Goal" then the semantic classof the preposition has to be compatible with \Direction".In addition to these actants, which are de�ned by the head word of the constituent or thesentence, free adjuncts can be added nearly independently of the meaning of the head word.Currently only genitive constructions like \the dining car of the train" describing a part of awhole (deep case \Relation") or a possessive relation (\Possessive") and temporal adjuncts like\tomorrow morning" are considered.The latter are very important for the application \information about intercity trains". Temporalconstituents have to be handled in a special way because they can be chained together. Thechaining results in new temporal constituents which have to be interpreted as a whole (forexample \tomorrow | morning | at about nine o' clock"). The possible combinations of thesingle constituents are de�ned via a grammar re
ecting the strict limitations given by morpho-syntactic, semantic, and pragmatic rules.2.1.4 Pragmatic KnowledgeAs an example of an application we use an information system which covers all the informationabout German intercity trains, for example information about the timetable, about fares, orabout special services in intercity trains in general or of one special train. Seven di�erent typesof user questions are distinguished, and are ordered in a hierarchy (see Figure 3). Each type of8



information can be described with the information needed to answer a special user request (forexample the destination, i.e., the city to which the user wants to go). For more specialized typesof questions this information are inherited from their ancestors in the tree of Figure 3.
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about reservationFigure 3: Hierarchy of Types of Questions (the links are specialization links, where `informationabout trains' is the most general concept)� Information about trains: This type represents the complete task domain.� Information about objects: This is general knowledge about stations and trains, forexample: \Do I need a supplementary ticket for intercity trains?".� Information about train connections: This type covers all information about intercitytrain connections between cities. Here it is for example obligatory to specify the destina-tion, i.e. where the user wants to go to. Another obligatory requirement is where the userwants to start. If this is not articulated it is assumed that the desired city for the departureis the city where the system is located.� Information about timetable: Several trains might be running on a special route perday with the same destination and city of departure; this information is inherited by theinformation about train connections. In addition a time interval when the user wantsto leave or when he wants to arrive has to be given.� For each train the information about special services can be the focus of attention.� Also the possibilities of reservation can be interesting for a user. So there is another typeof question, information about reservation, which is valid for one train connection ata special time. 9



� For the information about fare the route and the possibility of a reduction are needed.Since this is not dependent on the timetable, this type of information is a specialization ofthe information about train connections.2.2 Dialog Model2.2.1 Interpretation in the Dialog ContextA special problem within a dialog situation where partners presuppose a certain amount ofcommon contextual and situational knowledge is the determination of possible referential objectsin the real world. This is done with the help of a dialog memory. The resolution of anaphoricallyused constituents, i.e. constituents referring back to some previously mentioned objects is ofspecial interest. Currently several di�erent linguistic possiblities to refer back are regarded. Forthe following examples it is assumed that they are preceeded by \You can take the intercity trainat 8.30h":1. When does it arrive in Hamburg? (personal reference)2. Is there a dining car in this train? (de�nite - descriptive)3. Is it possible to have breakfast in the dining car? (collocation)Another important feature especially for speech is the frequent usage of elliptical constructions.Currently we concentrate on the analysis of ellipses which are generated using the linguisticconstructions of the prior utterance. We distinguish two types of such ellipses which both aremodeled by a special grammar for ellipses:1. The \syntactic" ellipses, i.e. grammatically incomplete simple constituents where the headhas to be taken from outside of the linguistic context, for exampleIs it the last (one)? (nominal ellipsis; in German the 'one' is not used).2. The \semantic" ellipses, i.e. grammatically incomplete sentences where parts of the sentencelike the verb or some of its actants are taken out of the linguistic context, for exampleS: You can take the intercity train at 13.30h.U: 13.30h.Both types can also be combined. 10



2.2.2 Dialog ModelAs mentioned above the user should have the possibility of talking to the system without toomany restrictions, i.e., almost like talking to an information o�cer at the station. So the dialogmodel (see Figure 4) must represent all dialog acts which are typical in this special situation.On the other hand, we achieved a simpli�cation compared to real natural dialogs by guiding theuser with special system utterances.

Figure 4: The Dialog ModelThe dialog model so far contains the dialog initialization and ending phases and only one in-formation request and answering cycle. If the information neccessary for giving an answer arenot given in the user's request the system starts a clari�cation dialog (see Figure 4). The userutterances have to be syntactically correct, i.e., they have to be syntactically and semanticallycomplete or they have to be incomplete in a way such that they can be completed by takingparts of prior utterances (see section 2.2.1). In the following some examples for the di�erentdialog phases are given:greeting: 11



S: Hello. This is the Automatic Travel Information System. What information do you need?request:U: Tomorrow I want to go to Hamburg.con�rmation:S: Have you said Hamburg?U: Yes, Hamburg.request for details:S: Do you want to start at N�urnberg?U: Yes, at N�urnberg.S: Okay, tomorrow from N�urnberg to Hamburg.U: Yes.request for speci�cation:S: Do you want to leave in the morning or in the evening?U: In the afternoon, but not too late.S: Tomorrow early in the afternoon?U: Yes, if possible.answer:S: You can take the train at 14.15h.U: That's okay for me. Thank you very much.closing:S: You are welcome. Have a nice trip.2.3 Knowledge about Answer GenerationThe emphasis in the developed system is on the analysis of utterances in task-oriented dialogsin the domain of information provision services.To enable the system to communicate in a spoken dialog with the user, and not only to answerquestions like in a question-answer system a dialog component and also an answer generatingcomponent are needed.For the answer generation answer schemes are used for each dialog act. Besides some metacom-municative acts, which control the phatic communication, dialog acts which are concerned withthe domain are needed. The answer schemes for the latter acts need to be updated during thedialog. 12



Example: Request for con�rmation of destination and time of arrival.In the answer scheme for requests for con�rmation\Sie wollen in ORT ZEIT ankommen."(\You want to arrive at PLACE TIME.")the variables for destination ORT (PLACE) and arrival time ZEIT (TIME) have to be replacedby the actual parameters to produce the following output:\Sie wollen in M�unchen am 4. Juli zwischen 18 und 21 Uhr ankommen."(\You want to arrive at Munich on the 4th of July between 6 and 9 p.m.")Apart from times and places the result of the database request, e.g. a connection, has to be �lledin an answer scheme.2.3.1 Database AccessTo enable the system to answer requests in the domain of train timetables and prices, databaseaccess is needed. For this reason an intercity knowledge module for the German Intercity netwas developed which provides connections and prices corresponding to the parameters given bythe user. Input needed for the database request are the parameters the user gives about theconnection he needs. These are at least the destination and an interval for the departure orarrival time. For the departure place the system uses a default (the city in which the system islocated), if nothing else was uttered. If one obligatory parameter is missing, the dialog modulehas to start a request for it.Before the database retrieval, several consistency checks are performed, e.g., the given timeinterval should not exceed a certain limit, otherwise the set of retrieved connections will betoo large. Then the database is searched for all suitable connections which match the givenparameters. Therefore all intercities with all stops and departure and arrival times must beavailable. Out of the retrieved connections the best ones are collected, that means the ones witha minimumof changes and a minimumof detour. For each of these connections the intercity-trainsand the departure, change, and arrival times and places are available.2.3.2 Dialog historyMost references in an utterance refer to the last utterance. In the case of user utterances thelast system utterance is relevant. For the resolution of all references the whole dialog must beavailable. All dialog steps including the system utterances have to be stored in the dialog history.13



3 Representation in a Homogeneous SystemWe brie
y describe a framework for the representation of declarative and procedural knowledgebased on a suitable de�nition of a semantic network. Apart from the framework for knowledgerepresentation the system includes a control strategy which is problem independent (see 4.2). Acomplete software system, called ERNEST, has been implemented in C for this purpose.3.1 FormalismBesides the declarative part of a knowledge base which can model objects, events, and otherproblem speci�c knowledge, procedural knowledge which gives information how the declarativeknowledge can be used for the interpretation of patterns is needed. In the following, the syntax,semantics and pragmatics of the available data structures are described. Further details aredescribed in [26, 22]. With this knowledge representation language it is possible to model acertain section of the real world and a certain aspect of this section.3.1.1 NodesIn our de�nition of a semantic network three types of nodes are distinguished. The nodes modelconcepts, classes of concepts or modi�ed concepts, which allow the representation of constraintsresulting from actual data, or are descriptions of individuals:Concept: Represents classes of objects, events, or abstract conceptions, for example, syntacticconstituents, deep cases or verb frames.Instance: A subset of the sensor data which can be associated with a certain concept, forexample an interval of the signal which can be associated with a concept for a certainsyntactic class.Modi�ed Concept: A concept which is constrained by the already available instances in anintermediate state of processing, for example during the analysis a modi�ed concept forthe syntactic class \article" can be generated with restrictions regarding gender, case andnumber if it is regarded as part of a NOUN GROUP and the nucleus is already instantiated(which restricts the gender, case and number for the other parts in this constituent).14



3.1.2 LinksLinks are used to express relations between the nodes. Apart from the links to instances, threedi�erent types of links and with them three organizational axes are distinguished, which de�nea partial order on the set of concepts:Specialization: Re�nement of a more general concept which inherits the properties like part,concrete, attribute, and so on unless something else is mentioned (these properties can bemodi�ed or deleted).Part: A concept may consist of certain parts. This relation between a concept and its parts isrepresented by a part link. For example a NOUN GROUP can consist of one article andone noun (this is not the only possibility). It often occurs that a certain part can onlybe recognized in the context of the corresponding object having this part. For example acertain deep case obtains its meaning only in the context of a caseframe. Therefore, conceptsfor deep cases are de�ned as context-dependent parts of verb frames.Concrete: With concrete links, concepts of di�erent conceptual systems can be connected, whilepart and specialization relationships are only within the same conceptual system. For analy-sis purposes conceptual systems must be ordered in a hierarchy of levels of abstraction. Forexample, for the linguistic knowledge four conceptual systems - syntax, semantics, prag-matics, and dialog - can be used.The data structures of the three node types are identical. The nodes are described by attributes,relations, and judgements which are necessary for the analysis process.A concept may have obligatory and optional parts and/or concretes. A modality set is the set ofobligatory parts and concretes together with the associated set of optional parts and concretessu�cient to instantiate a concept. One concept can be de�ned by several modality descriptions.E.g. one modality description of the concept NOUN GROUP has the obligatory parts ARTI-CLE and NOUN and the optional parts ADJECTIVE, NUMBER, ORDINAL NUMBER, andNEGATION. For each modality description a temporal or spacial order on parts and concretescan be de�ned in an adjacency description.3.1.3 AttributesFor a physical object or an event certain attributes, for example number, gender, case or durationare usually needed. 15



Furthermore, analysis parameters which are required only for a more e�cient analysis can bede�ned, for example an analysis parameter \semantic class" is useful in certain concepts of thepragmatic level, with regard to restrictions of the semantic class out of pragmatic facts.The main items of the attribute description are \role", \type of value" and \computation ofvalue". \Role" means the functional role of the attribute. The item \computation of value"contains a function which computes an actual value of the attribute given by the sensor data.The \judgement" is a computation of a score for the attribute.For example an attribute with the role \gender" can be de�ned in the concept \NOUN GROUP"on the syntactic level. \Type of values" is a set with a maximum of three members, which are\masculine", \feminine", and \neutral" for German. The computation of value has to determinethe gender for the NOUN GROUP from the gender of the parts. Therefore, the attribute genderof the parts is argument for the computation of value of the attribute gender in the conceptNOUN GROUP.3.1.4 RelationsCertain relationships between parts and/or concretes of a concept can be de�ned in a structuralrelation. E.g. the attributes gender, case, and number of the parts of the concept NOUN GROUPmust agree. The relation description contains among others a \role" and a \judgement" which isa function testing the relation.3.1.5 JudgementThe item judgement of a concept contains a function computing a \judgement" of an instance ora modi�ed concept. Arguments to this function are the judgement of the links, attributes, andrelations. The judgement is a tuple of di�erent scores (see 4.1).3.1.6 The Pragmatics of the FormalismAnother important aspect is the utilization of this network for a dialog system. Given certainsensor data the main activity is to compute instances out of concepts.The instantiation process is de�ned by the following rules which are the basis for the problem-independent control. The rules are de�ned for the whole network without respect to the taskdomain. 16



RULE 1 says that in order to compute an instance of a concept \A" there must be instances of allits concretes and parts which are obligatory for some modality set. Requiring an instance of a partis only possible if it is a context independent part. E.g. the concept GOAL (which represents adeep case) is a context dependent part of the concepts NF INTERCITY and VF REISEN (whichrepresent the noun frame \intercity" and the verb frame \to travel"). For the instantiation of theconcept GOAL there must be at least an instance of either NF INTERCITY or VF REISEN. Aproblem could exist in computing an instance of the concept VF REISEN which has the contextdependent part GOAL, because for the instantiation of VF REISEN, an instance of GOAL isneeded while for the instantiation of GOAL an instance of VF REISEN is needed. This problemis solved in RULE 1 by computing a partial instance of VF REISEN requiring only instances ofcontext independent parts.Having a partial instance of VF REISEN an instance for GOAL can be computed and with thisinstance for GOAL the partial instance of VF REISEN can be completed with RULE 2.RULE 3 checks whether there are instances of optional parts or concretes. In this case an extendedinstance is created by adding these parts. E.g. an instance of the concept NOUN GROUP havinginstances for the concept ARTICLE and the concept NOUN which are obligatory in a modalityset, can be extended by an instance of the concept ADJECTIVE which is an optional part of thesame modality set.Given a goal concept for an analysis process, recursive application of these three rules results ina search tree for the goal concept.If some instances have been computed but instantiation of the concept \A" is not yet possible,it may be possible to compute a modi�ed concept of \A". RULE 4 describes the data drivencreation of modi�ed concepts. E.g. a modi�ed concept of the concept NOUN GROUP can becreated if for the concept ARTICLE a new modi�ed concept or instance was created. With thisrule a bottom-up restriction, e.g. of attribute values in the modi�ed concept NOUN GROUP ispossible. E.g. if the article for the attribute gender has the value \feminine", in the modi�edconcept of NOUN GROUP the attribute gender can be restricted to \feminine" too.RULE 5 summarizes a model driven creation of modi�ed concepts. With the inverse computationsof values which are associated with the corresponding computations of values in attributes,relations, and links, top-down restrictions can be made. In the above mentioned example fromthe modi�ed concept of NOUN GROUP a modi�ed concept of the concept NOUN (which isreferred by a part link) can be created. By an inverse computation of value the attribute gendercan be restricted to \feminine" too. Thus RULE 4 and RULE 5 provide the bottom-up and17



top-down propagation of constraints in the network.3.2 Semantic Network Representation of the Linguistic KnowledgeFor the representation of the linguistic knowledge a homogeneous hierarchical knowledge baseusing the above described system ERNEST was created (see [28]). An overview is given in Fig-ure 5.

Figure 5: Overview of the network for the interpretation of inquiries about German intercity trainconnections. Each block in this �gure stands for a collection of concepts having an identical levelof abstraction and an identical depth in the specialization hierarchy. The blocks are connectedby specialization (sp) links and concrete (con) links. Inside a block, concepts are connected viapart links.It represents the syntax and semantics of a subset of the German language, knowledge about thetask domain \intercity-train-information" as well as dialog knowledge. Therefore, four conceptualsystems for the linguistic knowledge base were created. On the lowest level of abstraction (seeFigure 5) the concepts for word related hypotheses build an interface between the linguistic18



analysis and the word recognition.3.2.1 Syntactic KnowledgeOn the syntactic level, syntactic classes and larger syntactical units are modeled (see 2.1.1). Eachconcept for a syntactic class has a concrete link to a concept for a word hypothesis on the lowestlevel of abstraction. For the description of syntactic classes the attributes gender, number, case,semantic class, pragmatic class, and metacommunication are de�ned which correspond to theslots of the lexicon entries.Larger syntactical units are the constituents which are built up by the syntactic classes. Forexample concepts for noun phrases (SY NG) or times (SY UHRZ) are modeled. A simple noungroup has part links to the concepts for noun, pronoun, interrogative pronoun, relative pronoun,and proper name. The optional and obligatory parts are de�ned in the modality description.The time sequence of these parts is de�ned in the adjacency description. Concepts include theattributes gender, number, and case ensuring the syntactic correctness as well as the analysisparameters semantic and pragmatic class which ensure semantic and pragmatic compatibility(see 2.1.2). Especially in speech, special forms are used for the metacommunicative parts of adialog e.g. for greetings and thanks. For these utterances special syntactical units were modeled.3.2.2 Semantic KnowledgeThe semantics is based on the valency theory and the case theory (see 2.1.3). The semantic levelcontains concepts for deep cases and verb and noun frames. There exist concepts for 13 di�erentdeep cases, which are connected with the syntactic level by concrete links. They provide additionalsyntactic restrictions, for example, a preposition list which can be used in the prepositional phraseconnected with a special deep case.24 verb and 37 noun frames are represented, for example the verb frame \arrive": by the conceptS VF ANKOMMEN. Each of them is connected by a part link with the deep cases the frameopens. For each meaning of a verb or noun a modality description exists which de�nes theobligatory and optional deep cases.3.2.3 Pragmatic KnowledgeThe next linguistic level re
ects the pragmatics given by the task domain \intercity-train-information" (see 2.1.4). Actually concepts are modeled for19



� the di�erent pragmatic goal concepts P CONNECT INFO and P TIMETABLE� frames of meaning e.g. P VF FAHREN (which contain restrictions resulting from the mean-ing in the actual application) and� pragmatic intentions e.g P DESTINATIONFrames of meaning with the possible pragmatic intentions as parts are analogous to the framesand deep cases on the semantic level. They provide additional restrictions resulting from the taskspeci�c usage.The pragmatic goal concepts model the di�erent topics the system can deal with and they containthe pragmatic intentions the system is able to talk about as part links. E.g. the P TIMETABLEhas the parts: P DESTINATION, P DEP PLACE, P TO TIME, P FROM TIME and so on.A network detail is shown in Figure 6.

Figure 6: Detail of the network for speech understanding covering the levels of words, syntax,semantics, and pragmatics. The concepts are connected by concrete links (con), part links (part)and context-dependent part links (cpart). 20



3.3 Dialog KnowledgeOn the level which represents knowledge about dialog, a dialog in the domain of informationprovision services is modeled as well as the dialog acts which it consists of (see 2.2.2). Actuallya simpli�ed dialog is foreseen which will allow to test the described parts in one homogenousenvironment and therefore gives the chance to �rst communications with the system.The dialog is represented by a sequence of dialog acts which can be metacommunicative or con-cerned with the application. Each dialog act is modeled by a concept with concrete links tothe syntactic, semantic, and pragmatic levels which provide information about the correspond-ing realization. Dialog acts with metacommunicative functions can be represented by syntacticor semantic units whereas those which are concerned with the application are represented bypragmatic units.Further information about the dialog acts provide the attributes metacommunication, intonation,and word order which contribute to deciding which dialog act is realized by the actual data.3.4 Interface to AcousticsOn the lowest level of abstraction, concepts are modeled which build an interface between wordrecognition and the linguistic analysis. They gather all available restrictions (e.g., case nomina-tive, gender masculine, number singular, semantic class Transport) during the analysis processand thereby constrain the possible instances for a concept. The instances of these concepts arecomputed from the actual set of word hypotheses.Input for the linguistic analysis process is a set of word hypotheses. A hypothesis is a quatruple(w; a; e; s) where w denotes the hypothesized word. s denotes the acoustic score, and [a; e] speci�esthe time interval which is covered by the hypothesis. During the analysis process a second interfaceto acoustics enables the veri�cation of word chains (see 4.1). If needed a part of the speech signalis given to the veri�er with a chain of words. Then the veri�er computes a score for the wordchain in matching it with this part of the speech signal. The generation of word hypotheses aswell as the veri�cation is based on Hidden Markov Models (see [11, 29]).3.5 Semantic Network Representation of the Intercity Data ModelThe IC-knowledge was integrated in the described knowledge base. Therefore, the network en-vironment was expanded by concepts which describe certain connections, IC train stations, ICdeparture times as well as price information. 21



After the retrieval of connections out of the data base (see 2.3.1), for each connection a conceptis generated which contains the trains which participate as well as the change places and times.All connections given by a set of parameters are �nally represented by a general concept whichrefers to them. That means that during a dialog only information about the actually neededconnections is available. This is an e�ective reduction of data.4 Analysis StrategyIn section 3.1.6 the inference rules for knowledge utilization were presented. Their recursiveapplication builds up the skeleton of the search space for the analysis strategy. Competing wordor word chain hypotheses together with competing linguistic results split up this skeleton intothe complete search space. The search in this space is directed by the A�-Algorithm [23]. In thenext section, we explain the di�erent scoring values used for the control of the analysis. Then,we give an outline of the analysis strategy illustrated by an example.4.1 JudgementFor a goal directed search the currently most promising hypothesis should be selected for furtherprocessing. Therefore, results from di�erent levels of analysis (word recognition, syntax, seman-tics, pragmatics, dialog) should be comparable to reach this goal. For an adequate descriptionthe judgements should re
ect terms like:� compatibility: Is the hypothesis contradictory to the model?� quality: Measure for the correspondence of signal/model.� reliability: How likely is it that a hypothesis is correct?� relevance: What is the priority of the hypothesis for further processing?To enforce a more model driven strategy neither a left to right nor an island driven strategy isused. On every location in the speech signal a word hypothesis is accepted if it is in accordancewith the expectations from the linguistic model. Only when two word hypotheses are adjacentwith respect to the speech signal, is a word chain built and veri�ed by the acoustic module.Therefore, a hypothesis H in the context of linguistic processing is a collection of word and wordchain hypotheses with a linguistic interpretation. Each of these hypotheses, represented in our22



system by a search tree node, has a judgement vector with the following components. Full detailsof the judgements are given in [21, 28, 27].� Structural compatibility: This is a binary measure, which tests the linguistic restrictions,i.e. congruence of case, number, and gender in a noun group. That means:z(H) = 8><>: 1; if all restrictions are ful�lled by H0; otherwise� Acoustic quality of the underlying word or word chain hypotheses + estimate for thenot covered speech signal: The acoustic score is generated by the EVAR word veri�cationmodule and is the negative logarithmic probability of a continuous density Hidden MarkovModel [29]. To guarantee the comparability of short and long hypotheses a statistical opti-mistic estimate for the acoustic quality of the unmasked speech signal is calculated, whichis based on the distribution of correct hypotheses. It has been shown in [27] that meanand variance of the quality qk of correct hypotheses depend linearly on the length L of ahypothesis, hence�k(L) = EfqkjL; correctg = �kL�2k(L) = Ef(�k(L)� qk)2jL; correctg = �2kL (1)With these formulas a statistically optimistic estimate for the not covered speech signal oflength L is given by:~q(L) = �kL� C�kpL (2)That means, the acoustic quality for the not covered speech signal is estimated by the meanvalue of correct hypotheses (=̂ �kL). For an optimistic estimation, C-times of the standarddeviation (=̂ �kpL) is subtracted. If the acoustic quality (resulting from the underlyingword or word chains) of a hypothesis H is given by q(H), thenq̂(H) = q(H) + ~q(L) (3)is a comparable measure for the acoustic score of a hypothesis H. More details are givenin [28].� Number of frames of the word chain with longest duration: As the quality of wordhypotheses re
ects a distance-measure the following statement is valid for hypotheses withequal quality: hypotheses with longer duration are more probably correct hypotheses thanshorter ones [27]. Therefore,s(H) = max1�i�NfL(Ki)g; L(Ki) := length of chain Ki (4)23



is a measure for the reliability.� Number of masked frames: Measure of relevance, because the analysis goal can bereached in fewer steps.r(H) = number of masked frames for H (5)Written in a vector, the judgement b(H) of a hypothesis H isb(H) = (z(H); q̂(H); s(H); r(H)) (6)The comparison between two hypotheses is de�ned by the lexical order of their judgement vectors,i.e. (x1; :::; x4) < (y1; :::; y4), 9xi[xi < yi]; 1 � i � 4 ^ 8xl[xl = yl]; l < iThis means �rst x1 and y1 (structural compatibility) are compared. If they are equal, then x2and y2 (acoustic score) are compared and so on. This is done until one component is greater thanthe corresponding one in the other vector. Moreover, for the second and third components of thevectors, only interval values and not the exact values are used.4.2 ControlThe goal of the analysis of an utterance is the instantiation of a concept representing a typeof user question (see Section 2.1.4). These concepts re
ect the possible requests and contain allthe information needed for a database request. Due to the uncertainty of the word generationmodule, a strictly data driven analysis does not seem to be too promising. Above all, the syntacticrestrictions are insu�cient to avoid an excessive expansion of the search tree. Analogously, astrictly model driven strategy was not successful because speech o�ers a lot of possibilities toexpress a certain fact. Therefore, we use a strategy which works both on the acoustic data aswell as on the expectations from the linguistic model.Initial PhaseIn the following, the analysis process is demonstrated by the example: \Ich m�ochte nach M�unchenfahren." (\I want to go to Munich".). The analysis starts with a data driven generation of wordhypotheses. Out of this set the n best judged and pragmatically relevant word hypotheses (e.g.M�unchen [Munich], Sonntag [Sunday]) will be selected as starting points for further processing.24



This is justi�ed by the fact that pragmatically relevant words are pronounced with more empha-sis and ensure therefore a better detection in the speech signal [24]. Experiments with spokenutterances showed that n = 10 is an appropriate value.For every such hypothesis an instance of the corresponding syntactic class is created due to RULE1 and 2 (see 3.1.6). As every path from the start node to a node in the search tree represents aconsistent partial interpretation, a search tree node is generated for every instance and is insertedas a competing successor of the start node. The judgement vector of these nodes is calculatedfrom the corresponding instance and the related word hypothesis as described in the last section.Figure 7 shows the complete search tree after that initial phase. In the following Ik(X) standsfor the k-th instance of the concept X and Qi(X) for the i-th modi�ed concept to X.�������������� ������� PPPPPPPPPPPPPPI1(SY NPR)M�unchen I2(SY NPR)Hamburg I1(SY NOMEN)Sonntagr r rFigure 7: Search tree after the initial phase (Ik(X) stands for the k-th instance of the concept X)Estimation of Pragmatic IntensionsTo use the powerful constraints of the pragmatic level the instances of the initial phase willbe connected with appropriate pragmatic intentions (see Section 3.2.3). The word hypothesis\M�unchen" [Munich] can be interpreted as \departure place" or as \destination", but not as\from time". On the contrary, for the hypothesis \Sonntag" [Sunday] \from time" respectively\to time" are adequate associations. To guarantee a correct association, the pragmatic intentionscontain the attribute \pragmatic class". For a concrete pragmatic intention only certain valuesare allowed, i.e. \destination" pragm class�! \town-with-an-intercity-station". For every pragmaticallyrelevant word the proper pragmatic classes are inserted in the lexicon. In consideration of thatattribute possible paths in the network are constructed beginning from the initial instances up toan appropriate pragmatic intention. This is done by an iterative application of RULE 1, 2 or 4.Figure 8 shows the contents of competing search tree nodes resulting from the initial hypothesis\M�unchen" [Munich]. They represent partial linguistic interpretations as \to go to Munich" and\to go from Munich". For a clear representation and an e�cient processing all the information25



created from the starting node to a node n is collected in node n. The index of the instances andmodi�ed concepts represents the sequence in which these objects were created.I1(SY NPR)M�unchenrrr r r rQi4(P DESTINATION)jQi3(S GOAL)jQi2(SY PNG)jIi1(SY NG)jI1(SY NPR)M�unchen Qi6(P DEP PLACE)jQi5(S LOCATION)jQi2(SY PNG)jIi1(SY NG)jI1(SY NPR)M�unchenr r rFigure 8: Contents of search tree nodes after the estimation of pragmatic intentionsSyntactic Veri�cation of the Pragmatic IntensionsIn the next step, due to the expectations of a pragmatic intention the syntactic constituent willbe completed. In the case of our example, the concept P DESTINATION restricts the possibleprepositions to \in" [in] and \nach" [to]. This is propagated by the iterative applications of RULE5 to S GOAL, SY PNG, and SY PRAEP . Additionally, the admissible areas on the time axiscan be restricted for the preposition. Due to the adjacency matrix in the concept SY PNG thepreposition has to be located directly before the hypothesis \M�unchen" [Munich]. Therefore, theword recognition can be constrained exactly by the model driven information. By application ofRULE 1 and 2 instances to the concepts SY PRAEP and SY PNG are created. The contentsof a search tree node after that phase are shown in Figure 9.Qi10(P DESTINATION)jQi9(S GOAL)jIi8(SY PNG)/ nIi7(SY PRAEP) Ii1(SY NG)nach jI1(SY NPR)M�unchenFigure 9: Contents of search tree nodes after the syntactic veri�cation of a pragmatic intention26



Veri�cation of an Appropriate ContextAs the pragmatic intentions are context dependent on verb frames or noun frames an appropriatecontext is needed for the instantiation. In the slot context-of of a pragmatic intention all possiblecontexts are referred to. For the concept P DESTINATION among other things the frames\fahren" [to go], \Zug" [train], or \Verbindung" [connection] are admissible. For every context amodi�ed concept is created by RULE 4 and inserted in a search tree node. By iterative applicationof RULE 5 the linguisticmodel is expanded and the necessary hypotheses can be requested. Figure10 shows two search tree nodes with a fully expanded model of the verb frame \fahren" [to go].The lower one represents a verbal group with a modal verb and the upper one without a modalverb. Qi11(P VF FAHREN)/Qi12(S VF FAHREN)Qi13(SY VG)jQi14(SY VERB) nQi10(P DESTINATION)jQi9(S GOAL)jIi8(SY PNG)/ nIi7(SY PRAEP) Ii1(SY NG)nach jI1(SY NPR)M�unchenQi11(P VF FAHREN)/Qi12(S VF FAHREN)Qi13(SY VG)/ nQi16(SY MVERB) Qi15(SY VERB) nQi10(P DESTINATION)jQi9(S GOAL)jIi8(SY PNG)/ nIi7(SY PRAEP) Ii1(SY NG)nach jI1(SY NPR)M�unchenFigure 10: Contents of two search tree nodes with an expanded model of a verb frameFor the lower node a hypothesis for the verb \fahren" [to go] is requested with the followingconstraints:� tense: in�nitive� restricted area of the speech signal due to the hypotheses \nach" and \M�unchen".By RULE 1 and 2 the verbal group \m�ochte fahren" [want to go] is instantiated and a partial27



instance of S V F FAHREN is created. Thereby, S GOAL can be instantiated too (see Figure11). Qi11(P VF FAHREN)/Ipi20(S VF FAHREN)Ii19(SY VG)/ nIi18(SY MVERB) Ii17(SY VERB)m�ochte fahren nQi10(P DESTINATION)jIi21(S GOAL)jIi8(SY PNG)/ nIi7(SY PRAEP) Ii1(SY NG)nach jI1(SY NPR)M�unchenhhhhhhhhhhh
Figure 11: Contents of a search tree node after the veri�cation of a contextEstimation of Information ConceptsIf a context is established an appropriate information concept is estimated. For the conceptP DESTINATION the concepts P CONNECT INFO and P TIMETABLE are admissi-ble which would result in two competing search tree nodes. Since P TIMETABLE is a special-ization of P CONNECT INFO all information generated for P CONNECT INFO can beused by P TIMETABLE. Therefore, only the most general appropriate information concept isestimated (see Figure 12). If an instance of P CONNECT INFO is not su�cient to interpret thewhole speech signal, the so far generated instances can be used to instantiate P TIMETABLE.Otherwise, these instances have to be created twice on di�erent search tree paths.Qi22(P CONNECT INFO)Qi11(P VF FAHREN)/Ipi20(S VF FAHREN)Ii19(SY VG)/ nIi18(SY MVERB) Ii17(SY VERB)m�ochte fahren nQi10(P DESTINATION)jIi21(S GOAL)jIi8(SY PNG)/ nIi7(SY PRAEP) Ii1(SY NG)nach jI1(SY NPR)M�unchenhhhhhhhhhhh @@@

Figure 12: Contents of a search tree node after the estimation of an information concept28



Veri�cation of Information ConceptsIn this phase the control alters between an expansion of the model by RULE 5 (see Figure 13)and an instantiation of the model by RULE 1, 2, 3 until the information concept is instantiated(see Figure 14). In this case, the analysis of the utterance terminates when the speech signal isinterpreted su�ciently.Qi23(P TRAVELLER)jQi24(S AGENT)jQi25(SY NG)jQi26(SY PRON) Qi22(P CONNECT INFO)Qi11(P VF FAHREN)jIpi20(S VF FAHREN)Ii19(SY VG)/ nIi18(SY MVERB) Ii17(SY VERB)m�ochte fahren Qi10(P DESTINATION)jIi21(S GOAL)jIi8(SY PNG)/ nIi7(SY PRAEP) Ii1(SY NG)nach jI1(SY NPR)M�unchenhhhhhhhhhhh((((((( hhhhhhhh((((((( HHHHHHH������
Figure 13: Contents of a search tree node during the veri�cation of an information conceptIi32(P TRAVELLER)jIi29(S AGENT)jIi28(SY NG)jIi27(SY PRON)ich

Ii34(P CONNECT INFO)Ipi31(P VF FAHREN)jIi30(S VF FAHREN)Ii19(SY VG)/ nIi18(SY MVERB) Ii17(SY VERB)m�ochte fahren Ii33(P DESTINATION)jIi21(S GOAL)jIi8(SY PNG)/ nIi7(SY PRAEP) Ii1(SY NG)nach jI1(SY NPR)M�unchenhhhhhhhhhhh((((((( hhhhhhhh((((((( HHHHHHH������
Figure 14: Contents of a search tree node with an instantiated information conceptIn the other case one tries to instantiate optional links or special concepts. In our exampleP TIMETABLE is an adequate specialization of P CONNECT INFO and is inserted as anew goal concept for the analysis. For a timetable information a departure time or a destinationtime is obligatory. Due to the frame \fahren" [to go] only the concept P FROM TIME isappropriate. The process of expansion, instantiation, and determination of new goals is repeateduntil the above condition for termination is ful�lled.29



During the �rst three phases of the analysis the search tree is fully expanded to guaranteelinguistically motivated partial interpretations for the further processing. After that, the A�-Algorithm with the judgement vector of section 4.1 is used to direct the analysis. For furtherdetails see [12].5 Results and OutlookBefore we present results obtained with our system the experimental framework is described.1. The basis for the experiments are continuously spoken dialogs sampled with 16kHz.2. In detail, in the knowledge base the following concepts are realized:� A concept for the information dialog D INFO DIALOG and 7 concepts for the dialogacts, e.g., `user information request' and `system answer'� Two information concepts P CONNECT INFO, and P TIMETABLE as wellas the proper pragmatical intentions (10 concepts).� The frames for 37 nouns and 24 verbs as well as the proper deep cases (13 concepts).� All syntactic constituents presented in section 2.1.1 except the in�nitive group (7concepts).3. The analysis is directed by the judgement vector described in section 4.1.4. The lexicon used for word recognition and veri�cation contains 1081 in
ected forms.5. The linguistic coverage comprises single sentences. The sentences can be elliptical providedthey can be completed by parts of prior utterances.Dialog evaluation is still a much debated research topic, so that some remarks with respect toour evaluation of the system are given. For the evaluation of dialog systems no generally usedmeasures or tests are available. Furthermore the following points make it more di�cult to evaluatea dialog system:� First a dialog system cannot be tested in batch mode with input from a �le because thesystem reaction has to be taken into consideration for the next input. This means noprede�ned dialog corpus can be used, rather each dialog has to be tested by a human whichtakes a lot of time. 30



� Because there are few existing German spoken language dialog systems and fewer dialogsystems in the domain of train time tables, no test corpus like the ATIS database is available.In order to test the system not only with sentences from the system developers, we exchangedtest corpora with people working on similar systems [19, 25] in the ESPRIT-Project Sundial,however these test corpora contain only single utterances and the rest of the utterances in eachdialog were formed according to the reaction of the system.To judge the e�ciency of the complete system the following two groups of experiments wereexecuted, in the following they are denoted Test1 and Test2.Test1: Speaker-dependent version of the acoustic module realized at the University of Erlangen.� Analysis with up to 100 word hypotheses (depending on the duration of the utterance) perdialog act uttered by the user.� The experiments run on a DEC RISC station 5000 with 32MB main memory and 25 mips.� The word recognition and the veri�cation modules are speaker-dependent.� The acoustic module was trained with 100 domain speci�c and 200 phonetically balancedsentences.� During the generation of word hypotheses a bigram model of perplexity 111 is used.� For a user request 90 % of the speech signal has to be covered by word hypotheses.� A dialog can consist of up to 5 dialog acts. The user starts with a request for informa-tion after an optional greeting. Then the system either asks back for a missing parameter(which is needed to start a database request) or asks for con�rmation. The user gives themissing parameter, a con�rmation, or a correction. These dialog acts can consist of onesingle word, an elliptical construction, or a complete sentence. Finally, the system starts adatabase request for a suitable connection, �lls an answer pattern with this information,and generates an answer with a speech synthesizer.� 85 dialogs were tested. 50 user requests were taken from a German corpus of 100 sentences(e.g. user requests, con�rmations) which was created for the ESPRIT-Project Sundial. 35user requests were taken from a test corpus created for the EVAR system. These userrequests were tested in a natural language mode and after the system reaction a suitableanswer (e.g. con�rmation) was given. This was done in order to have reference dialogs which31



can be tested in the spoken language mode. In the following an example dialog (translatedinto English) is given:user: when can I go to Munich tomorrow morningsystem: you want to go to Munich tomorrow morninguser: yes to Munichsystem: output of the appropriate trainsThe 85 dialogs in total consist of 350 dialog acts (system plus user) and 873 words (useronly).� The experiments were executed as follows. For each dialog the test speaker read the �rstsentence of the dialog and the analysis process began. The second user utterance dependson the system reaction. If the user request was analysed correctly (that means the systemreaction was the same as in the natural language mode), the second user utterance testedin the natural language mode was spoken. Otherwise the user utterance was adjusted tothe system reaction. In the following example the time reference wasn't analysed correctlyand the system asked back for it. However in the natural language mode the user requestwas analysed correctly therefore no asking back was necessary. In this case the test speakertried and suceeded to complete the dialog successfully by giving an appropriate answer (seethe following example).natural language mode spoken language modeuser: when is the next train toHamburg when is the next train toHamburgsystem: you want to take the next trainto Hamburg when do you want to go toHamburguser: yes nowsystem: output of the appropriatetrains output of the appropriatetrainsIn the case of failure (e.g., total failure of the analysis) the recording was repeated.� The generation of the word hypotheses after recording each utterance takes 3.53 timesrealtime (without special hardware). The word accuracy was 90.86 %, word correct 91.08% and sentence correct 54.21 %.The results are presented in Figure 15. 85 dialogs with 170 user utterances (one utterance canconsist of more than one dialog act) were tested. 68 times the dialog was completed succesfully.In 3 of them a successful completion was possible after the system failed to analyze the user32



request (e.g., 1 pragmatical intention was missing) but the user corrected the system after therequest for con�rmation. 17 dialogs were not completed successfully, which means that the database retrieval did not provide the connections which the user asked for, because of an incorrectanalysis or a failure due to space limitations.At the sentence level 129 of 170 utterances were interpreted correctly. That means the result ofthe analysis was the correct (corresponding) dialog act based on a correct syntactic, semanticand if needed pragmatic analysis. Additionally, 15 utterances were instantiated with the correctdialog act and information concept but with an incorrect or missing expression for the time oranother pragmatic intention. 7 utterances were not interpreted correctly. For 19 utterances theanalysis failed.The average time to complete a dialog was 3:57 minutes. The average CPU time for the linguisticanalysis to complete a dialog was 1:32 minutes. On the average 1390 search tree nodes and 24MB space were needed for the completion of a dialog. On the average an utterance was repeated1.14 times before an analysis was possible.number of dialogs 85successfully completed dialogs 68 (80%)dialogs completed (with clari�cation) 3average time to complete a dialog 3:57 minaverage CPU time to complete a dialog 1:32 minaverage number of search tree nodes 1390failure of the analysis due to space limitation 11 (13%)failure due to an incorrect analysis 6 (7%)number of utterances 170correct analysis 129 (76%)incomplete pragmatical intention 15 (9%)false pragmatical intention 7 (11%)failure of analysis 19 (4%)Figure 15: Summary of the Test1 resultsMost of the time in the Test1 experiments the information given in the �rst user request wasanalysed correctly by the system and therefore the dialogs could be completed within only twodialog steps of the user.Test2: Multi-speaker system (4 male speakers), realized at the University of Bielefeld.� For the word recognition and veri�cation task the ISADORA-System [29] is used.� The acoustic module works without a language model. (This means the perplexity is aboutthe lexicon size) 33



� The acoustic module is trained with 500 domain speci�c sentences from every speaker.� The linguistic analysis works with the word hypotheses resulting from the 10 best-scoredword chains of the acoustic module.� For each dialog the test speaker speaks the �rst sentence of the dialog into the microphoneand the analysis process begins. Due to the interpretation of the system a suitable answer(con�rmation, correction, additional information) is given. This process is repeated untilthe dialog is successfully completed or failed.� The tests run on a DEC RISC station 5000 with 32MB main memory and 25 mips.Since the acoustic module works with high perplexity and in 4-speaker mode a word accuracy ofonly 74.6% was achieved. Therefore, in many sentences not all of the spoken words are hypoth-esized for the linguistic analysis. To manage this problem the requirements for the coverage ofthe speech signal with word hypotheses are reduced and an extended version of the dialog [13]compared to Test1 is integrated into the system. For a successful linguistic analysis the minimalcoverage of the speech signal with word hypotheses is set to 2=3 (see Section 4.2). This allows inmany cases a correct interpretation of the utterance inspite of missing spoken words. Togetherwith a dialog strategy which requests information missing for a data base inquiry by a check-backpartial interpretations can be completed. Furthermore, incorrect interpretations can be correctedby a clari�cation dialog. During that dialog phase the user can con�rm or correct all parts of theinterpretation until the desired information is available.One speaker of the training phase tested the system by 50 dialogs. The results are presented inFigure 16. 60% of the dialogs were completed successfully without an incorrect interpretation.On the average 2.7 user utterances were made per dialog. The following dialog (translated intoEnglish) gives a typical example. Since the coverage of the speech signal was 2=3 only the wordsin bold font were used for the linguistic interpretation.user: hello in the morning I want to go to Munichsystem: when do you want to go to Munichuser: in the morningsystem: You want to go from Bielefeld (Default) to Munich in the morninguser: yessystem: output of the appropriate trains14% of the dialogs could be completed successfully after a clari�cation phase. For these dialogs3.4 user utterances had to be done on the average. The following dialog is a typical example.34



user: is there a train from Munich to Hamburg next sunday at seven(spoken was eleven) o'clocksystem: You want to go from Bielefeld (Default) to Hamburg at seven o'clockuser: no from Munich next sunday at eleven o'clocksystem: You want to go from Munich to Hamburg at eleven o'clockuser: no next sunday at eleven o'clocksystem: You want to go fromMunich to Hamburg next sunday at eleven o'clockuser: yes that's okaysystem: output of the appropriate trainsOn the average, for one utterance of the completed dialogs the linguistic analysis consumed 25.5seconds of CPU-time and built up 478 search tree nodes.For the remaining 26% no successful dialog was carried out. The main reason was the insu�cientacoustic analysis hypothesizing less spoken words than needed for the coverage. Therefore, withan improved word recognition module the results also can be improved.At the sentence level 45 of 106 utterances were interpreted correctly. That means the result ofthe analysis was the correct (corresponding) dialog act based on a correct syntactic, semantic,and pragmatic analysis. Additionally, 42 utterances were instantiated with the correct dialog actand information concept but with a missing or incomplete pragmatic intention. 8 utterances werenot interpreted correctly and for 11 utterances the analysis failed.successfully completed dialogs (without corrections) 60%successfully completed dialogs (with clari�cation) 14%no successful dialog 26%number of utterances 106correct analysis 45 (42.5%)missing or incomplete pragmatical intention 42 (39.6%)incorrect interpretation 8 (7.5%)failure of analysis 11 (10.4%)Figure 16: Summary of the Test2 resultsThe above results show that the integration of a 
exible dialog strategy allows the successfultreatment of problems like missing spoken words or incorrect interpretations.Further improvements will extend the linguistic competence of the system. This includes the useof prosodic information to support the linguistic analysis, the improvement of the resolution ofanaphoric references, the interpretation of utterances containing more than one sentence, andthe modelling of spontaneous speech phenomena.35
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