
EVALUATING THE PERFORMANCE OF ACTIVE CONTOURMODELS FOR REAL{TIME OBJECT TRACKINGJ. Denzler, H. NiemannUniversit�at Erlangen{N�urnbergLehrstuhl f�ur Mustererkennung (Informatik 5)Martensstr. 3, D{91058 ErlangenGermanyemail: fdenzler,niemanng@informatik.uni-erlangen.deAbstractIn the past six years many algorithms and models foractive contours (snakes) have been presented. Some ofthe work has been applied to static image analysis, someother to image sequence processing. Despite of the factthat snakes can be used for object tracking, no com-parative study of the performance for real{time objecttracking is known up to now.In this paper we compare several active contour mod-els presented earlier in the literature for object tracking:the \Greedy" algorithm, the dynamic programming ap-proach, and the �rst work of Kass, based on the vari-ational calculus. We discuss and compare the variousactive contour models with respect to the quality of con-tour extraction, the computation time and robustness.All evaluation is done using sequences, grabbed duringclosed{loop real{time experiments.1 IntroductionActive contour models (snakes) have been proven to be apromising approach in many di�erent �elds in computervision. They have been applied to image segmentationand to the analysis of static images and image sequences,even in real{time systems [2, 5, 10]. The inherent localprocessing of an image | nearby the snake elements |also makes active contour models suitable for the use inreal{time active vision systems.Many extensions of the original approach have beensuggested, referring to the de�nition of the energy aswell as to the energy minimization [1, 2, 3, 4]. But, themodels have always been presented in a special area ofapplications. Thus comparisons between the di�erentapproaches or predictions of the behavior of one modelin another area of application can hardly be drawn. Es-pecially in the �eld of real{time object tracking in aclosed loop of sensor and actor, di�erent special points

should be taken into account while estimating the suit-ability of an active contour model: the computationtime for extracting the moving object's contour, the ro-bustness of the contour extraction also in the case ofweak object's contours, or changing illumination condi-tions; another aspect is the accuracy of contour extrac-tion, also in the case of shrinking or growing contoursdue to changing views of the object. Finally, the possi-bility of an automatic initialization should be taken intoconsideration.Up to now, no comparison of the di�erent modelsand energy minimization schemes for real{time objecttracking is known, which enables someone to choose theoptimal active contour model. Thus, in our contribu-tion we investigate the most important active contourmodels, i.e. the dynamic programming approach, thegreedy algorithm and the original model based on thevariational calculus, and draw qualitative comparisonsreferring to the suitability in real{time object tracking.We make use of the detected weak and strong points ofeach model to de�ne extensions for the variational ap-proach, which we show to be suited to ful�ll the abovedemanded properties of an active contour for trackingin a real{time system.The comparison is done in a real{time object track-ing system [6, 7]. A qualitative judgement for the qualityand robustness of the contour tracking is employed. Nospecialized hardware but only standard Unix worksta-tions are used.2 The Active Contour Models in the Com-parisonAn active contour can be described as a parametricfunction v(s) = (x(s); y(s)), s 2 [0; 1], with x(s) 2[0; xmax]; y(s) 2 [0; ymax]. Such an active contour has



an energy E� de�ned byE� = Z 10 [Ei(v(s)) +Ef (v(s)) +Ec(v(s))] ds:(1)In most cases the internal energy Ei is given byEi(v(s)) = 12 ��(s)jvs(s)j2 + �(s)jvss(s)j2� ; (2)where vs and vss are the �rst and second derivatives ofv with respect to s. Ef describes the forces of the imageon the snake andEc summarizes all the other constraintsof the snake, for example, connections of snake elementsto image features (spring forces) or the limitation of thedistance between the snake elements [9].In our contribution we compare the following activecontour models:� Energy minimization with the variational calculus[9] (Abbreviation VARN | with matrix inversionafter each minimization step, VAR | with matrixinversion only once for each new image)� The dynamic programming approach [1] (DP)� The \Greedy" algorithm [11] (GRDY)Additionally, we present several improvements of the ac-tive contour model based on the variational Calculus(IMPR) with respect to real{time object tracking:� For each snake element we �x it on its old positionwith a weak spring force.Ec(v(s)) = �1(v(s)� vold(s))2 (3)The vector vold(s) is the position the snake hasreached after the energy minimization in the pre-vious image. This limits the possible movementsof the elements during the energy minimization,because large movements are punished in the en-ergy term, weighted with the parameter �1. Weuse the same value �1 for all snake elements.� For decreasing the computation time we minimizethe energy without inverting the matrix (A+ I)[9] at each minimization step. We compute theinverse matrix only once at the beginning of thetracking. This corresponds to the calculation ofthe snake element's position out of a linear com-bination of its neighbors, where the inuence ofneighboring elements decreases with the distanceto the actual element (see Figure 1). Because ofthe computation time reduction the number of it-eration steps can be increased and we can choosea smaller value for the step size of the iterativeminimization.
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0 2 4 6 8 10 12 14 16 18Figure 1: Inuence of the snake elements on the positionof the 8th element for di�erent combinations of � and� using a constant matrix A (x{axis: snake element,y{axis: inuence of the snake element's position).� We use blowing forces known from the balloonmodel [3]. Because an active contour based onthe variational calculus tends to shrink, we blowup the snake before minimizing the energy for thenew image.vstart(s) = vold(s) + �2n(s) (4)The vector n(s) is the normal unity vector on thecontour point vold(s), directing outside the con-tour. vstart(s) is the starting position of the snakefor the new image. The same value �2 is used forall snake elements.Our real{time experiments show that these improve-ments lead to a more robust object tracking comparedto the original model, i.e. the number of times, thetracked object is lost can be reduced, and to a moreaccurate one, i.e. the quality of contour extraction isimproved.3 Experimental EnvironmentWe integrate the models into the tracking system forreal scenes described in [6, 7]. Within this closed{loopobject tracking, we can evaluate the e�ciency for real{time applications. A moving toy train is tracked bysteering a robot's arm holding a camera. The system isdivided up into two parts: the object detection and theobject tracking using snakes. The control of the robotis done on a second machine, connected with the ob-ject tracking process by using a programming library forcommunication between workstations in a workstationcluster (PVM, [8]). No specialized hardware for compu-tation is used. All algorithms are running on standardUnix workstations (HP-735), implemented in an object{oriented image processing environment. We judge theresults in a qualitative manner. During the tracking the



method speed max # # lost pc20 pc10 pc5trackedVAR 0.8 426 1 93 43 131.4 326 3 76 11 81.8 205 16 73 33 82.4 153 18 66 33 8VARN 0.8 600 0 100 71 121.4 337 5 97 84 181.8 255 6 92 71 182.4 105 20 66 40 7GRDY 0.8 387 1 92 46 71.4 483 2 100 63 361.8 259 3 97 46 42.4 119 19 77 50 8IMPR 0.8 453 1 76 75 331.4 453 1 97 70 291.8 599 0 98 92 302.4 313 5 96 75 15Table 1: Results over 600 images for each model: thespeed of the object (cm/sec), the max. number of con-secutive images, for which the object could be tracked,the number of times the object has been lost, and thepercentage in which the object is less than 20,10 and 5pixels from the center of the image (128,128) (see equa-tion (5)).frame grabbing and robot motion is always done in sucha way that the center of the snake coincides with the cen-ter of the digitized camera image. We use a simple lightobject in front of a dark background. By calculating thecenter of mass cm(t) of the pixels with a value greaterthan a given threshold we get the real center of the ob-ject in image at time t. Comparing these coordinateswith the center of the image which should be identicalin the case of a precise tracking, we get a measurementfor the tracking error:pcd = jft j jcm(t)� cj � dgjn (5)where pcd is the percentage of images, in which the centerof mass of the object is less than d pixels from the centerc of the image at time t, n being the number of images.We have run several experiments for every snakemodel. The speed of the object has been varied between0.8 cm/sec and 2.4 cm/sec. Due to a very moderateframe grabbing rate of our workstations this is equal toa displacement in the image between 4 and 8 pixels ata distance of 1.5{2.0 meters to the moving object. Theenergy �eld has been smoothed with a 3�3 mean �lter.In the experiments each model was used to track 600 im-ages at four di�erent speeds (see Table 1). Since we areinterested in real time tracking, we are forced to choosethe number of iterations and the number of contour el-

ements in a way such that the energy minimization canbe done within the image frame rate (about 3 framesper second).The chosen experimental environment is, of coursewell suited for other object tracking methods, for ex-ample line{based tracking algorithms. Since we are notinterested in judging the method of active contours forreal{time object tracking, but in comparing the di�erentapproaches within this framework, our experimental en-vironment is well suited to get informations about thebehavior of the models in a real{time closed{loop ap-plication, i.e. automatic initialization, robustness andaccuracy. Nevertheless, we have taken another sequence(Figure 4) to verify our results, for which, for examplea line{based tracking method, would fail.4 ResultsTable 1 shows the results of the algorithms. In Figure 2representative images of the tracking with the proposedimprovements (IMPR) are shown. The results for thedynamic programming approach cannot be found in Ta-ble 1 because even for the slowest speed of the object,the computation time for the energy minimization hasbeen too large. One can see that VARN leads to a moreaccurate result than VAR. But the complexity of thealgorithm increases, too. Thus, for faster moving ob-jects, the stability of the tracking decreases. Using theproposed improvements (IMPR), i.e. no matrix inver-sion at all and spring forces with an initial blow up ofthe snake, we got the best result in our experimentalenvironment. In Table 1 the stability (4th column) and
Figure 2: Results of the tracking with the proposed im-provements (IMPR) at a speed of 1.8 cm/sec. Images50, 100, 150, 200, 250 and 300 of an sequence of 600 im-ages are shown, grabbed during a real{time experiment.quality (column 5{7) of the models at di�erent speedscan be compared. As one can see, all models show abetter tracking quality at a speed of 1.4 cm/sec, com-pared to the result at a speed of 0.8 cm/sec. The reason



Figure 3: Results of the tracking with GRDY at a speedof 1.6 cm/sec. Images 150, 180, 210, 450, 480, and 510of an sequence of 600 images are shown, grabbed duringa real{time experiment.METHOD TIME (msec)DP 800VAR 110VARN 490GRDY 10IMPR 80Table 2: Computation time for one image on a HP-735.All results are taken from a snake with 16 elements.is that the robot has a minimum speed which is toofast for tracking smoothly the moving object at a speedof 0.8 cm/sec. Thus the robot performs a lot of shortmovements which results in a less accurate tracking.The quality of contour extraction also varies. GRDYextracts the contour of the object accurately (see Fig-ure 3) because this method allows to form corners byautomatically setting �(s) of the internal energy to zero(see equation (2)), dependent on the image data. Us-ing DP one can extract more complex contours, but asalready mentioned, the computation time is too large.VAR and VARN are very sensitive to noise in the im-age, VARN tends to produce a more sti� contour. Thisis advantageous for tracking, if the contour of the objectdoes not change. For an automatic initialization this be-havior leads to more errors, if the initial contour has notthe shape of the object's contour. This will be true innearly all data driven initializations. If a model basedinitialization is available, which results in an accurateshape description of the contour, the sti�ness might beadvantageous.The contour extracted with IMPR looks in most ofthe cases like an egg. Thus, the extracted contour can-

Figure 4: Results of the o�ine tracking with VARN forthe head{sequence (images number 0,30,60,90,108,111).Images 108 and 111 show the e�ect of the blowing forces:Although partially loosing the contour, the active con-tour catches again the contour of the head.not be used for a segmentation of the image, and oneneeds an additional step to extract the contour of theobject accurately. For that, IMPR provides the region,in which the segmentation (for example line extraction)should be done.In Table 2 the computation time for the di�erentmodels can be seen. We have measured the time forextracting the contour of a moving object in one imageusing 16 contour elements. The time for image acquisi-tion and preprocessing (edge extraction and smoothing)is not included. For DP and GRDY the convergencecriterion described in [11] has been applied. For VAR,VARN and IMPR 400 iterations have been carried out.
Figure 5: Results of the o�ine tracking with DP (�rstrow) and GRDY (second row) for the head{sequence.



In Figure 4 (IMPR) and Figure 5 (DP and GRDY)the veri�cations of the real{time results on another im-age sequence processed o�ine can be seen. Especially inFigure 5 possible source of errors for GRDY and DP canbe seen. First, for larger displacements (in these images12 pixels) the search area for the energy minimizationmight be too small. By increasing the search area, thechance to extract a background edge near the object in-creases, too. Using approaches based on the variationalcalculus (VAR, VARN, IMPR), the maximal displace-ment depends on the smoothing of the external energy.Additionally, this does not inuence the computationtime of the energy minimization. Of course, by largelysmoothing the external energy the edges of small ob-jects can disappear, which is one disadvantage of thevariational calculus approach. Secondly, single snake el-ements, which are in a homogeneous area (for example,the horizontal background edge in Figure 5, �rst row)with a large external energy compared with the rest ofthe image, remain in this area, until the internal energygrows su�ciently to force a movement of these elements.This depends on the parameter setting and is di�cultto adjust.5 SummaryIn our work, di�erent snake models have been comparedwith respect to real-time contour tracking. The timecomplexity of the dynamic programming approach is toolarge and thus this approach is not suited for tracking acontour in real{time without specialized hardware. Nev-ertheless, this approach might be applied to static imageanalysis. The \Greedy"{algorithm is computationallyinexpensive and therefore well suited for real{time ap-plications. The variational approach leads to a betterresult, if the matrix is inverted at each minimizationstep. But this needs too much computation time with-out specialized hardware. Thus tracking is only possi-ble for slowly moving objects. The energy minimiza-tion with a matrix inversion for each new image is, ofcourse, computationally less expensive but the results ofthe tracking can be improved only moderately for fastermoving objects. By visually judging the result of theactive contours in Figure 2 and Figure 3 one gets theimpression that GRDY might be the best approach inthis context. But the overall results of the experimentsat di�erent speed (Table 1) show that the best resultin the context of data driven real{time object trackingwith respect to stability and quality, could be achievedwith our proposed improvements (IMPR). Even for themaximum speed of 2.4 cm/sec the tracking can be donevery robustly compared to other models. But, as alreadymentioned, this method lacks the necessary accuracy fora segmentation of the object's contour. For this �eld ofapplication DP and GRDY should be used.We have not included a prediction step in our com-parison, because in this case the quality of the tracking
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