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Abstract

This work describes a statistical approach to deal
with learning and recognition problems in the field of
computer vision. An abstract theoretical framework is
provided, which is suitable for automatic model genera-
tion from examples, identification, and localization of
objects. Both, the learning and localization stage are
formalized as parameter estimation tasks. The stati-
stical learning phase 1s unsupervised with respect to
the matching of model and scene features. The general
mathematical description yields algorithms which can
even treat parameter estimation problems from projec-
ted data. The experiments show that this probabilistic
approach is suitable for solving 2D and 3D object reco-
gnition problems using grey—level images. The method
can also be applied to 3D image processing issues using
range images, i.e. 3D wmput data.

1 Introduction

Many object recognition systems are discussed in
the literature [7, 8]. The huge variety of approaches
are occupied with the development and realization of
algorithms for learning, classification and localization
of three—dimensional objects from different types of
optical sensory data. Usually, specific paradigms are
restricted to 3D, 24D, or 2D data [7]. An unconstrai-
ned application of these algorithms for arbitrary input
data is, in general, not possible. Decision rules and
model generation techniques often cannot be applied
to different dimensions. Aside from these data depen-
dent details, object recognition systems have to deal
with instabilities and should be robust with respect to
uncertainty, which is, for instance, caused by varying
illumination, occlusion, noise, or segmentation errors.
They are also expected to provide accurate classifi-
cation results. Naturally, Bayesian classifiers consider
uncertainties and fulfill an optimality criterion refer-
ring to misclassifications.

This paper describes a general uniform statistical
framework for learning, localization, and classificati-
on of 2D or 3D objects using different optical data
sources. The method enables even the automatic com-
putation of object models from projections. However,
instead of geometrical models, objects are represented
by parameterized density functions of their features.
Both, the learning and pose computation stage cor-
respond to parameter estimation problems. The cal-
culation of the involved parameters is either solved

by the Expectation Maximization (EM) algorithm [3]
or direct maximum likelihood estimations. In additi-
on to the statistical modeling, we present a technique
for decomposing the search space for pose estimates,
which 1s based on transformations of the model den-
sity functions and the observations into several one—
dimensional sub—spaces. A combinatorial explosion of
the search space caused by an increasing number of ob-
served scene features does not occur, since no explicit
matching between scene and model primitives is re-
quired. The complexity of the pose estimation process
is determined by the number of possible transforms
from the model into the image space. The resulting
image recognition system realizes a Bayesian — i.e. an
optimal — classifier.

First, we briefly discuss related work. The abstract
explanation of the mathematical framework is follo-
wed by a concrete application: algorithms for learning
and localization of objects using normally distributed
point features under orthographic projection are ex-
plicitly derived. The paper concludes with a summary
discussion of the presented approach.

2 Related Work

Since the beginning of image analysis, object mo-
dels were used for recognition purposes. First, they
were coded implicitly as assumptions about features
at certain locations; later on, the explicit structural
models were used [2]. Statistical methods for know-
ledge acquisition and recognition of objects using non—
parametric estimates are described in [10]. The refer-
red work relates learning of 3D objects to the auto-
matic computation of an aspect graph of 3D objects,
and does not explicitly model the 3D structure in the
sense that the 3D coordinates of an object are inclu-
ded. The description of segmentation errors and fea-
ture deviations in different intensity images by Gaus-
sian distributions is discussed in detail mn [13]. The
parametric density function and the derived optimi-
zation problems are, in general, used for 2D object re-
cognition from grey—level images. The involved densi-
ty functions are not automatically learned by training
samples; instead, the parameters are adjusted manu-
ally. In [13] it is suggested to apply the technique of
linear combination of views [12] to extend the theory
for 3D recognition purposes. The required matching
among features of different views has to be computed.
Wells [13] uses the EM algorithm for pose estimation



objectives. One approach, where statistical learning is
done using samples of images, is the work of He and
Kundu [6]. They suggest the use of Hidden Markov
Models and implement a system which has the capabi-
lity of learning two—dimensional objects from samples
of closed contours.

3 Statistical Object Recognition

Most object recognition systems — especially for 3D
applications — make use of a model based approach.
Geometric models are rotated, translated, and finally
projected from the model space into the image plane.
Distance measures judge the localization and classi-
fication results. Various approaches can be compared
and classified by the methods of model generation, di-
stance computation, and decision making.

In the proposed statistical approach, &k different ob-
jects are represented by parameterized density func-
tions. Types and parameters of these functions may
vary between objects and applications. In general, a
statistical object recognition system should provide
the following three stages:

1. training stage, where the parameters B, 1 < k <
k, of the model density functions have to be esti-
mated from a sample set {¢0]1 < p < N} of
views,

2. localization stage, where the pose, 1.e. the rotation
R and translation ¢, is computed, and

3. udentification stage, where the class number x of
the observed object is determined.

Let ¢ be an D,,—dimensional feature and C =
{e1,¢2,...,¢,,} be a set of features in the model
space. In the chosen statistical framework features are
considered as random variables and p(C|B) repres-
ents the density function of an object of class €2, cha-
racterized by the parameters B . In the experiments
described in section 6 we use a 2D model space in sec-
tion 6.2, a 3D model space in section 6.3, and point
features in both cases. The ¢; 1s a model vertex, and
C' the set of features characterizing an object. The
position of an object can change in the model space.
This has also to be represented within the model den-
sity. Thus, both the rotation and translation of the
object in the model space results in additional para-
meters of the model density functions. If R denotes
the rotation matrix and ¢ is the translation vector,
we get the model density p(C|B,, R,t) by the com-
putation of a density transform. If features invariant
to rotation and translation are used, the application
of a density transform with respect to a changing po-
sition will not affect the density function, i.e. in this
case we have p(C|B,, R,t) = p(C|B,). For three-
dimensional object recognition problems using two—
dimensional views we have additionally the projection
from model space into the image plane determined by
the underlying camera. Of course, this requires infor-
mation about the camera parameters. The influence of
various types of projections can be integrated within
the model density using once more a density trans-
form. Since the range information is lost in the cour-
se of projection, a marginal density has to be com-
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puted. Consequently, the set of observable image fea-
tures 20 = {%01,%03,...,%0¢,} contains vectors of
not necessarily lower dimension ), than the model
space. The image features used in the experiments of
section 6 are 2D point features.

The influence of transformations and projections on
model densities is straight forward. Now, a fundamen-
tal request is, which density function proves suitable
for modeling objects. Due to occlusion, some featu-
res will not occur in the segmentation result causing
¢m < n,; due to segmentation errors and features be-
longing to the background, ¢m > n, may occur. So
in general we only know n, # 2m. Additionally, for
an observed scene, the correspondence of image and
model primitives is not known. This matching must
also be handled by the proposed statistical model. Fur-
thermore, one should take into consideration that for
purposes of image analysis the statistical modeling of
background features and multiple object scenes should
be possible.

4 Statistical Object and Scene Models

The least mentioned requirements for a statistical
density function of an object are versatile. In this
work we suggest the use of transformed mixture den-
sity functions for modeling objects. An object of class
Q, 1s associated with a set of statistical processes
{51,59,...,5,,}. Each process, characterized by a
state 57, generates zero, one, or more output sym-
bols 205, and the complete set of n, statistical pro-
cesses produces the ¢m observable features of an ob-
ject. For instance, an observed point feature 2oy, of the
o—th view 20 of an object is assumed to be an out-
put symbol of exactly one out of n, stochastic proces-
ses. Within this context, p(¢ox|ax 1, R, t) describes the
emission density of the state S;. Since for an observed
image feature 2oy, it 1s a priori unknown which state
has emitted the primitive, each S; is weighted by an
a priori probability p, ;, which is indeed the discrete
probability for the [-th state to emit a symbol. Con-
sequently, the weights have to satisfy the condition
> 12 pry = 1. The probability for observing a single
feature 2oy is given by the marginal density over all
states

n
p(gok|BnaRa t) = an,lp(gok|an,laRa t)a
where obviously the set of parameters is B, =
{Pe1, @kl <1< n.}. Under the idealized assumpti-
on that all ¢m observed features out of a set of obser-
ved primitives ¢O are pairwise independent, the pro-
bability for observing a set of image features is com-

puted by the product:

p(°O|B,, R, t) = H p(%or| B, R, 1)
k=1
= H an,lp(gok|an,la Ra t)
k=11=1

The marginal density over all states provides the
probability that the given set of stochastic processes
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Fig. 1: A graph describing a statistical object model;
for k different objects there are k such models

has produced the observable feature. Thus, the stati-
stical model accomplishes the requirements of a proba-
bilistic description of the missing alignment between
scene features and model components. Fig. 1 shows
a set of four statistical processes which can produce
output symbols, i.e. observable features of the image
space; the arc symbolizes that the generation of one
output symbol is repeated for all m observable image
features. Occlusion is represented as far as not every
state is forced to produce output symbols. But it is
also possible that one state generates more than one
primitive. The advantage of this kind of modeling is
that the observed features need not have any ordering
and that the cardinality ¢m of the set 2O can be ar-
bitrary.

Background scene features can be included into the
probabilistic representation in a modular manner; one
simply expands the mixture density model with an
additional state Sy for the background. Fig. 2 visua-
lizes a set of stochastic processes. Herein, the output
probability of state Sy, which is weighted by pg, is
independent of the pose parameters R and ¢, because
it models background features, which in fact do not
depend on object transforms. The estimation of the
discrete probability 1 — pg can either be done by ap-
plying the EM algorithm or by the fraction n,/¢m of
the number of model states and observed features.

The probability for observing an object in a scene
including background features is

¢m

H (pHP(QOk |aH)

k=1

p(QO|BHa Blm Ra t)

N

+(1=pr) Y prip(®oklac, R, t)) :
=1

where By = {pg,ag} is the set of parameters cha-
racterizing background features. The computation of
the probability measure for pose parameters of an ob-
served scene i1s bounded by O(2mn,). In contrast,
classical approaches, which consider all possible as-
signments between model and scene primitives, will
take O(2m"=).

The training stage is unsupervised in the sense that
no correspondence between scene features and mixture
density components is required. In the localization sta-
ge, the matching problem again occurs: it is unknown
which features belong to the background or to the ob-
ject. The EM algorithm introduced in [3] is an esta-
blished technique which can be used for this type of
incomplete data estimation problems. A comprehensi-
ve discussion of the EM algorithm and its applications
can be found in [11], chapter 4.
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Fig. 2: A graph describing a statistical scene model
consisting of one object plus the background

5 Gaussian Distributed Features and
Orthographic Projection

The preceding sections provide a statistical frame-
work for modeling objects and observed scenes, which
meets the discussed requirements for model based ob-
ject recognition systems with respect to 2D and 3D
recognition tasks [5]. However, for a concrete realiza-
tion of learning and recognition procedures, the sta-
tistical distributions p(%oy|ax i, R,t) associated with
each state S; have to be worked out.

Empirical and statistical tests for point features
justify the assumption that each state, which corre-
sponds to the object in the statistical model, generates
normally distributed output symbols [13]. The proba-
bility for observing a background feature is supposed
to be uniform and independent of the pose parameters
of the object searched for.

Let the transform in the D,,—dimensional model
space and the subsequent projection into the D,—
dimensional image plane be characterized by an affine

mapping with the matrix R € IRP>*Pm and the trans-

lation vector ¢ € IR”°. From statistics it is known that
the affine transform of a multivariate Gaussian dis-
tributed random vector is again normally distributed

with the mean Ry +t and the covariance RXR” [1],
where pu and X are the mean vector and covariance
matrix of the original distribution.

5.1 Learning Stage

Due to the missing matching, the parameter set
By = {pxi, 11, Ti |l <1< ny}is estimated by the
application of the iterative EM algorithm. The trai-
ning data consist of N sample views of the object and
the associated affine transforms which are assumed
to be known, i.e. {¢0,°R, %]l < ¢ < N}. The p-th
view contains ¢m features, ¢O = {201, %04, ...,%0em }.
The estimation problem lies in the unsupervised com-
putation of the parameters referring to the D,,—
dimensional model space from the projected D,—
dimensional observations.

For that purpose, the Kullback—Leibler statistics
Q(By|By) (see [3]), where B, represents the re—
estimation of B, and its gradients concerning the
parameter set B, have to be determined. By apply-
ing the incomplete data estimation algorithm to our
problem domain, we get closed form re—estimation for-
mulas for the weights and means of the :—th mixture
density components using transformed observations

N ¢

2.

o=1k=1

N 1

Dre s = Pn,iP(gOk |an,ia QRa Qt)
ni T SN
Zgzl m

p(gok|BRagRa Qt) ’




-1

Zzpmp opla,,*R,°t) eRTeD-IeR
o=1k=1 (¢or | Bx 2 R,2t) 7

N m
Zzpnlp Ok‘|al€la R t) QRTQD;
— = on|B,€,9R Qt)

; (on - Qt) )

where ¢D,; ; = QRE,W'QRT. For the estimation of the
covariances no closed form solution exists. The gradi-
ent of the Kullback—Leibler statistics has to be used for
a local optimization technique within the EM iterati-

ons. For a clear representation, we introduce Qg’,wyk =
o~ -~ T A

(Cor — “Ript; — °t) (o — *Rji; — 1) *Dy; =

QRE‘,QyiQRTand get

N
R D _ Pn,z’P(gOk| Ay g, QRa Qt)
VEKJQ(BK’BIQ) _ZZ p(QOk|BR,QR, Qt)

This new class of estimation formulas for Gaussi-
an mixture density functions constitute a generaliza-
tion of the well-known estimation formulas for mix-
ture density functions described in [4]. But the deri-
ved algorithms are also applicable to lower dimensio-
nal observation sets, because the affine mapping des-
cribes transformations from the D,,—dimensional mo-
del space into the D,—dimensional image space, where
Dy > D,

The realization of the training stage is characteri-
zed by three steps: First, the number of mixture com-
ponents has to be determined. In a second stage, a
suitable initialization of the parameters has to be do-
ne, and finally, we have to update the initial estimates
by an iterative maximization of the Kullback—Leibler
statistics, until the re—estimation converges.

5.2 Localization

The density function for localization of an object
expects that the object’s class is known and we search
for the optimal position of this object. Since the
matching between mixture components and available
features is missing, the application of the EM algo-
rithm seems natural. But, the initialization of the EM
iterations is crucial for its success. Thus, it is general-
ly preferable to use global optimization techniques for
the computation of the pose parameters via

max p(°O|By, By, R, t),
Rt

because it 1s unlikely to get an initialization close
to the global maximum. For optimization procedures,
gradients of the logarithmic Gaussian density function
L(%op) = log N(%0y] Ry, +t, RE,QJRT) will be use-
ful. The gradients regarding the affine mapping given
by R and t are

V.L(%0;) = —Du;(%0r— Rp,;—t),
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and

Val(%0r) =Dy (St — Det) D RE 1+ Uik,
where the component of the i—row and j—th

column of U,y is defined by (Ugkir)i; =
(l"’n,l)j (D;; (on - Rl"’n,l - t))z .

In contrast to conventional pose estimation techni-
ques where a feature matching is needed. The search
space is determined by the degrees of freedom of the
affine mapping and does not enlarge with the increase
of observed features, For instance, under orthographic
projection from a 3D model space into a 2D image
plane the search space has five dimensions, that are
three rotation angles and the components of the two—
dimensional translation vector. Within the training
stage we succeeded in separating the search space for
several parameters by applying the EM algorithm. In
the localization phase we can force a decomposition
of the search space by breaking down the affine trans-
form in D, distinctive mappings into one—dimensional
sub—spaces. The associated densities for the projected,
one—dimensional feature sets can easily be computed
using a standard density transform. A D,—dimensional
scene feature results from a transform

Do

Z] 17Li¢ th
D

Z]:1 r2,iCj + 12

D, .
2 ;=17D,,j¢ +ip,
Each component of the feature vector is
(R)Z'C—I—ti , iE{l,Q,...,DO}

where (R); = (7i1,7,2,...7,p,,). The i-th com-
ponents of the observable feature vectors depend on-
ly on the components of (R); and ?;. The original
(Dm D, + Dy, )—dimensional search space falls into D,
parts of the dimension D,, + 1.

The covariance matrices of the projected, one—
dimensional features are real numbers and thus the
matrix inversion and the computation of the determi-
nant within the evaluation of the Gaussian densities
are unnecessary. The advantages of the suggested de-
composition of the affine mapping are the separation
of the search space and a more efficient computation
of the density functions.

Fig. 3 illustrates this idea in a practical situation.
Orthographic projection of two—dimensional point fea-
tures onto the z—axis is not affected by a translation
of the 3D object along the y—axis and by a rotation
around the z—axis.

5.3 Identification

The identification stage makes the decision which
object occurs in the image. The classification applies
the Bayesian decision rule, which decides for the object
class with the highest a posteriori probability.

_ p(QA)p(O|BHaB>\aRat)
K = argimnax4 max .
x | Rt p(0)

0; =




Fig. 3: Projection of corners to one coordinate axis; the
arrows indicate translations and 3D rotations which do
not affect the image of the projection.

Since we do not use invariant features, the classificati-
on step obviously implies the computation of the pose
parameters.

6 Experimental Results

In our experiments we apply the statistical ap-
proach introduced above to learning, localization, and
recognition of two— and three-dimensional objects
using grey-level images. The chosen features are 2D
point features. With each point we associate a state
in our mixture modeling producing normally distri-
buted 2D vectors. In all localization experiments we
apply the search space decomposition as introduced
in section 5.2. On the average, this separation entails
an acceleration by a factor of five for the computation
of the global maximum. The evaluation time of the
one—dimensional features’ density functions is 30 per-
cent less than for two—dimensional points. All times
refer to HP 735 workstations (99 MHz, 124 MIPS).
The point features were computed looking at the cur-
vature of the chain code representation of detected ed-
ges [9]. The time needed for segmentation is not taken
into account.

6.1 The Training Stage

During the off-line training stage, the parameters
of the mixture densities have to be estimated. If the
dimension of model and image spaces are equal, the
training can proceed without considering rotation and
translation; the sample views can be generated with
respect to different illumination conditions. If the mo-
del parameters of the model density have to be estima-
ted from projected data, for each learning view 2O the
knowledge of the rotation matrix ¢ R and the transla-
tion vector ¢t will be expected. For that purpose we
use a calibrated camera which is mounted on a ro-
bot’s hand. This device can be used for the generation
of training views with its pose parameters. For the
estimation of means, covariances, and weights, a pa-
rameter initialization of the density function for each
feature is required. The number of features and initial
estimates of means, covariance matrices, and weights
have to be established. For simple polyhedral objects
the method works, if we determine the number of fea-
tures using one view and add the occluded features by
hand. The mean vectors are initialized by the observa-
ble 2D point features, with the depth value set to zero.
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Fig. 4: The grey-level image of an industrial part
with homogeneous background, the segmentation re-
sult, and the visualization of the computed position

Fig. b: The grey—level image of the scene, the segmen-
tation, and the result of the localization

Empirically, 40-50 views are sufficient for learning an
object with 15 characteristic point features. Although
the convergence rate of the EM algorithm was expec-
ted to be considerably low (see [3]), the learning pro-
cess converged, on average, after 10-15 iterations. The
time needed for one iteration, using a C++ implemen-
tation of the learning formula for 3D mean vector esti-
mations from projected observations takes 98 seconds
with 50 training views. The memory requirements are
constant for each iteration.

6.2 2D Object Recognition using Grey—

level Images

Fig. 4 shows a grey-level image and the segmented
point features where the computation of the rotation
and translation is based on. The computed position is
visualized in the right image. The computation time is
13 seconds. The same object is localized in the scene of
Fig. 5 within 180 seconds. In this scene, partial occlu-
sion takes place. Nevertheless, the computed position
is correct.

For recognition experiments we took the parts
shown in Fig. 6. Within 10 examples (5 for each object,
homogeneous background) nine objects were correct-
ly classified. The computed position was correct in all
examples, and the classification took 30 seconds on
average.

6.3 3D Object Localization wusing 2D
Images

A much harder problem is the use of statistical mo-
del densities for pose estimations of three-dimensional
objects in segmented grey-level images. We restrict
our experiments to orthographic projection; the di-
mension of the pose space 1s five. Two simple polyhe-
dral objects are represented by a transformed mixture
densities with eight and twelve states. The computati-
on time for localization of the stump in the grey-level
image with homogeneous background shown in Fig. 7
was 86 seconds. The positioning of the polyhedral ob-



Fig. 6: Two 2D objects which cannot be transformed
into each other by applying rotations and translations
in the image plane

-

Fig. 7: Examples for grey—level images of 3D scenes
and the extracted point features used for localization

ject in the two object scene took 95 seconds. The re-
sults of Fig. 8 show that both the L-—piece and the
stump were correctly detected. For visualization pur-
poses of the computed pose parameters the 3D graphic
tool of MAPLE V is used. These examples demonstra-
te that the statistical modeling works for the 3D ca-
se as well. Partial occlusion and multiple detection of
features did not affect the localization process of the
examples.

7 Summary and Conclusions

We presented a statistical object recognition system
which includes an off-line training, a localization, and
a classification stage. The experiments prove that the
introduced mathematical framework is suitable for 2D
and 3D computer vision purposes. Even the computa-
tion of object models out of a set of training samples,
which include projections of the object, is possible. In
contrast to classical geometrical approaches, the expli-
cit solution of the correspondence problem is avoided.

Fig. 8: Illustration of the computed 3D positions
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It is part of the unsupervised parameter estimation
algorithm.

Further research should concentrate on suitable in-
itialization and more efficient parameter estimation
techniques. Furthermore, the method should be ma-
de applicable for features of higher complexity like li-
nes or polygons. The consideration of statistical de-
pendencies and the explicit modeling of self-occlusion
will also increase the robustness of the system. Pro-
bably, Markov models can be used for the embedding
of these dependencies. The partitioning of the search
space for pose estimation is fairly easy. Thus, a paral-
lelization of the localization process will improve the
recognition time.
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