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Statistical Learning, Localization, and Identi�cation of ObjectsJ. Hornegger and H. NiemannLehrstuhl f�ur Mustererkennung (Informatik 5)Universit�at Erlangen{N�urnbergMartensstr. 3, D{91058 Erlangen, GermanyAbstractThis work describes a statistical approach to dealwith learning and recognition problems in the �eld ofcomputer vision. An abstract theoretical framework isprovided, which is suitable for automatic model genera-tion from examples, identi�cation, and localization ofobjects. Both, the learning and localization stage areformalized as parameter estimation tasks. The stati-stical learning phase is unsupervised with respect tothe matching of model and scene features. The generalmathematical description yields algorithms which caneven treat parameter estimation problems from projec-ted data. The experiments show that this probabilisticapproach is suitable for solving 2D and 3D object reco-gnition problems using grey{level images. The methodcan also be applied to 3D image processing issues usingrange images, i.e. 3D input data.1 IntroductionMany object recognition systems are discussed inthe literature [7, 8]. The huge variety of approachesare occupied with the development and realization ofalgorithms for learning, classi�cation and localizationof three{dimensional objects from di�erent types ofoptical sensory data. Usually, speci�c paradigms arerestricted to 3D, 212D, or 2D data [7]. An unconstrai-ned application of these algorithms for arbitrary inputdata is, in general, not possible. Decision rules andmodel generation techniques often cannot be appliedto di�erent dimensions. Aside from these data depen-dent details, object recognition systems have to dealwith instabilities and should be robust with respect touncertainty, which is, for instance, caused by varyingillumination, occlusion, noise, or segmentation errors.They are also expected to provide accurate classi�-cation results. Naturally, Bayesian classi�ers consideruncertainties and ful�ll an optimality criterion refer-ring to misclassi�cations.This paper describes a general uniform statisticalframework for learning, localization, and classi�cati-on of 2D or 3D objects using di�erent optical datasources. The method enables even the automatic com-putation of object models from projections. However,instead of geometrical models, objects are representedby parameterized density functions of their features.Both, the learning and pose computation stage cor-respond to parameter estimation problems. The cal-culation of the involved parameters is either solved

by the Expectation Maximization (EM) algorithm [3]or direct maximum likelihood estimations. In additi-on to the statistical modeling, we present a techniquefor decomposing the search space for pose estimates,which is based on transformations of the model den-sity functions and the observations into several one{dimensional sub{spaces. A combinatorial explosion ofthe search space caused by an increasing number of ob-served scene features does not occur, since no explicitmatching between scene and model primitives is re-quired. The complexity of the pose estimation processis determined by the number of possible transformsfrom the model into the image space. The resultingimage recognition system realizes a Bayesian { i.e. anoptimal { classi�er.First, we briey discuss related work. The abstractexplanation of the mathematical framework is follo-wed by a concrete application: algorithms for learningand localization of objects using normally distributedpoint features under orthographic projection are ex-plicitly derived. The paper concludes with a summarydiscussion of the presented approach.2 Related WorkSince the beginning of image analysis, object mo-dels were used for recognition purposes. First, theywere coded implicitly as assumptions about featuresat certain locations; later on, the explicit structuralmodels were used [2]. Statistical methods for know-ledge acquisition and recognition of objects using non{parametric estimates are described in [10]. The refer-red work relates learning of 3D objects to the auto-matic computation of an aspect graph of 3D objects,and does not explicitly model the 3D structure in thesense that the 3D coordinates of an object are inclu-ded. The description of segmentation errors and fea-ture deviations in di�erent intensity images by Gaus-sian distributions is discussed in detail in [13]. Theparametric density function and the derived optimi-zation problems are, in general, used for 2D object re-cognition from grey{level images. The involved densi-ty functions are not automatically learned by trainingsamples; instead, the parameters are adjusted manu-ally. In [13] it is suggested to apply the technique oflinear combination of views [12] to extend the theoryfor 3D recognition purposes. The required matchingamong features of di�erent views has to be computed.Wells [13] uses the EM algorithm for pose estimation



objectives. One approach, where statistical learning isdone using samples of images, is the work of He andKundu [6]. They suggest the use of Hidden MarkovModels and implement a system which has the capabi-lity of learning two{dimensional objects from samplesof closed contours.3 Statistical Object RecognitionMost object recognition systems { especially for 3Dapplications { make use of a model based approach.Geometric models are rotated, translated, and �nallyprojected from the model space into the image plane.Distance measures judge the localization and classi-�cation results. Various approaches can be comparedand classi�ed by the methods of model generation, di-stance computation, and decision making.In the proposed statistical approach, k di�erent ob-jects are represented by parameterized density func-tions. Types and parameters of these functions mayvary between objects and applications. In general, astatistical object recognition system should providethe following three stages:1. training stage, where the parameters B�, 1 � � �k, of the model density functions have to be esti-mated from a sample set f%Oj1 � % � Ng ofviews,2. localization stage, where the pose, i.e. the rotationR and translation t, is computed, and3. identi�cation stage, where the class number � ofthe observed object is determined.Let cl be an Dm{dimensional feature and C =fc1; c2; : : : ; cn�g be a set of features in the modelspace. In the chosen statistical framework features areconsidered as random variables and p(CjB�) repres-ents the density function of an object of class 
� cha-racterized by the parameters B�. In the experimentsdescribed in section 6 we use a 2D model space in sec-tion 6.2, a 3D model space in section 6.3, and pointfeatures in both cases. The cl is a model vertex, andC the set of features characterizing an object. Theposition of an object can change in the model space.This has also to be represented within the model den-sity. Thus, both the rotation and translation of theobject in the model space results in additional para-meters of the model density functions. If R denotesthe rotation matrix and t is the translation vector,we get the model density p(CjB�;R; t) by the com-putation of a density transform. If features invariantto rotation and translation are used, the applicationof a density transform with respect to a changing po-sition will not a�ect the density function, i.e. in thiscase we have p(CjB�;R; t) = p(CjB�). For three{dimensional object recognition problems using two{dimensional views we have additionally the projectionfrom model space into the image plane determined bythe underlying camera. Of course, this requires infor-mation about the camera parameters. The inuence ofvarious types of projections can be integrated withinthe model density using once more a density trans-form. Since the range information is lost in the cour-se of projection, a marginal density has to be com-

puted. Consequently, the set of observable image fea-tures %O = f%o1; %o2; : : : ; %o%mg contains vectors ofnot necessarily lower dimension Do than the modelspace. The image features used in the experiments ofsection 6 are 2D point features.The inuence of transformations and projections onmodel densities is straight forward. Now, a fundamen-tal request is, which density function proves suitablefor modeling objects. Due to occlusion, some featu-res will not occur in the segmentation result causing%m < n�; due to segmentation errors and features be-longing to the background, %m > n� may occur. Soin general we only know n� 6= %m. Additionally, foran observed scene, the correspondence of image andmodel primitives is not known. This matching mustalso be handled by the proposed statistical model. Fur-thermore, one should take into consideration that forpurposes of image analysis the statistical modeling ofbackground features and multiple object scenes shouldbe possible.4 Statistical Object and Scene ModelsThe least mentioned requirements for a statisticaldensity function of an object are versatile. In thiswork we suggest the use of transformed mixture den-sity functions for modeling objects. An object of class
� is associated with a set of statistical processesfS1; S2; : : : ; Sn�g. Each process, characterized by astate Sl, generates zero, one, or more output sym-bols %ok and the complete set of n� statistical pro-cesses produces the %m observable features of an ob-ject. For instance, an observed point feature %ok of the%{th view %O of an object is assumed to be an out-put symbol of exactly one out of n� stochastic proces-ses. Within this context, p(%okja�;l;R; t) describes theemission density of the state Sl. Since for an observedimage feature %ok it is a priori unknown which statehas emitted the primitive, each Sl is weighted by ana priori probability p�;l, which is indeed the discreteprobability for the l{th state to emit a symbol. Con-sequently, the weights have to satisfy the conditionPn�l=1 p�;l = 1. The probability for observing a singlefeature %ok is given by the marginal density over allstatesp(%okjB�;R; t) = n�Xl=1 p�;l p(%okja�;l;R; t);where obviously the set of parameters is B� =fp�;l;a�;lj1 � l � n�g. Under the idealized assumpti-on that all %m observed features out of a set of obser-ved primitives %O are pairwise independent, the pro-bability for observing a set of image features is com-puted by the product:p(%OjB�;R; t) = %mYk=1p(%okjB�;R; t)= %mYk=1 n�Xl=1 p�;l p(%okja�;l;R; t):The marginal density over all states provides theprobability that the given set of stochastic processes915



S4p�;4 R; tp�;2 p�;3S2 S3p�;1S1Fig. 1: A graph describing a statistical object model;for k di�erent objects there are k such modelshas produced the observable feature. Thus, the stati-stical model accomplishes the requirements of a proba-bilistic description of the missing alignment betweenscene features and model components. Fig. 1 showsa set of four statistical processes which can produceoutput symbols, i.e. observable features of the imagespace; the arc symbolizes that the generation of oneoutput symbol is repeated for all %m observable imagefeatures. Occlusion is represented as far as not everystate is forced to produce output symbols. But it isalso possible that one state generates more than oneprimitive. The advantage of this kind of modeling isthat the observed features need not have any orderingand that the cardinality %m of the set %O can be ar-bitrary.Background scene features can be included into theprobabilistic representation in a modular manner; onesimply expands the mixture density model with anadditional state SH for the background. Fig. 2 visua-lizes a set of stochastic processes. Herein, the outputprobability of state SH , which is weighted by pH , isindependent of the pose parameters R and t, becauseit models background features, which in fact do notdepend on object transforms. The estimation of thediscrete probability 1 � pH can either be done by ap-plying the EM algorithm or by the fraction n�=%m ofthe number of model states and observed features.The probability for observing an object in a sceneincluding background features isp(%OjBH ;B�;R; t) = %mYk=1�pHp(%okjaH)+(1� pH) n�Xl=1 p�;l p(%okja�;l;R; t)�;where BH = fpH ;aHg is the set of parameters cha-racterizing background features. The computation ofthe probability measure for pose parameters of an ob-served scene is bounded by O(%mn�). In contrast,classical approaches, which consider all possible as-signments between model and scene primitives, willtake O(%mn�).The training stage is unsupervised in the sense thatno correspondence between scene features and mixturedensity components is required. In the localization sta-ge, the matching problem again occurs: it is unknownwhich features belong to the background or to the ob-ject. The EM algorithm introduced in [3] is an esta-blished technique which can be used for this type ofincomplete data estimation problems. A comprehensi-ve discussion of the EM algorithm and its applicationscan be found in [11], chapter 4.

S4S2 S3S1 R; tp�;4p�;3p�;2p�;1 1� pHSHpHFig. 2: A graph describing a statistical scene modelconsisting of one object plus the background5 Gaussian Distributed Features andOrthographic ProjectionThe preceding sections provide a statistical frame-work for modeling objects and observed scenes, whichmeets the discussed requirements for model based ob-ject recognition systems with respect to 2D and 3Drecognition tasks [5]. However, for a concrete realiza-tion of learning and recognition procedures, the sta-tistical distributions p(%okja�;l;R; t) associated witheach state Sl have to be worked out.Empirical and statistical tests for point featuresjustify the assumption that each state, which corre-sponds to the object in the statistical model, generatesnormally distributed output symbols [13]. The proba-bility for observing a background feature is supposedto be uniform and independent of the pose parametersof the object searched for.Let the transform in the Dm{dimensional modelspace and the subsequent projection into the Do{dimensional image plane be characterized by an a�nemapping with the matrixR 2 IRDo�Dm and the trans-lation vector t 2 IRDo . From statistics it is known thatthe a�ne transform of a multivariate Gaussian dis-tributed random vector is again normally distributedwith the mean R�+ t and the covariance R�RT [1],where � and � are the mean vector and covariancematrix of the original distribution.5.1 Learning StageDue to the missing matching, the parameter setB� = fp�;l;��;l;��;lj1 � l � n�g is estimated by theapplication of the iterative EM algorithm. The trai-ning data consist of N sample views of the object andthe associated a�ne transforms which are assumedto be known, i.e. f%O; %R; %tj1 � % � Ng. The %{thview contains %m features, %O = f%o1; %o2; : : : ; %o%mg.The estimation problem lies in the unsupervised com-putation of the parameters referring to the Dm{dimensional model space from the projected Do{dimensional observations.For that purpose, the Kullback{Leibler statisticsQ( bB�jB�) (see [3]), where bB� represents the re{estimation of B�, and its gradients concerning theparameter set bB� have to be determined. By apply-ing the incomplete data estimation algorithm to ourproblem domain, we get closed form re{estimation for-mulas for the weights and means of the i{th mixturedensity components using transformed observationsbp�;i = 1PN%=1 %m NX%=1 %mXk=1 p�;ip(%okja�;i; %R; %t)p(%okjB�; %R; %t) ;916



b��;i= NX%=1 %mXk=1p�;ip(%okja�;i;%R;%t)p(%ok jB�;%R;%t) %RT %D�1�;i%R!�1NX%=1 %mXk=1p�;ip(%okja�;i; %R; %t)p(%okjB�; %R; %t) %RT %D�1�;i (%ok � %t) ;where %D�;i = %R��;i%RT . For the estimation of thecovariances no closed form solution exists. The gradi-ent of the Kullback{Leibler statistics has to be used fora local optimization technique within the EM iterati-ons. For a clear representation, we introduce %bS�;i;k =�%ok � %Rb��;i � %t� �%ok � %Rb��;i � %t�T ;% bD�;i =%R b��;i%RT and getr b��;iQ(B�; bB�) = NX%=1 %mXk=1p�;ip(%okja�;i; %R; %t)p(%ok jB�; %R; %t)%RT % bD�1�;i �% bS�;i;k � % bD�;i� % bD�1�;i%R :This new class of estimation formulas for Gaussi-an mixture density functions constitute a generaliza-tion of the well{known estimation formulas for mix-ture density functions described in [4]. But the deri-ved algorithms are also applicable to lower dimensio-nal observation sets, because the a�ne mapping des-cribes transformations from the Dm{dimensional mo-del space into the Do{dimensional image space, whereDm � Do.The realization of the training stage is characteri-zed by three steps: First, the number of mixture com-ponents has to be determined. In a second stage, asuitable initialization of the parameters has to be do-ne, and �nally, we have to update the initial estimatesby an iterative maximization of the Kullback{Leiblerstatistics, until the re{estimation converges.5.2 LocalizationThe density function for localization of an objectexpects that the object's class is known and we searchfor the optimal position of this object. Since thematching between mixture components and availablefeatures is missing, the application of the EM algo-rithm seems natural. But, the initialization of the EMiterations is crucial for its success. Thus, it is general-ly preferable to use global optimization techniques forthe computation of the pose parameters viamaxR; t p(%OjBH ;B�;R; t);because it is unlikely to get an initialization closeto the global maximum. For optimization procedures,gradients of the logarithmic Gaussian density functionL(%ok) = log N (%okjR��;l+t;R��;lRT ) will be use-ful. The gradients regarding the a�ne mapping givenby R and t arertL(%ok) = �D�;l �%ok �R��;l � t� ;

andrRL(%ok)=D�1�;l (S�;l;k �D�;l)D�1�;lR��;l + U�;l;k;where the component of the i{row and j{thcolumn of U�;l;k is de�ned by (U�;l;k)i;j =(��;l)j �D�1�;l �%ok �R��;l � t��i :In contrast to conventional pose estimation techni-ques where a feature matching is needed. The searchspace is determined by the degrees of freedom of thea�ne mapping and does not enlarge with the increaseof observed features, For instance, under orthographicprojection from a 3D model space into a 2D imageplane the search space has �ve dimensions, that arethree rotation angles and the components of the two{dimensional translation vector. Within the trainingstage we succeeded in separating the search space forseveral parameters by applying the EM algorithm. Inthe localization phase we can force a decompositionof the search space by breaking down the a�ne trans-form in Do distinctive mappings into one{dimensionalsub{spaces. The associated densities for the projected,one{dimensional feature sets can easily be computedusing a standard density transform. ADo{dimensionalscene feature results from a transformo = Rc + t = 0BBBB@ PDmj=1 r1;jcj + t1PDmj=1 r2;jcj + t2...PDmj=1 rDo;jcj + tDo 1CCCCA :Each component of the feature vector isoi = (R)i c + ti ; i 2 f1; 2; : : :; Dogwhere (R)i = (ri;1; ri;2; : : : ri;Dm). The i{th com-ponents of the observable feature vectors depend on-ly on the components of (R)i and ti. The original(DmDo +Dm){dimensional search space falls into Doparts of the dimension Dm + 1.The covariance matrices of the projected, one{dimensional features are real numbers and thus thematrix inversion and the computation of the determi-nant within the evaluation of the Gaussian densitiesare unnecessary. The advantages of the suggested de-composition of the a�ne mapping are the separationof the search space and a more e�cient computationof the density functions.Fig. 3 illustrates this idea in a practical situation.Orthographic projection of two{dimensional point fea-tures onto the x{axis is not a�ected by a translationof the 3D object along the y{axis and by a rotationaround the x{axis.5.3 Identi�cationThe identi�cation stage makes the decision whichobject occurs in the image. The classi�cation appliesthe Bayesian decision rule, which decides for the objectclass with the highest a posteriori probability.�= argmax� �maxR; t p(
�)p(OjBH ;B�;R; t)p(O) � :917
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Fig. 3: Projection of corners to one coordinate axis; thearrows indicate translations and 3D rotations which donot a�ect the image of the projection.Since we do not use invariant features, the classi�cati-on step obviously implies the computation of the poseparameters.6 Experimental ResultsIn our experiments we apply the statistical ap-proach introduced above to learning, localization, andrecognition of two{ and three{dimensional objectsusing grey{level images. The chosen features are 2Dpoint features. With each point we associate a statein our mixture modeling producing normally distri-buted 2D vectors. In all localization experiments weapply the search space decomposition as introducedin section 5.2. On the average, this separation entailsan acceleration by a factor of �ve for the computationof the global maximum. The evaluation time of theone{dimensional features' density functions is 30 per-cent less than for two{dimensional points. All timesrefer to HP 735 workstations (99 MHz, 124 MIPS).The point features were computed looking at the cur-vature of the chain code representation of detected ed-ges [9]. The time needed for segmentation is not takeninto account.6.1 The Training StageDuring the o�{line training stage, the parametersof the mixture densities have to be estimated. If thedimension of model and image spaces are equal, thetraining can proceed without considering rotation andtranslation; the sample views can be generated withrespect to di�erent illumination conditions. If the mo-del parameters of the model density have to be estima-ted from projected data, for each learning view %O theknowledge of the rotation matrix %R and the transla-tion vector %t will be expected. For that purpose weuse a calibrated camera which is mounted on a ro-bot's hand. This device can be used for the generationof training views with its pose parameters. For theestimation of means, covariances, and weights, a pa-rameter initialization of the density function for eachfeature is required. The number of features and initialestimates of means, covariance matrices, and weightshave to be established. For simple polyhedral objectsthe method works, if we determine the number of fea-tures using one view and add the occluded features byhand. The mean vectors are initialized by the observa-ble 2D point features, with the depth value set to zero.

Fig. 4: The grey{level image of an industrial partwith homogeneous background, the segmentation re-sult, and the visualization of the computed positionFig. 5: The grey{level image of the scene, the segmen-tation, and the result of the localizationEmpirically, 40{50 views are su�cient for learning anobject with 15 characteristic point features. Althoughthe convergence rate of the EM algorithm was expec-ted to be considerably low (see [3]), the learning pro-cess converged, on average, after 10{15 iterations. Thetime needed for one iteration, using a C++ implemen-tation of the learning formula for 3D mean vector esti-mations from projected observations takes 98 secondswith 50 training views. The memory requirements areconstant for each iteration.6.2 2D Object Recognition using Grey{level ImagesFig. 4 shows a grey{level image and the segmentedpoint features where the computation of the rotationand translation is based on. The computed position isvisualized in the right image. The computation time is13 seconds. The same object is localized in the scene ofFig. 5 within 180 seconds. In this scene, partial occlu-sion takes place. Nevertheless, the computed positionis correct.For recognition experiments we took the partsshown in Fig. 6. Within 10 examples (5 for each object,homogeneous background) nine objects were correct-ly classi�ed. The computed position was correct in allexamples, and the classi�cation took 30 seconds onaverage.6.3 3D Object Localization using 2DImagesA much harder problem is the use of statistical mo-del densities for pose estimations of three-dimensionalobjects in segmented grey{level images. We restrictour experiments to orthographic projection; the di-mension of the pose space is �ve. Two simple polyhe-dral objects are represented by a transformed mixturedensities with eight and twelve states. The computati-on time for localization of the stump in the grey{levelimage with homogeneous background shown in Fig. 7was 86 seconds. The positioning of the polyhedral ob-918



Fig. 6: Two 2D objects which cannot be transformedinto each other by applying rotations and translationsin the image plane
Fig. 7: Examples for grey{level images of 3D scenesand the extracted point features used for localizationject in the two object scene took 95 seconds. The re-sults of Fig. 8 show that both the L{piece and thestump were correctly detected. For visualization pur-poses of the computed pose parameters the 3D graphictool of MAPLE V is used. These examples demonstra-te that the statistical modeling works for the 3D ca-se as well. Partial occlusion and multiple detection offeatures did not a�ect the localization process of theexamples.7 Summary and ConclusionsWe presented a statistical object recognition systemwhich includes an o�{line training, a localization, anda classi�cation stage. The experiments prove that theintroduced mathematical framework is suitable for 2Dand 3D computer vision purposes. Even the computa-tion of object models out of a set of training samples,which include projections of the object, is possible. Incontrast to classical geometrical approaches, the expli-cit solution of the correspondence problem is avoided.Fig. 8: Illustration of the computed 3D positions
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