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ABSTRACT Laryngealizations are irregular voiced portions of speech, which can have morpho-
syntactic functions and can disturb the automatic computation of F0. Two methods for the
automatic detection of laryngealizations are described in this paper: With a Gaussian classifier
using spectral and cepstral features a recognition rate of 80% (false alarm rate of 8%) could
be achieved. As an alternative a “non-standard” method has been developed: an artificial neural
network (ANN) was used for non-linear inverse filtering of speech signals. The inversely filtered
signal was directly used as input for another ANN, which was trained to detect laryngealizations.
In preliminary experiments we obtained a recognition rate of 65% (12% false alarms).

1.1 Introduction

The term “laryngealization” is used by us as a cover term for irregular, voiced stretches of
speech, often accompanied by an extremely low pitch, that may occur inside one phone but
can extend across phone boundaries as well. Other terms found in the literature are: vocal
fry, creaky voice, pulse register, creak, etc. Usually laryngealizations do not disturb pitch
perception but are perceived as suprasegmental irritations modulated onto the pitch curve.
These special voice source phenomena occur frequently at distinctpositions, e.g. at morpheme
boundaries as in “she eats” vs. “sheets”. They have not been investigated very often, but
have mostly been considered to be an irritating phenomenon that has to be discarded.

For pitch determination algorithms, laryngealizations cause severe errors [4, p. 49], and
should therefore be localized and treated in a special way. In the past, feature extraction for
speech recognition concentrated on articulatory information (mel-cepstral coefficients etc.),
whereas voice source information (laryngeal information) has been almost totally neglected.
Recently, the functionality of laryngealizations as, e.g. boundary markers has been noticed
[5] [6]. In our material, e.g. 58% of all the laryngealizations were found at the beginning and
18% at the end of a word, i.e. 3

�
4 of all laryngealizations were located at word boundaries.

Knowledge about the location of laryngealizations could thus be used to improve pitch
determination as well as speech recognition and parsing.
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1.2 Database and Feature Extraction
For our experiments a database of

1329 sentences from 4 speakers (3 fe-
male, 1 male) was used (30 minutes of
speech in total). For more details see [2].
For the whole database the laryngealized
frames (12.8 msec each) were labeled by
two phoneticians [1]. 4.8% of the speech
in total (7.4% of the voiced speech) is
laryngealized (1191 laryngealized por-
tions of speech), which is comparable to
other databases [6].
In the time domain laryngealizations are
characterized by peculiarities that often
show up clearly in the signal (cf. figure
1.1) as e.g. irregular periodicity, strong
variations of the amplitude, special form
of the damped wave, or very long pitch
periods [5] [1]. In the spectrum it has

FIGURE 1.1: Speech signal (top) with laryngealization
(frames 32 to 38), the correspondinglaryngogramm (mid-
dle) and the glottis signal automatically computed by an
artificial neural network (bottom).

been claimed that laryngealizations can be described as having a characteristic spectral tilt
[7]. Therefore we investigated the use of frequency and time domain features for the detection
of laryngealizations.

1.2.1 APPROACH I (FREQUENCY FEATURES):

In preliminary examinations we noticed that the spectra and the cepstra of laryngealized
phones and of their ‘normally’ phonated counterparts can differ in several ways. E.g. in figure
1.2 (bottom) the cepstrally smoothed spectrum of the non-laryngealized phone (right) shows
a more regular harmonic structure than the spectrum of the laryngealized phone (left). We
derived a set of potential features from the spectrum, the cepstrally smoothed spectrum and
the cepstrum (for more detail cf. [8]). In a first step, the ability of the different features to
discriminate between laryngealized and non-laryngealized phones was tested using Gaussian
classifiers. Best results were achieved with 5 features: (1) the sum of the vertical distances
of neighboring extrema and the average vertical distance of these extrema in the cepstrally
smoothed spectrum below 1700 Hz, (2) the location and height of the absolute maximum in
the cepstrum, (3) the quotientof the largest and the second largest maximum in the cepstrum of
the center-clipped signal (to eliminate the influence of the vocal tract). In a second step, these
5 features were combined with normal mel-cepstral coefficients to train a phone component
recognition system. Normally this system distinguishes between 40 different phones using
11 mel-cepstral coefficients per frame, a Gaussian classifier, automatic clustering into 5
clusters per phone and a full covariance matrix. Here we describe experiments with learn=test
(speaker-dependent and multi-speaker)3.

3Experiments with learn �� test (speaker-independent, leave-one-out). showed the same tendencies.
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For each phone for which more
than 100 laryngealized frames oc-
cur in our database (11 phones
in total, in order of frequency:
[a], [3], [aU], [e], [o], [I], [6],
[U], [@], [n], [O]) a new addi-
tional phone label was introduced.
By using only the 11 cepstral
coefficients a recognition rate of
25% for the now 51 phones was
achieved. By adding the 5 laryn-
geal features to the feature vec-
tor the recognition rate went up
to 33%. Note, that the training
database is very small, but we
wanted to find out how well we
can detect laryngealizations; thus
the improvement is more impor-
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FIGURE 1.2: Speech signal of a laryngealized (left) and a non-
laryngealized (right) phone[aI] (top) and the cepstrally smoothed
spectra (bottom). The spectra are computed over the analysis
windows (38.4 msec) marked by the tics on the x-axis. Significant
maxima are marked by arrows. On the left “war ein” [v6aIn] and
on the right “Steine” [StaIn@] was uttered.

tant than the actual recognition rate. A mapping of the 40 non-laryngealized phones into one
class, and the other 11 laryngealized phones into another class, yielded a recognition rate for
laryngealizations of 80% with a false alarm rate of 8%. For leave-one-out (using 3 speakers
for training, the other for testing) we obtained a recognition rate of 67% with a false alarm
rate of 7%. Other experiments showed that this decrease in performance is due to a strong
speaker-dependence of laryngealizations. Just using the 11 cepstral coefficients, 25% laryn-
gealizations are found with a false alarm rate of only 1% showing that the cepstral coefficients
already contain some information about laryngealizations.

1.2.2 APPROACH II (TIME DOMAIN FEATURES):

Since laryngealizations are voice source phenomena they should be easily detectable in the
voice source signal. Up to now algorithms for transforming the speech signal into the source
signal have mostly been based on inverse filtering using LPC. We achieved best results with a
new inverse filtering technique using artificial neural networks (ANNs). We trained a multi-
layer perceptron using a database of speech and voice source signals4 recorded in parallel.
The ANN is able to map speech signals into source signals (cf. bottom of figure 1.1) quite
accurately [3]. At the moment we use two methods for classifying the output of such an ANN
into the three classes unvoiced, non-laryngealized voiced, and laryngealized voiced frames.
The first one computes features from the ANN output signal describing the regularity of the
signal structure. We cannot yet report any results for this method. The second method uses
the sample values of the ANN filter output as input for another ANN (multi-layer perceptron)
which is trained to discriminate between the three classes (one output node per class). Up to
now best results were achieved with an ANN with 2 hidden layers with 60 and 20 nodes. Input
to the ANN was a 38.4 msec window of the (ANN) inversely filtered speech signal, which

4Voice source signals (figure 1.1) were measured with a laryngograph .
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itself is sampled at 2000 Hz thus resulting in 75 input nodes. The network was trained using
the Quickprop algorithm. 65% of the laryngealizations were recognized (12% false alarms).

1.3 Concluding Remarks

In [1] other possible features in the time domain are described. In the near future, we will
use these features as well and try to optimize our set of features using e.g. linear discriminant
analysis for the selection of features. In addition, a combination of time and frequency domain
features will be used. Classifying laryngealizations with ANNs yielded a promising result,
and we believe that there is a lot of room for improvement. Comparing the two approaches,
one has to take into account that the classifier in approach I has additional information: the
cepstral coefficients contain already some information since 25% laryngealizations are found
only using them; furthermore, the cepstral coefficients reduce the confusion of voiceless and
voiced frames.

In the future we will try to improve word recognition by the inclusion of laryngealized
phone classes. It remains to be proven that this information is not already contained in models
incorporating context across word boundaries and in mixture densities.
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