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Abstract
We first describe EVAR, a state—of-the—art speech understanding and dialog system which application
domain is train time table information retrieval. The system — as others — is devided into two main

components: a speech recognizer based on hidden Markov models (a statistical approach) and a knowledge-
based linguistic component developed in a semantic network environment. When switching to a new domain
the knowledge—base would have to be changed manually, which means a great effort. Thus, we favor for
a statistical approach for linguistic analysis. This would only mean retraining the models on annotated
corpora from the new domain. A promising approach are semantic classification trees. Since the speech
recognizer already relies on statistical models only (part of) its parameters have to be retrained when
switching to a new domain.

1 Introduction

Automatic speech recognition (ASR) and automatic speech understanding (ASU) are difficult tasks even for
read speech. In ASR one has to deal with acoustic invariances across speakers, coarticulation and sluring. Fur-
thermore, noise, channel characteristica, and the absence of word boundaries in the signal cause problems. In
ASU the structure underlying the surface of the word sequence has to be found. This can be done with formal
grammars. However, for natural language context—free grammars are not sufficient. Based on this structure
underlying the surface, the word sequence has to be interpreted in the specific application domain.

Moreover, in any realistic application, a speech recognition module integrated into a voice dialog system has
to cope with the phenomena of spontaneously produced speech. Typical phenomena are corrections, repetitions,
and false starts; more generally, the degree of grammaticality is expected to be lower for conversational speech
than for written texts [11]. Furthermore, we must be prepared to encounter nonverbal speech productions like
coughs, lip smacks, and breath noise as well as different kinds of hesitations; words might occur which are
outside of the recognition vocabulary. Finally, the pronunciation of spontaneous speech tends to be less careful
compared to read speech.

Thus, up to now all known prototypical ASR and ASU systems are limited to a specific application domain.
This allows to keep the recognition vocabulary fixed and small, and it allows the use of a restricted linguisitic
model. Furthermore, usually the ability to deal with spontaneous speech phenomena is very limited.

In this paper, we first (Section 2) describe the speech understanding and dialog system EVAR, which is a
system for train time table inquiries. In Section 3 we give an overview over the problems which occur when
switching to a new domain, and we show how these might be overcome in the future.

2 The Speech Understanding and Dialog System EVAR

2.1 Overview

The speech understanding and dialog system EVAR is an experimental automatic travel information system
in the domain of German InterCity train time table inquiries. Figure 1 shows the structure of EVAR. The two
main components are the linguistic analysis and the acoustic processing.

Input to the system is continuous German speech, which is recorded with a DeskLab from Gradient directly
connected to the work station where the system is running. No other special hardware is used. In the current
version, output of the speech recognition component is the best matching word sequence, but word hypotheses
lattices including alternative word hypotheses can be used as well (cf. Section 2.2 and [12]). A knowledge—based
approach is used for the linguistic analysis (cf. Section 2.3 and [6]). Tts goal is the interpretation of the word
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Figure 1: The speech recognition and dialog system EVAR.

sequence computed by the speech recognizer with respect to all the parameters necessary for a database request.
This means that not all of the word sequence has to be analyzed. If information is missed a clarification dialog
is conducted. Clarifying questions and system answers are given via speech synthesis.

The system uses HaFas, the official database used by the German railway company. This is very important,
since the system is connected to the public telephone network in order to test it with naive users. These tests
are used to improve the linguistic analysis as well as to acquire more training data for the speech recognizer.

2.2 Recognition of Spontaneous Speech

During feature extraction, a 24—dimensional vector, consisting of the short time log energy, 11 mel-frequency
cepstral coefficients as well as its temporal derivatives is computed every 10 msec. In order to cope with the
time—varying channel characteristics of different telephone lines, some feature normalization is performed.

The ultimate goal of a statistical speech decoder is to select from all possible word sequences w that sentence
hypothesis w* which maximizes the a posteriori probability P(w|X) or, equivalently, the joint probability
P(w, X) = P(X|w)- P(w) of w and the sequence of acoustic features X . The conditional probability function
P(X |w) is referred to as the acoustic model of the decoder; estimates of these quantities are provided in our
system by hidden Markov models (HMMs). The a priori sentence probability P(w) is referred to as the language
model of the decoder. The language model is a stochastic linguistic model which represents only the surface
structure of sentences. We approximate P(w) by a product of smoothed conditional n—gram probabilities
(called polygrams): P(w) = P(wy...wy) = P(w) - [V, P(wn|wr .. .wn_1)

The search space of a Viterbi speech decoder grows exponentially with the order n of the language model.
Thus, we adopted a three-stage recognizer architecture (Figure 2). First, a fast forward Viterbi search trans-
forms the feature vector representation of the speech signal into a word lattice using the acoustic models
(HMMs) and a bigram language model. This lattice is searched backward by an A*-algorithm for an ordered
list of the N best-scoring sentence hypotheses. Out of these the best word sequence is determined in combining
the probabilities of a higher—order language model (polygram) with the ones of the acoustic model.
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Figure 2: A three—stage architecture for continuous speech recognition.

The acoustic scores rely on HMM for polyphones, which are context—dependent phone models of arbitrary
length. The optimal phonetic modelling unit for speech recognition should be small enough to allow robust
parameter estimation from a speech database. On the other hand it should be large enough to capture coar-
ticulatory effects sufficiently. Polyphones provide an extremely flexible means for subword unit definition with
respect to coarticulation and to portability onto new domains. The optimal set of polyphone units is aquired
automatically (3515 different units in the ERBA task, i.e. more than two million statistical parameters).

The statistical parameters of the recognizer were trained on 10100 inquiries read by 100 speakers (14 hours
of speech). On speech data from the same domain but from 10 new speakers a word accuracy (WA) of 89.3%
and a sentence accuracy (SA) of 59.0% was achieved (cf. column ERBA in Table 1; for the DIPHON results
see Section 3.1. For comparison, on real spontaneous speech data obtained from face—to—face dialogs in the
appointment scheduling domain of the German VERBMOBIL project a word accuracy of only 45.5% could be
achieved (see column VERBMOBIL in Table 1). The training data consisted of the ERBA and the DIPHON
data and the VERBMOBIL data not used for testing (alltogether 40 hours of speech). In both domains the
vocabulary used for testing consisted of about 2200 words.

2.3 Interpretation of Utterances

For the representation of the knowledge the semantic network system ERNEST is used (cf. [8]). All knowledge
needed for the speech understanding process and for the dialog is embedded within a single semantic network
using the same representation language. Thus, it is easy to propagate restrictions from all levels to support
the recognition process. Nevertheless the knowledge base is easy to extend and to modify because of its
modularization into levels of abstraction. These levels are connected with concrete (con) links. Within a level
of abstraction concepts are connected using pari-of and specialization (spec) links. A concept refers to a term
or a object. Tt is defined by attributes and relations. The following modules are integrated (see Figure 1):

The word hypotheses module builds up the interface between speech recognition and linguistic analysis.

The syntactic module represents special dialog constructions, e.g. “can you tell me”, and constituents
e.g. the structure of prepositional noun groups (PNG) or time expressions. In German it is characteristic for
spontaneous speech that the order of the constituents can be rather free, which is taken into account in the
system.

In the semantic module, verb and noun frames with their deep cases according to the deep case theory are
represented. According to these, the syntactic constituents are interpreted independently from the domain,
e.g. time expressions like “a quater to eight” or “the day after tomorrow early in the morning” are mapped to
a specific date and time (interval).

The pragmatic module represents task—specific knowledge, i.e. a description of terms like “place of arrival”
(see Figure 3) or “to go” (by train). With these the parameters for the database request are extracted. Also
for prediction purposes the pragmatic knowledge is useful, e.g. if a city name is interpreted as a goal on the
semantic level (S.GOAL) and as place of arrival on the pragmatic level then it has to be preceded by the
preposition “nach”.

The dialog module represents all expected sequences of dialog acts. These have been manually derived from
a set of human—human dialogs out of the domain of train table inquiry. The dialog memory keeps track of the
dialog history, since a user utterance has not to be interpreted in the dialog context, e.g. to resolve anaphoric
references and to focus the analysis on the expected answer.

The prosody module determines sentence mood, accentuated words and phrase boundaries on the basis
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Figure 3: Model of the term “place of arrival” in the semantic network. The concepts of the pragmatic,
semantic, syntactic levels are indicated by the prefixes P, S, and SY respectively.

of changes in pitch, duration, and intensity. Currently only sentence mood is used in the linguistic analysis.
The user has the opportunity to repeat time—of-day expressions given in the system answer. In these elliptic
repetitions only the pitch contour determines the sentence mood, e.g. if the user uttered a question (which
means “please confirm, if T understood correctly”) [2].

For the control of the analysis process, ERNEST provides a problem—independent procedural semantics of
the network language, which is flexible so that the search can alternate between bottom—up (interpretation)
and top—down (prediction) mode. The A*—algorithm in combination with problem—dependent judgement vec-
tors 1s the basis of this control. Alternative intermediate interpretations are considered simultanously. In each
analysis step the best alternative is expanded. For determining the “best” alternative, the scores computed
by the speech recognizer are combined with the linguistic judgements. The ultimate goal of the analysis is the
instantiation of a sequence of dialog—level concepts until all the parameters for a database request are known. A
concept can be instantiated when one out of a collection of predefined subsets of concepts could be instantiated
to which it is connected via concrete or part—of links.

3 Towards Domain Independency

3.1 Speech Recognition

The results in Table 1 are given for a speech database read by 10 speakers from the train time table information
retrieval domain. We trained two speech recognizers, one on the ERBA database from the same domain (14
hours of read speech) and the other on the DIPHON database (20 hours of read speech) from a different domain.
When switching to a new domain the recognition performance of word recognizers drops significantly when no
language model is available (see column DIPHON). This is due to the fact that the recognition erformance relies
very much on representative context dependent phone models; their occurence of is to a great deal domain or
— to be more specific — vocabulary dependent. Using a domain dependent bigram or even polygram language
model increases the recogntion rates considerably and moreover there is not much difference anymore between
the results in the two columns DIPHON and ERBA. Thus, for speech recognition it seems to be sufficient to
train a statistical language model on the new domain which needs only little effort. There exist also approaches
where language models adapt to new domains starting from a general language model, e.g. the cache-based
language model [3].

For state—of-the—art speech recognizers a pronunciation lexicon is required for all the words to be recognized.
Usually these lexica are built manually. How to deal with unknown words is still an open question and an
important research topic. Even the problem of recognizing which segments of speech belong to unknown words
is a non—trivial task. Furthermore, an open problem is how to adapt automatically to new domains.

3.2 Semantic Interpretation

So far, in most prototype systems known to the authors, the speech understanding component is knowledge
based as it is the case in EVAR. A drawback of these systems is that the knowledge is manually acquired and



language model DIPHON ERBA VERBMOBIL
WA SA | WA SA WA

none 40.0 3.2 | 585 7.6 —

bigram 81.7 43.4 | 836 37.4 —

polygram 87.4 58.4 | 89.3 59.0 45.4

Table 1: Word (WA) and sentence (SA) accuracies of our speech recognizers using different parameter sets.
Columns DIPHON and ERBA refer to read speech, the same testing data but different trained data has been
used. VERBMOBIL refers to a task, where training and testing data were spontaneous speech data. Accuracy
is defined as % correct — % inserted — % deleted.

highly domain dependent. This makes switching to a new domain extremely time consuming. Thus, several
research groups started activities towards statistical models for seamtic interpretation, which can be trained
automatically on the basis of annotated corpora. The most known approaches are probabilistic context—free
grammars (cf. e.g. [1]), Pieraccini’s approach [10], and semantic classification trees (SCT) [4].

SCTs are decision trees originally developed for the semantic classification of word sequences. The nodes
of the trees are associated with binary questions (rules). The questions are about subsets of word strings rep-
resented as regular expressions. The specific questions and the order in which they are applied are determined
during training. The leaves of the trees correspond to the semantic classes with a certain probability. SCTs
have been successfully used by R. Kuhn in a speech understanding system in the domain of flight information
retrieval [4]. We used SCTs for the detection of syntactic phrase boundaries in word sequences. For three
classes of boundaries a recognition rate of 92% could be achieved on a test set different from the training set.
We also started using SCTs for the classification of dialog acts [7]. In all of these tasks SCTs showed very good
generalization performance.

4 Conclusion

Speech understanding and dialog systems comparable to EVAR have also been built by other groups. Mean-
while the performance of most of them is well enough to build research prototypes which can be used by naive
but cooperative users. Using them in real applications seems not anymore to be far in the future. There might
be a lot of useful application domains, especially all kinds of database inquiries, speech—to—speech translation,
customer advice service, interfaces to intelligent robots [5], etc. At present it means a lot of effort to switch
from one of these domains to the other, because most of the linguistic components working reasonably well
are based on manually acquired knowledge. Thus, a major research effort in the field of speech understanding
concerns the automatic aquisition of knowlegde. The first approaches towards this goal have been proposed by
several research groups; all of them rely on statistical methods.
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