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Abstract. This paper presents automatic methods for the classification
of dialog acts. In the VERBMOBIL application (speech-to-speech transla-
tion of face-to-face dialogs) maximally 50 % of the utterances are ana-
lyzed in depth and for the rest, shallow processing takes place. The dialog
component keeps track of the dialog with this shallow processing. For the
classification of utterances without in depth processing two methods are
presented: Semantic Classification Trees and Polygrams. For both meth-
ods the classification algorithm is trained automatically from a corpus
of labeled data. The novel idea with respect to SCTs is the use of dia-
log state dependent CTs and with respect to Polygrams it is the use of
competing language models for the classification of dialog acts.

Keywords: automatic learning, dialog act classification, hidden poly-
gram models, polygrams, semantic classification trees.

1 Introduction

The VERBMOBIL-System delivers translations of spontaneous speech in negoti-
ation dialogs. The current scenario is that two participants (with German and
Japanese mother tongue resp.) want to find a date for a business meeting. They
speak English unless they don’t know how to express the next utterance in Eng-
lish. In this case they press the VERBMOBIL button and continue in their mother
tongue. VERBMOBIL will then deliver a translation.

The system does not act as a participant of the dialog like in information
retrieval dialogs (e.g. in the ATIS domain) but keeps track of the ongoing dialog.
When VERBMOBIL is activated the system has to:

— recognize the words of the actual utterance
— make a linguistic analysis
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— update the dialog history
— generate an English translation and
— create speech output by speech synthesis

When VERBMOBIL is not activated some of these tasks can be omitted.
The dialog component has to fulfill 4 major tasks (see AMRY5):

— provide contextual information for other VERBMOBIL-components,

— predict the next admissible dialog acts which are needed e.g. for the recog-
nition component,

— follow the dialog when VERBMOBIL is inactive which means both participants
speak English and no translation is needed and

— control clarification dialogs between VERBMOBIL and its users.

The work presented here concerns the third of these tasks: maximally 50 %
of the utterances are analyzed in depth and for the rest shallow processing takes
place. This is done by the segmentation and classification of the dialog acts.
The dialog acts are classified with semantic classification trees (SCTs), which
are trained automatically. Another method for the classification of dialog acts
are polygrams.

2 Dialog Component

The dialog is seen as a sequence of dialog acts, and the dialog model in figure
1 describes admissible sequences of dialog acts (see Mai94). The dialog consists

of:

— an introduction phase in which the participants greet, if necessary intro-
duce each other and introduce the dialog goal (appointment scheduling)

— a negotiation phase in which the participants negotiate a date for a busi-
ness meeting and

— a closing phase in which the result of the negotiation can be repeated and
confirmed, and the dialog ends or the participants change to another dialog
goal (this can be a date for another meeting).

The edges in the model correspond to dialog acts and the nodes to dialog states.
The model consists of 5 dialog states. One further state models deviations from
this model. This state can be reached from any of the other states. After the
deviation (e.g. a clarification subdialog) has been processed, the dialog jumps
back to the state from which the deviation state has been reached.

The dialog component (see AMR95) consists of 3 modules. The finite state
machine provides an efficient and robust implementation of the dialog model. It
checks the consistency of the uttered dialog acts with the dialog model. The sta-
tistical layer is an information-theoretic model (similar to language models for
dialog acts) which is used for the prediction of dialog acts. The dialog plan-
ner keeps track of the plans of the users which means constructs and updates a
discourse history. Plans are divided up into the different phases like negotiation
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and clarification. The planning process works top-down, which means that high
level goals are divided into subgoals. This process ends with dialog acts as basic
subgoals which can be identified from the utterances. To follow the plans of the
users, the system has to identify the dialog acts.

3 Semantic Classification Trees

Classification trees are decision trees for the classification of patterns, where the
decisions are made up by rules. They process the given textual information of
a sequence of symbols w = wj ... wy of varying length m. The specific rules
for a given task and the order of their application were trained automatically
based on a corpus unlike in conventional rule based systems, where the rules are
handcoded.

The structure of a binary classification tree is characterised by a binary
splitting rule in each nonterminal node. Terminal nodes are labeled with a
category and/or a scoring vector. For the automatic training of a classification
tree splitting, stopping and labeling rules are needed in addition to a training
corpus (see Kuh92). The binary splitting rules are YES-NO-questions. To avoid
an overexpansion of the tree, which means that it’s totally adapted to the train-



ing corpus and therefore looses its generality, stopping rules are needed to end
the expansion process. These stopping rules define when a node is declared a
terminal node and labeled with a category Cy from the inventory {Ci,...,Cx}
by a labeling rule.

The algorithm we used is described in Kuh92 and is used to build CHANEL
— an SCT-Based Linguistic Analyzer for ATIS. CHANEL generates a SQL-like
semantic representation language.

The questions (decision rules) in the nodes of the SCT refer to regular expres-
sions consisting of keywords (represented by v) and non-zero gaps (represented
by “+”). The keywords are selected automatically during the training process
from the given corpus. At the root of the tree the known regular expression is
<+>, representing all non-zero sequences of any symbols. “<” and “>” repre-
sent the beginning and the end of the regular expression, respectively. Questions
are formed by replacing the known regular expression by another regular ex-
pression consisting of gaps and/or keywords. E. g. the first question could be:
“Is the already known structure <+> of the form <4wv+>, i.e. does v appear
somewhere in the structure?”

Eigth question types were used. Seven of them concern keywords and are

build e.g. as follows:

— Join: they “join” the edges of a gap together; they are of the type “Is the
+ equal to v?” (v is set to every item in the vocabulary during the training
phase)

— More: they establish that there is one or “more” symbol v in a gap; they
are of the type “Is the + of the form + M(v) +, where M(v) can be of the
form v, vy, or v + v, and there is no v on either side of the M() within the
original +”.

One question is about the length of the utterance.
The rule which selects the best question or decides that it should be a leaf
node is based on an impurity measure I, where the impurity

— is always non-negative,

— takes a maximum value for a node containing equal proportions of all possible
categories,

— is zero for a node containing only one of all possible categories.

Therefore in node T' a question is chosen which maximizes AT.

The algorithm uses the Gini criterion as measure of impurity which always
lies between 0 and 1. If 7' is a certain node and f(j | T) is the proportion of
items in the node that belong to category j, then the Gini impurity I(7") of the
node is defined as

IT) = Y fGIDfk|T) = 1=3 (G |T) (1)
ik J

For the growing of the tree a strategy with two stages is used. First a much
to large tree is grown using a simple stopping rule, e.g. that each terminal node



contains fewer than N items (N close to 1) or the maximum value of AT is 0.
Then the tree is pruned from the leaves upwards using an independent data set.
Thereafter the tree is expanded on this second data set and pruned on the first.
This process is iterated until two successive pruned trees are identical (a prove
that this must be is found in 7).

In figure 2 a part of an SCT trained with the algorithm described in Kuh92
for the VM-application is given. The categories which are classified are the dialog
acts in the dialog model (see figure 1).

Each terminal node is labeled with a dialog act and corresponds to a keyword
pattern, which is build up by the positively answered questions on the path
from the root. E.g. node 21 is labeled with category 'Bye’. Node 23 points at a
subtree (which is not given due to space limitations). In each nonterminal node
the keyword pattern of the so far positively answered questions is expanded by
a question.

1.(+see) Classification example: ‘See you then bye.’
y‘];‘/\]io

2.|Deliberation|  3.(+you)

YE‘/\IIO
4.|Req.for_Statement| 5.(no+)

S
YES NO
6.|Reject|  7.(+M(you)+) 7.(+M(you)+)

8.(+see M(you)+) 23.=> (subtree)

YEV\IiO

9.(+see M(you) then) 12.(+you+you+)
YE‘S/\Iio YEAS/\IiO
10.|Bye| 11.|Confirmation| 13.(+you+you are+) 16.(what+M(what)+)
YE‘S/\I:O YES NO
14.|Req. for_Suggestion| 15.|Deviation|17.(what do M(you)+) 20.(see M(you +N)020.(see M(you)+)
S

YES NO YE YES

18.|Req. for_Statement| 19.|Req.for_Suggestion| 21./Bye| 22.|Suggestion|

Fig. 2. Part of a classification tree for 16 dialog acts and an exemplary classifi-
cation; the tree was trained automatically from 80 % of the English dialogs

4 Classification with Polygrams

Direct application of Bayes rule is an alternative approach to identify the dialog
act category of a given word sequence. Bayes rule selects that particular label



k* for classification which maximizes the a posteriori probability

PCs | w) = P(w,Cx) _  P(w]|C)- P(Cx) o
o Y P(w|Cy) - P(Cy)

of the input text. In the above equation, P(w,C,) may be interpreted as the
(joint) probability distribution of a two-stage, discrete random process. In the
first stage, a dialog act category Cy is selected from the inventory {Cy,...,Cx}
according to the a priori probability distribution P(Cy), k = 1,..., K. In the
second stage, a word sequence w = wj ...wy, of varying length m is produced;
this second generation process is controlled by the conditional production prob-
abilities P(w|Cy), where s denotes the category index selected before.

Estimates for the parameters P(Cy) may be easily obtained from a training
corpus by computing the relative frequencies of word strings in category x. The
actual problem, however, is to model the class-dependent distributions P(w|Cy).
In our study, we decided to create stochastic grammars. For each Cy, a repre-
sentative training corpus of example realizations has to be provided in order to
get reasonable estimates for the conditional probabilities P(w|Cy). In the rest
of this section we will describe the kind of language models used in our dialog
act classifier: the polygram models KNST94, STKN94. Note that in the equa-
tions below explicit reference to the class names in the conditional probabilities
P(w|Cy) has been dropped for notational convenience.

It is the task of probabilistic language modeling to find a mathematically
tractable parametric form P(w|@) together with reliable estimates @ of its free
statistical parameters @ which approximates the true joint distribution P(w) =
P(w; ... wp) of a given word sequence. This expression can be decomposed into
a product

Pwi...wm) = P(wi) [[ney P(wn | wiws ... wp_sw,_1) (3)

word history

of conditional n-gram probabilities. In principle, estimates for these values may
be obtained by the Maximum Likelihood (ML) approach

. #(wy ... Wop—1wp) #(wy ... wy) (4)

P(wp |wy ... Wnp_1) =

- S, #(wy .. .wp_1v) - #(wy .. wn_1)

where #(-) denotes an operator that counts the word n-gram occurrences in the
training data. However, since the estimate (4) becomes rapidly unreliable with
increasing order n, the word history in Eq. (3) has to be restricted to a few recent
words. A language model that is exclusively based on word histories of duration
n — 1 is referred to as n-gram model Jel90. In practice, only bigram models

m

P(w) = P(w)- [ P(wa | wa-1) (3)

n=2



or trigram models

m

P(’w) = P(wl) . P(w2|w1) . H P(wn | wn—2wn—1) (6)

n=3

can be robustly trained.

The situation improves as soon as lower order statistics are recruited in order
to smooth higher order ones. Consequently, the polygram model approximates
the true conditional n-gram distributions by successively reducing the word his-
tory and computing a convex combination

P(wn | w1 .. .wn_l) = Ao~ % + A P(wn) + Ao P(wn|wn_1)
+ E?:z Ag p(wn | Wp—it1 .. Wn-1) (7)

of the related ML estimates. The interpolation weights A; are usually assumed
dependent on some statistics of the word history wy ...w,_1. Our choice was to
create a functional dependence based on the essential width

n = max {v | #(wp—p ... wy—1) > 0} (8)

of the n-gram context. The weight vectors defined this way can be systematically
optimized with respect to a cross validation data set using the EM algorithm
JMB80. In contrast to the nonlinear recursive “back-off” procedure in Kat87 the
polygram model enables smoothing of conditional n-grams with a low but non-
zero number of occurrences, too; moreover, the (linear) interpolation weights are
systematically designed in order to maximize the model-dependent validation set
likelihoods.

It is evident from the zerogram component 1/L of the interpolation formula
(7) (where L denotes the size of the vocabulary) that the smoothed probabilities
P(-) will get positive values even if the higher order ML estimators disappear. As
a consequence, we may evaluate the right hand side of the decomposition formula
(3) without artificially cutting down the word histories of conditional n-grams
provided the ML estimators in Eq. (4) are replaced by the smoothed counter-
parts in Eq. (7). Thus, a polygram language model can be expected to capture
even long-spanning contextual dependences among the words of an utterance,
provided the training corpus is sufficiently large and representative.

Note that this language model is required to store the complete set of training
data statistics; the frequencies of all word polygrams (i.e. unigrams, bigrams,
trigrams, and so forth) observed at least once in the training material are involved
in the probability computations. In order to bound the complexity of the model,
a certain maximum length N of n-grams considered in the interpolation formula
should be set.



5 Data

For the training of SCTs and polygrams a classified set of utterances is needed. In
VERBMOBIL German and English appointment scheduling dialogs were recorded
and transcribed. Non-speech phenomena like breathing and noises (e.g. paper
rustle) were removed from the transcription. 214 German and 56 English dialogs
were labeled with the dialog acts occuring in the dialog model (see figure 1, app.
6000 German and 1600 Englisch dialog acts). For a description of all used dialog
acts see Mai94.

6 Results

6.1 Classification with SCT's

For the classification of dialog acts different SCTs were grown. First one SCT for
the classification of all dialog acts for the English and German data, respectively,
was trained. Therefore, 80 % of the labeled data were used for training and the
remaining 20 % for testing the SCT (training set # test set). In figure 2 a part
of the classification tree for the English data is given. For the classification of
16 dialog acts a recognition rate of 46 % and 59 % for the German and English
data was reached, respectively. The better results for the English data could be
influenced by the more uniform scenario for the English dialogs. The German
dialogs were recorded at 3 sites and the scenario slightly differed. In some dialogs
private appointments were scheduled, in others business appointments. This can
influence the dialog structure and the realisation of utterances (see KM93). The
results show a tendency for the most frequently occuring dialog acts to be best
recognized. This is due to the still insufficient amount of training data.

Classification of the dialog acts for each dialog state: In each state of the
dialog model (see figure 1) only a subset of all dialog acts can follow. Therefore,
for each dialog state one SCT is grown which classifies only the (in this state)
possible dialog acts. The recognition rates for each dialog state are given in figure
3 (The outgoing edges for state 2 and 4 are the same).

6.2 Classification with Polygrams

For both languages, eight polygram classifiers were trained. Each classifier in-
volved 16 competing language models, one for each speech act category. The
order, i.e. the maximum allowable context length N of the polygram models
ranged from N =1 to N = 8. As with the classification trees, 80 % of the train-
ing data was used to build the models, and 20 % was used as independent test
set. The partitioning of the material was the same in both experiments.

The recognition rates that could be achieved with polygrams are indicated in
fig.4. For the larger sized German corpus, the maximum recognition performance
of 68.7% correct decisions was obtained using the pentagram model, i.e., N-gram
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Fig. 3. Recognition rates for each dialog state (DS1-DS5), that is, one SCT per dialog
state. The numbers are the samples in the test / training set.

statistics up to an order of N = 5. In contrast, the trigram performance (67.3 %)
for the considerably smaller English corpus could not be improved further by
increasing the model order.

It is interesting to observe that near-optimum recognition rates (67.1 % and
67.0 %, respectively) are already attainable with a simple bigram classifier. More-
over, even the unigram-based speech act labeling, which completely ignores word
order and thus essentially amounts to score the input utterance by a words-in-
a-bag strategy, enables correct identification by a rate of roughly 60 %.

These findings suggest — in fact confirm our expectation — that word identity
is much more important in our task than phrase structure. The rapid saturation
of recognition rate with respect to the model order gives some evidence that
higher order interactions among adjacent words play a minor role. However, one
can suspect that speech act categories are often triggered by associations of word
tuples which are widely scattered over the input text positions. A mathematical
model that deals with long-spanning contextual effects is described in STHKN95.

7 Conclusion and Future Work

In the VERBMOBIL-system shallow processing takes place when the user doesn’t
need a translation. In these phases the dialog module tracks the ongoing dia-
log. The dialog planner constructs and updates the dialog history based on the
recognised dialog acts.

This paper presents two methods — SCTs and polygramms — for the auto-
matic classification of dialog acts. The classification algorithms don’t need input
from syntax and semantics. The algorithms classify the utterances based on the
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textual representation. For the training of these algorithms a corpus of utterances
— labeled with dialog acts — is needed.

For the classification of 16 dialog acts recognition rates with SCTs of 46 %
and 59 % for the German and English data are reached, respectively. If a clas-
sification tree for each dialog state — classifying all dialog acts which can follow
in this state — is trained, the recognition rates are 58 % and 68 %, respectively.

The recognition rates with polygrams are even better (see figure 5). For the
German data a maximum of 69 % (with pentagrams) and for the english data a
maximum of 67 % (with trigrams) was reached. Remarkable is that:

— with SCT the classification of the English data works better than of the
German data, with polygrams it’s vice versa.

— the polygrams are generally working better than the SCTs for this classifi-
cation problem.

— polygrams even regarding only bi- or trigrams result in an almost optimal
recognition rate.

7.1 SCTs Including Prosodic Information

Improvement of these results could be reached by the integration of prosodic fea-
tures for the classification process. In Fis94 prosodic information was integrated
in the SCT-Algorithm to find phrase boundaries in utterances. In this case the
SCT is based not only on the textual information given by an utterance but
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also uses prosodic features for the classification. In the training phase questions
about keywords and prosodic features can be learned. This could also be helpful
for the classification of dialog acts. Useful prosodic features are sentence mode
and accentuation.

For the segmentation of turns into utterances the SCT-Algorithm could
be used as well. For this classification problem prosodic information especially
prosodically marked phrase boundaries are even more important. First exper-
iments show that utterance boundaries coincide with phrase boundaries in 96

%.

7.2 Hidden Polygram Models

The results indicate that application of Bayes rule using competing polygram
models performs considerably better in dialog act classification than SCTs.
Moreover, it becomes evident from figure 3 that additional improvement can
be gained if the structural restrictions of the dialog model are exploited during
analysis.

It is thus a promising idea to develop an integrated probabilistic model of
dialog-driven word production. The Hidden Polygram Model (HPM) is a
mathematical device which descibes a two-stage random process:

— The particular dialog act categories are selected according to a probabilistic
finite state machine (o, A) with a vector & of initial probabilities m; and a
matrix A of transition probabilities a;;.

— FEach time a dialog state has been occupied, a sequence of words is produced.
This second process, in turn, is controlled by a state-dependent polygram
language model with the conditional output distribution Pj(w|v).



Obviously, an HPM is a straightforward generalization of an ordinary discrete-
valued Hidden Markov Model (HMM) ? in that the probabilistic output of
the model is made statistically dependent on previous output symbols (word in
our application).

The parameters of the HPM can be optimized with respect to a training
corpus using a modification of the Baum-Welch algorithm. Note that there are
two possibilities to treat the finite state probabilities (ar, A). On one hand, they
can be kept fixed during training in order to fit a prespecified dialog model;
an interesting alternative is to tune the parameters to the training data which
amounts to an unsupervised learning of dialog structure.
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