
Watershed transformation of time series of medical thermal imagesDietrich Paulusa, Torsten Greinerb, Christian L. Kn�uveneraLehrstuhl f�ur Mustererkennung (Informatik 5)aandInstitut f�ur Physiologie und Experimentelle PathophysiologiebFriedrich{Alexander{Universit�at Erlangen{N�urnbergpaulus@informatik.uni-erlangen.degreiner@ipb.uni-erlangen.deTo be printed inProceedingsSPIE Conf. on Intelligent Robots and Computer Vision XIV: Algorithms,Techniques, Active Vision, and Materials Handlingwhere/when(12 pages)Presentation 26{Oct{95Number 2588{79
Inhaltsverzeichnis1 Introduction 12 Segmentation of thermal images 23 Watershed transformation 34 Enhanced watershed algorithm 65 Application to time series of thermal images 76 Results and Interpretation 87 Conclusion 108 REFERENCES 10



Paulus, Greiner: Water Shed Transform (Vers. 1.30) SPIE Conf. Philadelphia, 1995 0



Paulus, Greiner: Water Shed Transform (Vers. 1.30) SPIE Conf. Philadelphia, 1995 1Watershed transformation of time series of medical thermal imagesDietrich Paulusa, Torsten Greinerb�, Christian L. Kn�uveneraLehrstuhl f�ur Mustererkennung (Informatik 5)aandInstitut f�ur Physiologie und Experimentelle PathophysiologiebFriedrich{Alexander{Universit�at Erlangen{N�urnbergpaulus@informatik.uni-erlangen.degreiner@ipb.uni-erlangen.deABSTRACTIn this paper, we demonstrate how the watershed transform can be applied to series of thermal medical imagesto compute important features for physiological interpretation. Automatic physiological analysis of neural features canthereby be shown which was not possible otherwise.The transform as described in the literature has some minor algorithmic errors and inconsistencies which usually causelittle trouble. These problems occur on 
at plateaus where no unique watershed can be detected. After a short formaldescription of the transform we describe and eliminate these de�ciencies and introduce a modi�ed segmentation methodwhich handles these plateaus as expected intuitively. In our particular medical application, visible di�erences of the newsegmentation with respect to the old one can be noticed.We contrast our results to those obtained by the detection of isothermic regions.Features of the segmented regions are evaluated as a function of time and used for medical and physiological interpre-tation. An outlook describes current research in sensor fusion of visual and thermal images for medical research.Keywords: image processing, segmentation, watershed transformation, C++, thermography, axon{re
ex, vasodilatation, pain 1 INTRODUCTIONTo investigate the mechanisms of pain origin and pain processing, experiments are carried out which are ableto change the skin blood 
ow and therefore the temperature of the skin. This reaction is recorded by an infraredthermography camera. The resulting thermograms are the basis for further analysis by the medical observer.After application of noxious stimuli to the skin a spreading vasodilatation can be observed. This leads in avisible reddening of the skin (the so called \
are"). This reaction is mainly based on the axon re
ex mechanismwhich was �rst mentioned by Bruce3 and Lewis.13 The latter stated the releasing theory of a neurotransmitterwhich acts on small blood vessels. According to the studies of Bruce and Lewis the area of the resulting 
are isdetermined by the anatomical arrangement of the collateral nerve network in the skin. The nerves involved inthe vascular re
ex are polymodal a�erent nociceptive C{�bers.4 To induce the local warming reaction noxiousstimuli (intra-cutaneous histamine injection 10 �l, 0.1 %) were applied to the skin of the volar forearm of severalhealthy subjects aged 30{45. All subjects gave their informed consent and the study has been approved by thelocal ethics committee. To analyze the ongoing of the reaction series of thermal images were taken using anAGEMA 870 infrared camera system. Recordings were transferred to a PC via an interface (IR{SAVE, Gesotec,Germany). Images were taken every 200 ms (5 Hz). The resolution of the resulting digital image was 8 bit. Thethermal resolution of the system was 0.1oC, the spatial resolution of the thermograms was 128� 155 pixels. Toreduce noise, 50 frames have been averaged to one image. This results in a stored image sequence of 0.1 Hz.We apply a segmentation method which emphasizes zones of higher reaction in the skin automatically. After astudy of possible segmentation methods for thermal images (Sect. 2), we shortly introduce the watershed transform(Sect. 3) and present some modi�cations and enhancements (Sect. 4). Series of thermograms are processed to�Supported by: Sonderforschungsbereich "Pathobiologie der Schmerzentstehung und Schmerzverarbeitung\ (SFB 353)



Paulus, Greiner: Water Shed Transform (Vers. 1.30) SPIE Conf. Philadelphia, 1995 2quantify the ongoing of the in
ammation (Sect. 5). Due to this procedure, objective results for the physiologicalreaction can be presented (Sect. 6). The contribution closes with remarks on the implementation and an outlookon further research (Sect. 7).2 SEGMENTATION OF THERMAL IMAGESSegmentation of medical images is done to detect anatomic structures or phenomena. The main purpose is tobetter understand the anatomic relationships of the various objects. The objects to be found in thermal imagesare regions of similar temperature induced by local arti�cial in
ammation. For this reason, the segmentation ofthermal images is the distinction between in
amed and non{in
amed areas. Conventional methods like edge andline detection fail, even if problem speci�c preprocessing is applied, as can be seen in Figure 1.
290C 360CFigure 1: Thermographic image (left), edge strength computed with Shen edge detection23 after contrast en-hancement (middle), and line detection with hysteresis thresholds10 (right).One method to subdivide an image into in
amed and non{in
amed areas is to de�ne a temperature threshold.We binarize the input image using this threshold, compute the contours of the binary regions, and call these linesthe isothermogram. Figure 2 shows three examples of an isothermic representation processed on the same image.The disadvantage of this method is that the isothermic representation obviously depends on the threshold of theisothermic level. In Figure 2, the level chosen in the middle seems to be the best choice. A lower level (left)surrounds local maxima whereas a higher one (right) misses the lower temperature zones. The threshold for thein
ammation is computed by analysis of the images captured before application (\baseline").The watershed transform which will be introduced in Sect. 3 is another type of segmentation which turns outto be less sensitive to parameter changes of the threshold.The aim of the watershed transform is to subdivide an image according to the occurred local minima. Thereforewe used this segmentation technique for further image processing. A comparison of the segmentation results of athermogram with two di�erent methods is depicted in Figure 2 and Figure 3 (left). The latter clearly detects thelocal maxima whilst the result of the isothermic operation mainly depends on the level chosen for the isotherm(Figure 2).In early implementations the watershed transformation took a lot of time to process an image because ofthe ine�cient implementation. Vincent developed a new type of algorithm24 and showed that the watershedtransformation can be accelerated. The watershed transform was successfully applied for the segmentation of
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290C 360CFigure 2: Isothermes (left 33:90C, middle 34:60C, right 35:30C). The arrow marks the injection site.thermal images.12,19,8 Other medical applications were segmented by Zehetbauer27 using this transform.3 WATERSHED TRANSFORMATIONThe watershed transform according to Vincent24 segments an image using image morphology. Watershedsseparate adjacent water basins (Figure 3 (right)). The watershed transform idea can be easily explained byadditional help of a geographical imagination. Suppose a drop of water is falling on a topographic relief | itwill run down until it reaches a local minimum. The in
uence zones of those local minima are called catchmentbasins. As the water level increases and two basins are going to 
ow together, a dam has to be build. The damseparates the local minima against each other without any regards to certain thresholds. To use this algorithmfor thermal image segmentation with respect to their local maxima, we have to invert the thermogram.Several technical realizations of the watershed idea can be found in the literature and are summarized inZehetbauer.26 Digital elevation models are analyzed with di�erent methods. These approaches are comparedin Vincent.24 Zehetbauer24,26 discusses the algorithms by Digabel and Lantu�ejoul,5 Meyer and Beucher2,14 andFriedlander.7 Since Vincent24 published his fast implementation, attention to this transformation has grown andvery e�cient realizations have been made in di�erent areas, e.g. in Hanson & Higgins,9 Dobrin et al.,6 and inSaarinen.22 Hanson uses edge images as input and interactively initializes a region segmentation process; edgeimages from color are segmented by Saarinen.22 Both approaches mention the typical over{segmentation of thisalgorithmic approach. In Sect. 3, we extend the notion of Vincent for an advanced segmentation of gray levelimages which in our application avoids over{segmentation.The two general ideas for the watershed transform are the global and the local approach to watershed seg-mentation. In the local approach, decision about further 
ow of water is based on the neighborhood of a pixel.In the global approach, all pixels are a�ected by the 
ooding. First (�guratively spoken) we are putting wholesinto each local minimum. Now the mountains are immersed into water, which passes through the prepared holes.Whenever two basins unite, a dam is build (Figure 3 (right)). The computed contour lines of these dams surroundthe areas searched for. Dams are just another name for watersheds. During the 
ooding process, only the pointson the boarder of the basin are required for computation. This contour based algorithm allows for an e�cient



Paulus, Greiner: Water Shed Transform (Vers. 1.30) SPIE Conf. Philadelphia, 1995 4implementation when these points are queued and inspected in parallel.24The immersion can be stopped at a certain level or can be continued until the highest mountain is coveredby water and only dams remain visible. Partial 
ooding can be used to separate objects from the background(Figure 4). WaterDams
Figure 3: One{dimensional e�ect of the immersion simulation on a gray level pro�le (right) cut from a realthermographic image (white line on the left), modi�ed method according to Baxes.1 Immersion depth 33:90C.
Figure 4: To separate objects from the background, the watershed transform algorithm stops after a certain level.thermographic image (left), label image (middle), contours (right). Immersion depth 33:080C.Vincent24 describes the watershed transform as a special case of a morphological operation. For segmentationpurposes, the watershed transform can be treated as a region growing algorithm. Region segmentation requires



Paulus, Greiner: Water Shed Transform (Vers. 1.30) SPIE Conf. Philadelphia, 1995 5the de�nition of a criterion for homogeneity.16 Catchment basins are homogeneous in the sense that they containexactly one local minimum together with the related in
uence zone.Using the global approach, the transformation of a 2D intensity image I to objects Chmax (M ) and backgroundI � (PM Chmax (M ) ) can be formulated: objects Chmax (M ) mean the catchment basin of the local minimumMunder 
ooding level hmax. Background is de�ned by the area which does not belong to any object (Figure 4).When the topographical relief is 
ooded step by step, three basic situations can be observed:1. A new object is registered if the water reaches a new local minimum. This pixel location is tagged with anew region label.2. If a basin extends without uniting with another, the new borders have to be assigned to this basin.3. If two basins are about to unite, a dam has to be built in between.The critical point of the algorithm is how the dam will be set up. If we imagine a heavy rain falling on therelief, we expect a drop of water to 
ow to the next lower location whereby it will never 
ow uphill. The problemis to �nd the length of the path to the nearest location on the digital grid which is lower than the point wherethe rain drops on the terrain. The natural measure would be the use of the Euclidean distance; this is howevercomputationally too expensive, especially if the line is long and curved. Vincent24 uses the city{block distancein his formal description. In his formalism many points can not be assigned to a region because of this distancemeasure.A better approach is to de�ne a temporal process for a rain drop hitting the ground in a start location. Arain drop 
ows from one discrete location to its neighbor within one unit of time. The location is assigned to theregion which is �rst reached by the possible 
ow of the drop.Vincent de�nes the geodesic in
uence zone of a local minimumM . Let Y be a compound region consistingof compound subregions Bi. The geodesic in
uence EY (Bi) is de�ned as the set of those pixels q in Y whosedistance dY to any other component Bj in Y is greater than its distance to Bi. We use the eight neighbors of theactual point for the computation of the distance which is measured as the path length to the lake which mustnever run uphill. We now extend Vincent's notion of geodesic in
uence zones by the temporal process. The termEY (Ch(M ); t) is assigned to the zone belonging to the catchment basin Ch(M ) at time t and 
ooding level h+1.The local minimum with label a is denoted by Ma.EY (Ch(M ); t = 0) = Ch(M ) (1)EY (Ch(Ma); t+ 1) = EY (Ch(Ma); t) [ fq 2 Y j8b6=adY (q; Ch(Ma); t) = 1 < dY (q; Ch(Mb); t)g (2)EY (Ch(M )) = limt!1EY (Ch(M ); t) (3)When all pixels of a certain height h are 
ooded, the water level is increased by one. For a minimum of heighth0, the following equations hold: Ch<h0 (M ) = ; (4)Ch=h0 (M ) = M (5)Ch+1>h0 (M ) = Ch(M ) [EY (Ch(M )) (6)This approach is however still not su�cient, as can be seen later in Figure 9 (left). Up to now, the actual pixelwhich is reached during 
ooding is assigned to a watershed if those of its neighbors which were already processed,belong to di�erent regions. This de�nition causes problems on 
at surfaces.The new probability algorithm12 avoids those problems: In the neighborhood of the actual pixel all locationsalready processed are inspected and the number of pixels assigned to a region are counted. A probability isassigned to each region in the neighborhood based on the number of pixels assigned. The new pixel is added tothe region which has the highest probability, as long as this value exceeds a parameter pm to the algorithm. Thisparameter may vary between 51% and 100%. This is exempli�ed in Figure 5.This new idea for the computation of the path can be expressed formally as a rede�nition of (2).EY (Ch(Ma); t+ 1) = EY (Ch(Ma); t) [ fq 2 Y j8b :Xr fdY (r; Ch(Ma); t) = 1g � pmXr fdY (r; Ch(Mb); t) = 1gg(7)



Paulus, Greiner: Water Shed Transform (Vers. 1.30) SPIE Conf. Philadelphia, 1995 61 x11 11 2 x22 11122 w x3 1www 2 x41 1111 2 x51 11wx1 x2 x3 x4 x5Original algorithm 1 w 1 w wpm = 100% 1 w w w wpm = 67% 1 w w 1 wpm = 51% 1 2 w 1 1Figure 5: Comparison of algorithms and parameters; the numbers denote region labels, w is a watershed.4 ENHANCED watershed ALGORITHMThe original algorithm by Vincent is shown as a structogram here in Figure 6. The central idea for an e�cientrealization results from two facts. First, the pixels are sorted according to their intensity. Second, only thosepixels are inspected during one iteration of 
ooding with water level h (see ** in Figure 6) which have already
ooded neighbors; only those positions can be reached by water during this step.Read input imageSort pixel coordinates according to gray levelInitialize region image with label wFOR all water levels from hmin to hmax:Flood pixels of actual level which have already 
ooded neighbors **If required, set up new region at new local minimumUNTIL all pixels of actual level are 
oodedSave resulting region imageFigure 6: Watershed algorithm according to Vincent.24For an algorithmic solution of the enhanced watershed transform algorithm described above, pixels in thelabel image are assigned status attributes to mark whether a pixel has to be inspected during this 
ooding level(\marked"), is queued for further inspection (\queued"), or is �nally assigned to a region or watershed (\done").Initially, all pixels are initialized (\in it"). Vincent uses more status attributes, but these four have been foundsu�cient for the implementation. These attributes guarantee that pixels processed in the inner loop (*** inFigure 7) have no in
uence on each other; only already 
ooded pixels a�ect the assignment of a pixel to a regionor watershed. The new algorithm is shown in Figure 7. The process of assigning a label to a pixel (++ inFigure 7) is shown in Figure 8.The original algorithm creates a watershed which is completely surrounded by one region, rather than awatershed which limits the basin to its surrounding territory. In our application, this is not desired; our newextended algorithm does not show such behavior, as can be seen in Figure 9 (middle and right). In addition, thenew algorithm yields smooth contours. An example of this further enhancement can be seen in Figure 10, middle.



Paulus, Greiner: Water Shed Transform (Vers. 1.30) SPIE Conf. Philadelphia, 1995 7Read gray level imageSort pixel coordinates according to gray levelInitialize region image with label \watershed"Initialize status image with label "INIT\FOR all levels from hmin to hmax:Mark all pixels of actual level (status: "MARKED\)Queue marked pixels with already marked neighbors (Status: "QUEUED\)Remember end of actual queueProcess pixel in queue and add marked neighbors to queue ++Delete mark for this pixel (Status: "DONE\)UNTIL End of actual queueIF There is still a marked pixelTHEN Assign new label to pixel in region imageDelete mark for pixel (Status: "DONE\)Queue marked neighbor pixels (Status: "QUEUED\)UNTIL all pixels processed (queue empty) ***Store region image Figure 7: Watershed algorithm with status attributes.Count neighbor pixels marked \done" ! n and count occurrences of labelsFOR all such labels lIF l � pm � nTHEN label actual pixel with lFigure 8: Label assignment to a certain pixel.5 Application to time series of thermal imagesIn this section we use the watershed transform to process time series of thermal images. To investigatehistamine e�ects recordings are performed 2 min. before (baseline) and 15 min. after histamine application(approx. 120 images).
Figure 9: Section of a thermographic image. Vincent{ (left), pm = 51% (middle) and pm = 67% (right). Blacklines mark detected watersheds. The arrow marks the mentioned problem of the original algorithm.
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Figure 10: Test image (left), pm = 51 % (middle) and original algorithm (right). Watersheds are drawn as whitelines, boarders are regarded as background.To quantify the spatial development of the reaction each image is processed in the following manner: First,a noise reduction using a 3 � 3 low pass �lter is done. Then, each image is inverted because | as mentioned inSect. 3 | the watershed transform usually subdivides an image according to the occurred local minima, but inthis case local maxima detection is required. In the third step the maximum immersion depth (MID = �+ 2 ��,�: mean, �: standard deviation of an image without background) has to be evaluated. For this purpose we usesome images from the baseline (before the stimulus is set). Now the watershed transformation can be carriedout. Afterwards a contour detection algorithm15 is used to evaluate the boundaries of the catchment basins. Tointerpret the results the contour must be visualized to the medical observer and at last a region feature detectionand computation algorithm has to be used for quantitative analysis.For quantitative analysis of the in
ammation we computed the following features for each region: size (numberof pixels), contour length (in pixels), temperature minimum, temperature maximum, center of gravity, meantemperature, and standard deviation. These values are the base for the graphical visualization.6 RESULTS AND INTERPRETATIONAn intracutaneous histamine injection evokes the cutaionous vascular axon re
ex which results in a localwarming reaction of the skin. The ongoing of this reaction mainly depends on the increased blood 
ow. Thermo-graphic recordings revealed that the warming reaction usually started from distinct spots. The average distancewas about 5-30 mm from the site where a small amount of histamine solution had been injected.In Figure 11 three images out of a time series are shown. The objects have been detected by the modi�edwatershed transform. The watershed boundaries split the image without any error in a way an experiencedmedical user would do this.The time course of the temperature increase at individual spots depends on the distance of the injection site.A mathematical model for these curves can be described as a simple di�erential equation for the temperature Twith a �nal temperature of TR: dTdt = �1� (T � TR). (8)The solution of this equation is T = TR + (T0 � TR) � e�t=� , (9)where T0 is the initial temperature value and � a constant, which is representative for the temperature changesin this particular spot.From the computed features for the segmented regions, values for � can be evaluated using the method of the
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28:90C 360CFigure 11: Warming reaction of the skin of the volar forearm after intracutaneous injection of histamine (10 �l,0.1 %). The arrow marks the injection site. Left: 2 min. after application; middle: 4 min. after stimulus; right: 6min. after application. The reaction immediately started after the application at di�erent locations which clearlycould be separated with the watershed transform. (Parameters for the segmentation: in
ammation threshold:33:32�C, watershed transform-algorithm: pm = 51%)minimum square root error. In Figure 12 experimental results are compared to the ideal values of the underlyingmodel for temperature change. Furthermore, it could be seen (Figure 13) that the values for � are much smallernext to the injection site. Measurements for three locations are shown in Figure 13.Apparently the geometry of local warming spots re
ects the geometry of the underlying network of arterioleswhich will be dilatated by neurogenic and non neurogenic mechanisms. These spots may correspond to theincreased blood 
ow in preterminal arterioles.In contrast the visible 
are (Figure 14, left) was more uniform and probably due to either vasodilatation interminal arterioles or in venoles. To analyze the visible 
are a 24 Bit CCD Camera has been used for recording.The reddening of the skin could be well segmented using color segmentation by Nischik,17 even if this is notobvious from the gray level print in Figure 14, left. Since the cameras for visible and thermographic irradiationare at di�erent locations, the detected contour in Figure 14 (left) has to be geometrically distorted to be mappedon Figure 14 (middle).Superimposing the segmentation results of both methods, we point out that exactly those areas having smallervalues of � lie within the area of the visible 
are. Thus, it might be that the spots are exactly those junctions ofarterioles which are opened to feed the visible 
are. Although the neurogenic character of the 
are reaction tohistamine is well established the exact nature of the reaction is still unknown. A speci�c model designed for thereheat of the volar forearm under laboratory conditions was developed by Wilson.25 This model for interpretationcould be adapted to our problem.A dedicated computer program (Spot{Explorer) has been developed to process thermal images and to quantifythe reaction after histamine injection.8 This program runs under WindowsR and is written in C++.The implementation of the watershed transform described in Sect. 4 was used in this program. The samealgorithm was integrated into Khoros21 and into an object{oriented programming system in C++ �̀���o& .18,20Computation times on a Unix workstation HP 735/99 for a typical image of size 128� 155 are approximately0.05 seconds.
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Time [sec]Figure 12: Development of an in
ammation as a function of time after histamine injection (sample values andmodel). 7 CONCLUSIONWe presented enhancements to the watershed transform which eliminate some of the de�ciencies of otherimplementations. Using so modi�ed watershed transform we analyse thermographic images of the forearm's skinand present a physiologial interpretation.The isotherms with some limits (Figure 2) as well as the watershed transform (Figure 11) could be shown tobe appropriate methods to process the ongoing of an experimentally induced local in
ammation. We showed howthe watershed transform can subdivide an image according to the local maxima without any regards to certainthresholds. The in
ammation focuses could be clearly separated and traced through the image sequence.Features of regions segmented by the watershed transform are used to interpret a series of themographicimages.More than 500 images resulting frommore than 10 image series have been successfully segmented and evaluatedby medical specialists. In order to get results for statistical analysis, more data will be processed and an automatictracking of region changes is being implemented.We hope that still uncertain physiological models for the heat distribution under the skin as a function oftime can be veri�ed using our new system.8 REFERENCES[1] G. A. Baxes. Digital image processing. Wiley, New York, 1994.[2] S. Beucher. Watersheds of funktions and picture segmentation. Proceedings IEEE International Conferenceon Acoustic Speech Signal Processing 82, pages 1928{1931, Mai 1982.[3] A.N. Bruce. Vaso{dilatator axon{re
exs. Quarterly Journal of Experimental Physiologiy, 6:339{354, 1913.[4] L. A. Chah. Antidromic vasodilatation and neurogenic in
ammation. Pharmacology and Therapeutics,
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Time[s]Figure 13: Temperature change at three di�erent locations; the distance to the injection site is shown on theupper left.
�42 �42Figure 14: Visual 
are with overlayed contour of detected reddening (color image printed as gray level image,left), segmentation of visual 
are superimposed to thermographic image (middle). The symbols in the middleimage mark the locations for the measurements in Figure 13. The arrow marks the injection site. Thermographicimage segmented by watershed transform, (right).
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