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ABSTRACT

Linear discriminant or Karhunen-Loéve transforms are
established techniques for mapping features into a
lower dimensional subspace. This paper introduces
a uniform statistical framework, where the computa-
tion of the optimal feature reduction is formalized as a
Maximum-Likelihood estimation problem. The exper-
imental evaluation of this suggested extension of linear
selection methods shows a slight improvement of the
recognition accuracy.

1. INTRODUCTION

It is the ultimate goal of any probabilistic approach to
speech recognition to capture the entire process of word
production within one single homogeneous model. The
statistical parameters of this model then can be opti-
mized with respect to a large training sample of speech
using standard parameter estimation techniques.

A first step in this direction was the introduction
of the (discrete density) hidden Markov model (HMM,
[1]), which constitutes a simple probabilistic descrip-
tion of acoustical word realization down to the level of
labelled speech frames. Frame labelling was performed
outside the scope of the word models by a phonetic
classifier or a vector quantizer.

The undesirable exclusion of the feature level from
word modelling stopped with the advent of semi-
continwous models (SCHMM) [2] which incorporated
the formerly external vector quantizer into the speech
production model. Thus, in a SCHMM-based speech
recognizer the entire processing sequence from the fea-
ture vectors to the word level is part of the global
HMM, and its free statistical parameters can be jointly
optimized by the Baum-Welch algorithm.

Unfortunately, the extraction of features from the
speech wave now, as before, stays outside the prob-
abilistic framework, and the development of the sig-
nal processing component is still subject to heuristics
and intuition. In order to turn, at least a part of,
the feature extraction stage into a parameterized and
trainable building block of the recognizer, a decompo-

sition of the process is assumed: (1) initially, the sig-
nal is transformed into a sequence of high-dimensional
short-time feature vectors z; € IR”; (2) the x,’s are
mapped to vectors gy, of drastically reduced dimen-
sion d< D. In the context of speech recognition, the
first stage can be thought of as computation of the
log power mel-spectral coefficients, followed by the en-
largement of the resulting short-time parameter vector
using first and second order temporal derivatives [3],
or differences, or simply the spectral coefficients of an
appropriate number of neighboring speech frames. The
second stage is formed by a linear mapping involving
standard feature extraction activities like, for instance,
the cosine transform [4] and rotations of the coordinate
system (Karhunen-Loéve or linear discriminant trans-
form, [5, 6]); finally, the features belonging to the d first
coordinate axes are selected to be fed into the vector
quantizer.

The basic idea presented in this paper is to in-
corporate the feature rotation step together with the
subsequent dimensionality reduction (D — d) into the
SCHMM formalism. Given the model structure (in-
cluding the target dimension d) and a representative
training sample, the particular transformation matrix
will be optimized with respect to the likelihood func-
tion of the overall model, resulting in the so-called maz-
imum likelihood rotation (MLR).

The rest of the paper is organized as follows: the
feature transform HMM is defined in Sect. 2. In Sect. 3,
we will provide the derivation of Baum-Welch training
formulae for the extended model; particularly, we show
that the rotation-dependent part can be separated from
the conventional SCHMM part of the Kullback-Leibler
function. Sect.4 is devoted to the of numerical opti-
mization of the MLR expression as a function of the
unknown rotation parameters.

2. FEATURE-TRANSFORM MARKOV
MODELS

The basic idea underlying the feature transform HMM
(FTHMM) is illustrated in Figure 1; we want to re-



Y= C'z,

feature feature

generation reduction

1
C Ly

rotation
(C/T ’ C//T)T
matrix

wave

;-

feature transform HMM

vector

|-

quantization

Viterbi
decoding

VQ HMM
., op X w, A, B
codebook parameters

discrete HMM

semi-continuous HMM

Figure 1: Different HMM-based speech recognizer architectures

place the ordinary semi-continuous HMM by the en-
larged model

A= (ﬂaAaBagaC) ’

with initial probabilities &, transition probabilities A,
mixture coefficients B, a parameterized codebook g of
mixture components, and the feature transformation
matrix C. The crucial issue of the FTHMM is that A
is designed to model the production of sequences of the
original feature vectors @; € IRY; this is opposite to the
SCHMM which generates the reduced vectors y, € IR?
(see Figure 1).

If the mapping #; — 1y, is assumed to be singu-
lar — which is true, of course, if the dimension of the
feature space is actually reduced — no inverse exists,
and no probabilistic model generating the x; can be
found. This problem is circumvented by adopting a
“soft” Variant of feature space reduction
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The k-th sernl continuous mixture component gy of our
model is factorized into

— h// C//

o a codebook-class dependent distribution hj oper-

ating on the most discriminative part C'z € R*
of # and

e a codebook-class independent distribution h’ op-
erating on the uninformative noise part C”z €

RP~7 of .

The rows of both €’ and C” together form the or-
thonormal Dx D matrix C = (C'T,C"T)7, i.e., the
product CCT equals the identity matrix Ip. The ini-
tial components yi,...,yq of the rotated vector Cax
should carry the relevant information for speech recog-
nition. The remaining coefficients y441, ..., yp will not
contribute to word or sentence identification since their
probability A”(C" ) may be factored out as a constant
term in the above expression for b;(x). Consequently,
the computation of h”(C"x) becomes obsolete, and
only the class-conditional probabilities h}(C’'x) — re-
call that d is usually much smaller than D — have to
be provided during Viterbi decoding.

3. BAUM-WELCH REESTIMATION

Let X = @®y,®,,...,27 be a sequence of D-
dimensional real valued feature vectors for estimat-
ing the parameters. In classical HMMs the EM algo-
rithm is used for solving the incomplete data estima-
tion problem: it 1s hidden which state sequence pro-
duces the observable output data. Let ¢ = ¢1,...,qr
be the sequence of state indices from an N-state model.
Dealing with semi-continuous HMMs, we need further-
more a specification of the mixture components. Let
k = kqi,ko,..., kp denote a sequence of mixture den-
sity components. The pair (q, k) represents that at
time 7 the state s,, uses the density component gz, for
generating an output vector.

The estimation of the FTHMM parameters 1s per-
formed iteratively using the EM Algorithm [7]. For
that purpose we have to maximize the Kullback-Leibler
statistics

QAN = .S P(X.q.k | A) -log P(X, g,k | A)

a k
with respect to A. After expanding the log likelihood
expression of the right hand side of the above equation
and reordering the summation Q(A, X) separates into
three well-known terms (see, for instance, [2, p.160])
dependlng exclusrvely on w, A, and B, respectlvely
The remaining eXpressron
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has to be maximized in order to get reestimates of the
codebook parameters; the a posteriori expectations

C(j, k) = Pleg=J, ke =k | X, X)

are obtained through the classical forward-backward
computations [2].

For a standard SCHMM, multivariate Gaussian
mixture components gk( ) = N(=|py, X)) with mean
vectors p; and covariance matrices X are assumed,
and maximization of Qg(.,.) results in the well- known
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for the semi-continuous codebook; we used the abbre-
viations z;(k) = Z]' Ci(4, k) and Zk >z (k).
However, in the case of FTHMM mixtures
gi(@) = N(Ca |l 54) - N(C"a | ", 5")

with the means and covariances pf, X%, p’, and X"
of the rotated Gaussians k), and h” the separation of
QRg(.,.) becomes much more intricate because of the
linear coupling between the partial matrices C’ and
" of the underlying feature transform.
Fortunately, the Kullback-Leibler function easily
decomposes into K + 1 independent subexpressions

Qg()"j‘) = ZQh;(AaS‘) + Qh”()‘aj‘)

if we assume C’ ancllc (13’” fixed for a moment. Setting
the partial derivatives of the terms @/ (A, 5\) to zero
and solving for the unknown distribution parameters,
we obtain the reestimates

j, = C'p, and ¥, = '3, ¢"7, k=1,... K,

bl

where ft;, and X'}, are the means and covariances of the
standard SCHMM codebook distributions. Following
analogous arguments, maximization of the likelihood
function for the global FTHMM distribution hA” leads
to the equations

T
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In order to solve the estimation problem for the rota-
tion parameters C’ and C” we have to plug in the esti-
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as well as

1"
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mates derived above into our target function Qg(A, 5\)
which yields the expression
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Since the weights z;(k) of the kth expectation term Ej
are identical to the weights involved in the estimation

of 1, and f)k, the equation
Z,
Bo= -2 (log|2ﬂ'C 5,07 - )

can be shown to be valid. A quite similar argument
holds for the right hand side of Qg(.,.). After division
by a factor —7'/2 and elimination of additive terms ir-
relevant to the optimization problem at hand we are

left with the expression
K

(e e’y =3 (Pk .1og|c’2kc’T|) +log|C"EC"T|

k=1

where the weights Py denote the ratio Zp /T. We con-
clude that in order to obtain the desired MLR ma-
trix C = gC/T,C”T)T the log likelihood function
/C) = {(C’',C") has to be minimized subject to the

orthonormality restrictions CCT = Ip.

4. OPTIMIZATION OF THE MLR MATRIX

Unfortunately, the function £ presents a delicate struc-
ture, including log determinants of non-quadratic ma-
trix products. Moreover, the situation is complicated
by the implicit coupling of C’ and C” based on the
orthonormality constraint of C. This fact prevents us
from applying a straightforward gradient descent algo-

rithm, controlled by the partial derivatives
K

. -1 .
H = vouc) =Y [Pk~(C’2kC’T) C’Ek]
k=1
and

~ -1 ~
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(see [8, p.568]). In order to overcome the latter com-
plication, our optimization task has to be transformed
towards an unrestricted problem. Our crucial device
for that enterprise is the observation that every rota-
tion € of IRY may be decomposed into a product

R

C(¢) = C(61,...,6r) = [[Up.a.(¢r)

of elementary rotations of the special form

Upo(¢)=Ip+ cos (b(epe;——l—eqe;—) + sin (/)(epe;——eqe;—)
where e, denotes the pth unit vector and the index
palrs (pr, qr) range over all combinations 1 < p < ¢ <

D, ie, R = (D—1)-D/2. From the geometrical

pomt of view, Upy(¢) describes a rotation of R” in
the (p,q)-plane by the angle ¢. Henceforth, two ba—
sically different approaches are possible, according to
whether the free parameters ¢, shall be improved in-
dependently from another or not.

In the former case we proceed quite similar to
the Jacobian coordinate descent algorithm for eigen-
vector computation. Iteratively, a declining sequence
Cy, Cq,. .. of feature transformations

Ccy = ID, C; = Cs—l'Upsqs(¢8)

is created subject to the requirement £(C',) < E( 1)
The task of generating an improved rotation in step s,
then, reduces to a one-dimensional minimization prob—
lem in the variable ¢;. For the control of some standard
descent algorithm computing the partial derivative of
£(Cy) with respect ¢, is required. The total derivative

results in
9(Cy)ij
ME _ $5 e e
Due to the fact that the rotations depend on each other




the required number of iteratively applied elementary
rotations will generally exceed R.

If, however, the entries of the parameter vector ¢
representing the transformation matrix are to be jointly
optimized, i.e., a successor ¢1 of simultaneously im-
proved angles is sought for in each iteration step, the
problem stays multidimensional. Similar to the Jaco-

bian method the gradient vector V¢ LC(¢)) for this

multivariate function is given by

2U(C () (& oUC(d) 9T
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The left hand side derivatives inside the summation
can be drawn from the matrices H', H” as defined
above. The rightmost expression involves the calcu-
lation of 0C/0¢, for each r. Tt is easily shown that
C(¢) shares the product form with the original ma-
trix C except for the rth factor which amounts to
U ,.q,(¢,)/0¢, and is available through elementary

calculus.

5. FIRST EXPERIMENTAL RESULTS

The MLR approach was evaluated running a simple
frame-by-frame phone recognition task. For that pur-
pose, a multivariate Gaussian classifier was designed
using ten hours of speech for training and one hour for
testing. The recognition rates achieved when 44 differ-
ent phonetic labels had to be distinguished are shown
in Table 1. Three different orthonormal mappings
were employed in order to reduce the 36-dimensional
space (12 cepstral coefficients taken from 3 neighboring
speech frames) to the IR'?, decreasing the number of
distribution parameters as well as computational com-
plexity by roughly one order of magnitude.

LD MLR
53.2% 54.1%

rotation matrix KL
recognition rate | 52.7%

Table 1: Labeling accuracy and feature rotations

As indicated in Table 1, the MLR mapping al-
lows a slight improvement of recognition accuracy
over the Karhunen-Loéve (KL) or linear discriminant
(LD) transforms. Whilst the MLR approach certainly
presents a new target function which is superior to the
variance criteria of KL, and LD, the ML rotation matrix
is undoubtedly much harder to optimize. The gradient
descent methods tested so far proved quite impractical
due to the enormous expense in computing the partial
derivatives. Moreover, local optimization is a question-
able strategy when confronted with an objective func-
tion as rugged as £. Thus we moved to global minimiz-
ers without reference to derivatives such as the simplex
algorithm [9] or combinatorial optimization procedures;
the above result relates to the great deluge algorithm

[10].

6. CONCLUSION

The FTHMM outlined above is an extension of the
SCHMM formalism which incorporates a feature rota-
tion matrix C' as a Maximum-Likelihood (ML) train-
able component of the probabilistic model. The ML
parameter estimation can be done straightforwardly by
applying the EM algorithm for the computation of the
free transform parameters, too. The MLR, generalizes
work on linear feature selection, for instance the KL
and LD transformations.

Nevertheless, in contrast to classical linear trans-
formation methods the resulting parameter estimation
problem forces the use of numerical or combinatorial
procedures for global optimization. Thus, the actual
slight increase of recognition accuracy correlates with
the solution of a more complex optimization within the
off-line training stage.
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