
OPTIMAL LINEAR FEATURE TRANSFORMATIONS FORSEMI-CONTINUOUS HIDDEN MARKOV MODELSE. G�unter Schukat-Talamazzini, Joachim Hornegger, Heinrich NiemannLehrstuhl f�ur Mustererkennung (Informatik 5)Friedrich-Alexander-Universit�at Erlangen-N�urnbergMartensstra�e 3D{91058 Erlangen, F.R. of GermanyE-mail: fschukat,hornegger,niemanng@informatik.uni-erlangen.deABSTRACTLinear discriminant or Karhunen-Lo�eve transforms areestablished techniques for mapping features into alower dimensional subspace. This paper introducesa uniform statistical framework, where the computa-tion of the optimal feature reduction is formalized as aMaximum-Likelihood estimation problem. The exper-imental evaluation of this suggested extension of linearselection methods shows a slight improvement of therecognition accuracy.1. INTRODUCTIONIt is the ultimate goal of any probabilistic approach tospeech recognition to capture the entire process of wordproduction within one single homogeneous model. Thestatistical parameters of this model then can be opti-mized with respect to a large training sample of speechusing standard parameter estimation techniques.A �rst step in this direction was the introductionof the (discrete density) hidden Markov model (HMM,[1]), which constitutes a simple probabilistic descrip-tion of acoustical word realization down to the level oflabelled speech frames. Frame labelling was performedoutside the scope of the word models by a phoneticclassi�er or a vector quantizer.The undesirable exclusion of the feature level fromword modelling stopped with the advent of semi-continuous models (SCHMM) [2] which incorporatedthe formerly external vector quantizer into the speechproduction model. Thus, in a SCHMM-based speechrecognizer the entire processing sequence from the fea-ture vectors to the word level is part of the globalHMM, and its free statistical parameters can be jointlyoptimized by the Baum-Welch algorithm.Unfortunately, the extraction of features from thespeech wave now, as before, stays outside the prob-abilistic framework, and the development of the sig-nal processing component is still subject to heuristicsand intuition. In order to turn, at least a part of,the feature extraction stage into a parameterized andtrainable building block of the recognizer, a decompo-

sition of the process is assumed: (1) initially, the sig-nal is transformed into a sequence of high-dimensionalshort-time feature vectors xt 2 IRD; (2) the xt's aremapped to vectors yt of drastically reduced dimen-sion d<<D. In the context of speech recognition, the�rst stage can be thought of as computation of thelog power mel-spectral coe�cients, followed by the en-largement of the resulting short-time parameter vectorusing �rst and second order temporal derivatives [3],or di�erences, or simply the spectral coe�cients of anappropriate number of neighboring speech frames. Thesecond stage is formed by a linear mapping involvingstandard feature extraction activities like, for instance,the cosine transform [4] and rotations of the coordinatesystem (Karhunen-Lo�eve or linear discriminant trans-form, [5, 6]); �nally, the features belonging to the d �rstcoordinate axes are selected to be fed into the vectorquantizer.The basic idea presented in this paper is to in-corporate the feature rotation step together with thesubsequent dimensionality reduction (D ! d) into theSCHMM formalism. Given the model structure (in-cluding the target dimension d) and a representativetraining sample, the particular transformation matrixwill be optimized with respect to the likelihood func-tion of the overall model, resulting in the so-calledmax-imum likelihood rotation (MLR).The rest of the paper is organized as follows: thefeature transform HMM is de�ned in Sect. 2. In Sect. 3,we will provide the derivation of Baum-Welch trainingformulae for the extended model; particularly, we showthat the rotation-dependent part can be separated fromthe conventional SCHMM part of the Kullback-Leiblerfunction. Sect. 4 is devoted to the of numerical opti-mization of the MLR expression as a function of theunknown rotation parameters.2. FEATURE-TRANSFORM MARKOVMODELSThe basic idea underlying the feature transform HMM(FTHMM) is illustrated in Figure 1; we want to re-



feature transform HMM semi-continuous HMM discrete HMMfeaturereduction vectoryt=C0xt quantization Viterbidecodingxt h0k(yt) ŵfeaturegenerationspeechwave VQ HMMrotation(C 0>;C00>)> �0k,�0k, �00,�00 �, A, Bmatrix codebook parametersC00xtFigure 1: Di�erent HMM-based speech recognizer architecturesplace the ordinary semi-continuous HMM by the en-larged model � = (�;A;B; g;C) ;with initial probabilities �, transition probabilities A,mixture coe�cients B, a parameterized codebook g ofmixture components, and the feature transformationmatrix C. The crucial issue of the FTHMM is that �is designed to model the production of sequences of theoriginal feature vectors xt 2 IRD; this is opposite to theSCHMM which generates the reduced vectors yt 2 IRd(see Figure 1).If the mapping xt 7! yt is assumed to be singu-lar | which is true, of course, if the dimension of thefeature space is actually reduced | no inverse exists,and no probabilistic model generating the xt can befound. This problem is circumvented by adopting a\soft" variant of feature space reduction.bj(x) = KXk=1 bjkgk(x) = h00(C 00x) � KXk=1 bjkh0k(C 0x)The k-th semi-continuous mixture component gk of ourmodel is factorized into� a codebook-class dependent distribution h0k oper-ating on the most discriminative part C0x 2 IRdof x and� a codebook-class independent distribution h00 op-erating on the uninformative noise part C00x 2IRD�d of x.The rows of both C 0 and C 00 together form the or-thonormal D�D matrix C = (C 0>;C00>)>, i.e., theproduct CC> equals the identity matrix ID. The ini-tial components y1; : : : ; yd of the rotated vector Cxshould carry the relevant information for speech recog-nition. The remaining coe�cients yd+1; : : : ; yD will notcontribute to word or sentence identi�cation since theirprobability h00(C 00x) may be factored out as a constantterm in the above expression for bj(x). Consequently,the computation of h00(C 00x) becomes obsolete, andonly the class-conditional probabilities h0k(C 0x) | re-call that d is usually much smaller than D | have tobe provided during Viterbi decoding.

3. BAUM-WELCH REESTIMATIONLet X = x1;x2; : : : ;xT be a sequence of D{dimensional real valued feature vectors for estimat-ing the parameters. In classical HMMs the EM algo-rithm is used for solving the incomplete data estima-tion problem: it is hidden which state sequence pro-duces the observable output data. Let q = q1; : : : ; qTbe the sequence of state indices from an N -state model.Dealing with semi-continuous HMMs, we need further-more a speci�cation of the mixture components. Letk = k1; k2; : : : ; kT denote a sequence of mixture den-sity components. The pair (q;k) represents that attime t the state sqt uses the density component gkt forgenerating an output vector.The estimation of the FTHMM parameters is per-formed iteratively using the EM Algorithm [7]. Forthat purpose we have to maximize the Kullback-LeiblerstatisticsQ(�; �̂) = Xq Xk P (X; q;k j �) � logP (X; q;k j �̂)with respect to �̂. After expanding the log likelihoodexpression of the right hand side of the above equationand reordering the summation Q(�; �̂) separates intothree well-known terms (see, for instance, [2, p. 160])depending exclusively on �, A, and B, respectively.The remaining expressionQg(�; �̂) = KXk=1 TXt=10@ NXj=1 �t(j; k)1A � log ĝk(xt)has to be maximized in order to get reestimates of thecodebook parameters; the a posteriori expectations�t(j; k) = P (qt = j; kt = k j X;�)are obtained through the classical forward-backwardcomputations [2].For a standard SCHMM, multivariate Gaussianmixture components gk(x) = N (xj�k;�k) with meanvectors �k and covariance matrices �k are assumed,and maximization of Qg(:; :) results in the well-knownML estimates�̂k = TXt=1 zt(k)Zk �xt , �̂k = TXt=1 zt(k)Zk �(xt��̂k)(xt��̂k)>



for the semi-continuous codebook; we used the abbre-viations zt(k) =Pj �t(j; k) and Zk =Pt zt(k).However, in the case of FTHMM mixturesgk(x) = N (C 0x j �0k;�0k) � N (C 00x j �00;�00)with the means and covariances �0k,�0k, �00, and �00of the rotated Gaussians h0k and h00 the separation ofQg(:; :) becomes much more intricate because of thelinear coupling between the partial matrices C 0 andC 00 of the underlying feature transform.Fortunately, the Kullback-Leibler function easilydecomposes into K + 1 independent subexpressionsQg(�; �̂) = KXk=1Qh0k(�; �̂) + Qh00 (�; �̂)if we assume C 0 and C 00 �xed for a moment. Settingthe partial derivatives of the terms Qh0k (�; �̂) to zeroand solving for the unknown distribution parameters,we obtain the reestimates�̂0k = C0�̂k and �̂0k = C 0�̂kC 0> , k = 1; : : : ;K,where �̂k and �̂k are the means and covariances of thestandard SCHMM codebook distributions. Followinganalogous arguments, maximization of the likelihoodfunction for the global FTHMM distribution h00 leadsto the equations�̂00 = C 00�̂ , �̂ = 1T TXt=1 xtas well as�̂00 = C 00�̂C 00> , �̂ = 1T TXt=1(xt � �̂)(xt � �̂)>In order to solve the estimation problem for the rota-tion parameters C 0 and C 00 we have to plug in the esti-mates derived above into our target function Qg(�; �̂)which yields the expressionKXk=1 TXt=1 zt(k) � logN (C 0xt j C 0�̂k;C0�̂kC0>)!| {z }Ek+ TXt=1 logN (C 00xt j C 00�̂;C00�̂C 00>) :Since the weights zt(k) of the kth expectation term Ekare identical to the weights involved in the estimationof �̂k and �̂k, the equationEk = �Zk2 � �log j2�C0�̂kC 0>j � d�can be shown to be valid. A quite similar argumentholds for the right hand side of Qg(:; :). After divisionby a factor �T=2 and elimination of additive terms ir-relevant to the optimization problem at hand we areleft with the expression`(C 0;C00) = KXk=1�Pk � log jC0�̂kC 0>j�+ log jC 00�̂C 00>j

where the weights Pk denote the ratio Zk=T . We con-clude that in order to obtain the desired MLR ma-trix C = (C 0>;C 00>)> the log likelihood function`(C) = `(C 0;C00) has to be minimized subject to theorthonormality restrictions CC> = ID.4. OPTIMIZATION OF THE MLR MATRIXUnfortunately, the function ` presents a delicate struc-ture, including log determinants of non-quadratic ma-trix products. Moreover, the situation is complicatedby the implicit coupling of C 0 and C 00 based on theorthonormality constraint of C. This fact prevents usfrom applying a straightforward gradient descent algo-rithm, controlled by the partial derivativesH 0 = rC 0 `(C) = KXk=1�Pk � �C 0�̂kC0>��1C 0�̂k�and H00 = rC00 `(C) = �C 00�̂C 00>��1C 00�̂(see [8, p.568]). In order to overcome the latter com-plication, our optimization task has to be transformedtowards an unrestricted problem. Our crucial devicefor that enterprise is the observation that every rota-tion C of IRD may be decomposed into a productC(�) = C(�1; : : : ; �R) = RYr=1Uprqr (�r)of elementary rotations of the special formUpq(�)= ID+ cos�(epe>p+eqe>q ) + sin�(epe>q�eqe>p )where ep denotes the pth unit vector and the indexpairs (pr; qr) range over all combinations 1 � p < q �D, i.e., R = (D � 1) � D=2. From the geometricalpoint of view, Upq(�) describes a rotation of IRD inthe (p; q)-plane by the angle �. Henceforth, two ba-sically di�erent approaches are possible, according towhether the free parameters �r shall be improved in-dependently from another or not.In the former case we proceed quite similar tothe Jacobian coordinate descent algorithm for eigen-vector computation. Iteratively, a declining sequenceC0;C1; : : : of feature transformationsC0 = ID , Cs = Cs�1 �Upsqs(�s)is created subject to the requirement `(Cs) � `(Cs�1).The task of generating an improved rotation in step s,then, reduces to a one-dimensional minimization prob-lem in the variable �s. For the control of some standarddescent algorithm computing the partial derivative of`(Cs) with respect �s is required. The total derivativeresults in@`(Cs)@�s = DXi=1 DXj=1 @`(Cs)@(Cs)ij � @(Cs)ij@�s :Due to the fact that the rotations depend on each other



the required number of iteratively applied elementaryrotations will generally exceed R.If, however, the entries of the parameter vector �representing the transformationmatrix are to be jointlyoptimized, i.e., a successor �+ of simultaneously im-proved angles is sought for in each iteration step, theproblem stays multidimensional. Similar to the Jaco-bian method the gradient vector r� `(C(�)) for thismultivariate function is given by�@`(C(�))@�r �1�r�R=0@ DXi=1 DXj=1 @`(C(�))@Cij � @Cij@�r 1A1�r�R :The left hand side derivatives inside the summationcan be drawn from the matrices H 0, H 00 as de�nedabove. The rightmost expression involves the calcu-lation of @C=@�r for each r. It is easily shown thatCr(�) shares the product form with the original ma-trix C except for the rth factor which amounts to@Uprqr (�r)=@�r and is available through elementarycalculus.5. FIRST EXPERIMENTAL RESULTSThe MLR approach was evaluated running a simpleframe-by-frame phone recognition task. For that pur-pose, a multivariate Gaussian classi�er was designedusing ten hours of speech for training and one hour fortesting. The recognition rates achieved when 44 di�er-ent phonetic labels had to be distinguished are shownin Table 1. Three di�erent orthonormal mappingswere employed in order to reduce the 36-dimensionalspace (12 cepstral coe�cients taken from 3 neighboringspeech frames) to the IR12, decreasing the number ofdistribution parameters as well as computational com-plexity by roughly one order of magnitude.rotation matrix KL LD MLRrecognition rate 52.7% 53.2% 54.1%Table 1: Labeling accuracy and feature rotationsAs indicated in Table 1, the MLR mapping al-lows a slight improvement of recognition accuracyover the Karhunen-Lo�eve (KL) or linear discriminant(LD) transforms. Whilst the MLR approach certainlypresents a new target function which is superior to thevariance criteria of KL and LD, the ML rotation matrixis undoubtedly much harder to optimize. The gradientdescent methods tested so far proved quite impracticaldue to the enormous expense in computing the partialderivatives. Moreover, local optimization is a question-able strategy when confronted with an objective func-tion as rugged as `. Thus we moved to global minimiz-ers without reference to derivatives such as the simplexalgorithm [9] or combinatorial optimizationprocedures;the above result relates to the great deluge algorithm[10].
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