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ABSTRACT

In natural languages, the words within an utterance are
often correlated over large distances. Long-spanning con-
textual effects of this type cannot be efficiently and ro-
bustly captured by the traditional N-gram approaches of
stochastic language modelling. We present a new kind of
stochastic grammar — the permugram model. A permu-
gram model is obtained by linear interpolation of a large
number of conventional bigram, trigram, or polygram
models which operate on different permutations of the
input word sequence under consideration. This way, sto-
chastic dependences between word pairs or word triples
lying adjacent as well as remote in the input text can
be captured simultaneously without the requirement of
very large N-grams. Using the permugram model, we
achieved test set perplexity reductions of 5-10% com-
pared with interpolated N-gram models; depending on
the application.

1. INTRODUCTION

In natural languages, the words within an utterance are
often correlated over large distances; for instance, this is
the case as a result of the insertion of subordinate clauses.
Another example is the tight grammatical coupling be-
tween the parts of discontinuous verbal phrases which are
very common in German language:

fahrt ab
Der Eilzug | kommt |am Bahnsteig zwei| an
lauft ein

Long-spanning contextual effects of this type cannot be
efficiently and robustly captured by the traditional N-
gram approaches (see [5] for a survey) of stochastic lan-
guage modelling. Even for moderate positional distances
between grammatically related words, the estimates of
higher-order N-grams are required in order to bridge the
interword gaps, and the model runs into the danger of
combinatorial explosion and overadaptation. The same
argument is true for the polygram interpolation tech-
nique [8] as well as other smoothing and backing-off pro-
cedures [7, 14], which might avoid the overadaptation ef-
fect, but are still restricted to contiguous word histories
when estimating conditional word probabilities.

In order to circumvent this problem, one may try to
reduce the dimensionality of the parameter space by in-
troducing gaps or wildcards into the word N-grams un-
der consideration. A simple heuristic is to replace con-
ditional N-grams by weighted averages of gappy bigrams
P(w¢|wi—r). This approach was followed in [12] and [15],
using different approximations for the marginal distri-
bution P(w¢|w;—r). The notion of gappy bigrams was
extended to N-grams in [4], and in [11] a product ex-
pression for the approximation of conditional N-grams
by their marginals was proposed. Another approach is
to employ a tree classifier to approximate the required
probabilities [1], or to configure the desired statistical
(in)dependences into a causal Bayesian network [9].

In this paper, we present a new kind of stochastic
grammar — the permugram model — which is obtained
by linear interpolation of a large number of conventional
bigram, trigram, or polygram models which operate on
different permutations of the input word sequence un-
der consideration. This way, stochastic dependences be-
tween word pairs or word triples lying non-contiguous in
the input text can be captured simply by choosing the
appropriate permutation — this “choice” is of course a
random process — that brings the respective word items
into touch.

The remainder of the paper is organized as follows:
section 2 reviews the formalism of polygram models. Per-
mutations of the input word order are introduced in the
central section 3; most of this part of the paper deals
with the definition of local representations of permuta-
tions (“configurations”) and a generalization of discrete-
output HMM’s (“hidden permutation model”). Finally,
sections 4 and 5 will present the experimental results and
a conclusion.

2. POLYGRAM LANGUAGE MODELS

The joint distribution P(ws, ..., wr) for a given sequence
w = w1, ..., wr of words from a vocabulary V of size L
may be written as a conditional decomposition

T

P(ws,...,wr) = [ Plwe|ws,...,wes) (1)
t=1

= P(wi)  Plwz | w1) ... - Plwr | wy,...,wr_1) .

The conditional N-gram probabilities on the right hand
side of eq. (1) are usually replaced by the maximum like-

lihood (ML) estimators

; #(wi, ... wi)

Plwe | wi, . wi) = m

where the function #(-) counts the frequency of a given
word sequence in the training corpus.

Unfortunately, even for small ¢ the above frequency ra-
tios are far from being reliable estimates. Smoothing of
these statistics can be achieved by pruning the word his-
tories or by partitioning the vocabulary into word cat-
egories. The polygram model [8] does without history
pruning and evaluates the conditional N-gram probabil-
ities by the linear interpolation formula

(2)

Plwe | wy, ..., wiq) = ptp(wt | wi, ..., wieq)+

oot ng(wt | wie1) + Plp(’wt) + pOPuniform (3)

where P(-) denotes the ML estimate, Puniform is the zero-
gram (or uniform) word probability 1/L, and the weights
p1,...,p; are iteratively optimized by the estimation-
maximization (EM) algorithm [2, 6] using a cross-
validation data set.

Since the interpolation weights tend to become very
small for higher-order N-gram statistics if estimated



globally, a dependence of the weights on the actual word
history is introduced: we let p; = pi(5) with

we) A0} (4)

In order to limit the storage requirements of the model
and to avoid overadaptation to the training set, a suitable
upper bound N for the maximum order of N-grams to
consider in the model should be chosen.

Polygram models have been introduced in [8, 16]; a
similar approach using heuristically determined interpo-
lation weights was presented in [13], too.

n = max{v | #(wi—,...,

3. PERMUTATIONS

Assume we are going to rearrange the word order in

w1, ..., wr according to a permutation
{1,..., 7y = 1{1,...,T} (5)

The conditional decomposition of P(w) remains valid af-
ter reordering of the input sequence:

P(Q) = PTF(Q) = P(wﬂ(l)""’wﬂ(T))

= H Plwagey | wa(ays - - -,

t=1

Wr(i—1)) (6)

Note that in the above equation the expression wy(y) is a
shorthand for 0,(;) = wx(s), denoting the event that word
item Wr(t) happens to occur in sentence position 7T( ) In
subsequent formulas we will drop the random variable o
provided that the subscripts of o and w coincide.

For instance, if m(1) = 5 and 7(2) = 3, P(wx(1)) refers
to the unigram distribution of all words in the fifth sen-
tence position, and P(wxi2)|wn(1)) denotes a statistical
dependence between two non-adjacent word items mov-
ing backward in time.

As a matter of fact, the identity P(w) = Pr(w) be-
comes inapplicable as soon as the permuted N-gram
probabilities are replaced by the polygram-like interpo-
lation rule (3). Consequently, it is tempting to formulate
a (perfect) permugram model by the linear combination

> AnPr(w) (7

TeP

of permutation-dependent joint probability estimates,
ranging over the set P of all possible permutations of
{1,...,T}. Observe that our permugram formula in fact
1nc0rp0rates conditional bigram probabilities P(w;|w;)
for each p0551ble pair ¢, 3 of relative word positions;
the same is true for tngrams and tetragrams, and so
forth. Consequently, stochastic dependences between
word pairs or triples lying widely separated in the in-
put text can already be modelled without the need of
higher-order statistics of the word generation process.

The essential challenge in permugram modelling is to
check the combinatorial explosion caused by the vast
amount of theoretically possible sentence permutations.
We shall particularize in the remainder of this section
how this task has been solved by selecting an appropriate
subset of P and rearranging its elements in a probabilistic
finite state network.

The key idea comes from the observation that sentence
probabilities with respect to similar permutations usually
share several of their product terms, too. This fact is best
exploited by recombining the partlal probability products
of competing permutations in a dynamic programming
manner.

3.1. Coinciding local probabilities

At first glance it may appear that the local probability
scores of permutations 7 and o at time ¢ just coincide if
and only if the actual as well as all past positions of 7
and o coincide, i.e., if 7(s) = o(s) for each s < t is valid.

Fortunately, two formal properties of our stochastic lan-
guage models, limited model order and homogenity, allow
a much larger degree of recombination.

A model order of N restricts the word history of con-
ditional probabilities to the last N — 1 input positions;
“last” refers to the process time ¢ rather than word order.
Accordingly, the condition 7(s) = o(s) fort — N < s <t
is now sufficient for coincidence.

Homogenity in word position assumes that only rela-
tive word positions matter; for instance, we do not want
to distinguish between probabilities P02 = wzlo1 = w1)
and P(o7 = wz|og = w1); this assumption is used in
traditional N-gram models, too. Homogenity in process
time states complete independence of ¢ which is al-
ready implicit in our notation; in other words, the value
P(o7 = wz|oe = wy) is independent of the time when =
has reached sentence positions 6 or 7.

3.2. Configurations

A configuration as defined below is meant to describe
the situation we encounter when the conditional N-gram
probability of a word wp() is to be computed. This
includes information about the head position =(¢), the
sentence positions of the last N — 1 history words, and
markers indicating which sentence positions have already
been processed and which have not.

We define an N-gram configuration to be a finite string
¢ = [c1...cx] from the alphabet {1,..., N, O}. The
items c¢i describe the state of processing of particular
sentence positions, from left to right, in the natural word
order. Each of the numbers 1,..., N have to appear ex-
actly once in the string; N denotes the head word posi-
tion, whereas each v < N refers to the significant history
positions. The marker [ is attached to places which have
not yet been reached by the word production process;
any number (including zero) of [J’s may appear in ¢, and
trailing [1’s are omitted. The marker B indicates posi-
tions which have been encountered in a very early phase
of the sentence generation process and which have now
left the scope of N-gram memory. Just like the open po-
sitions [, an arbitrary number of closed (or forgotten)
positions M may occur; however, this time we will drop
leading occurrences of l-markers.

It is the latter arrangement that exploits the homogen-
ity assumptions discussed above, and which makes the
absolute reference positions of the markers ci implicit,
because we cannot figure out the number of pruned W-
positions to the left of ¢1. The example configurations

®

denote conditional probabilities of type P(wt|wt 2, We—1)
or P(wt|wt 3, Wet1), respectively. The former is a stan-
dard trigram probability. The latter one is non-standard
since it incorporates gaps and order inversion; moreover,
we are informed that all words left to to w:—4 as well as
word w;—_1 have been processed and forgotten, and words
w¢—o as well as w42 and beyond have not yet been vis-
ited.

123 and

3.3. Hidden permutation models (HITM)

By means of configurations, which represent the local
probability contribution of word permutations, we are
able to define a doubly stochastic process that generates
sentences according to a convex combination of permuted
polygram models. Of course, only a restricted class of
subsets of all possible permutations can be realized in a
finite state process of reasonable size.

A hidden permutation model (HIIM) consists of a
set {S1,...,5m} of states S; with associated configura-
tions ¢(.S;). The non-deterministic sentence production
process starts in 51 (With the associated start configura-
tion ¢(.5;) = [1]) and moves from S; to S; with probability
a;;. The state identity at time ¢ is hidden to the ob-
server, but using the configuration attached to the state



and 1its corresponding permutation, an open word posi-
tion wp(y) is filled according to the selected conditional
(non-standard) N-gram distribution.

It is another important feature of the HIIM that state
transitions 1 — j are illegal unless ¢(S;) is a possible suc-
cessor of Q(Si). The successor relation between configu-
rations can be summarized as follows: we may expand an
N-gram configuration towards an (N 4 1)-gram configu-
ration by replacing one of its [I’s by the new head marker
(N 4+ 1); note that there are infinitely many implicit [
symbols in the right hand side continuation of the con-
figuration string. From the above trigram examples, the

tetragrams
1234 and 24M31 (9)

can be deduced. Moreover, it is possible to reduce the
configuration order in the same step. A reduction from
(N+41)to N is technically achieved by subtracting 1 from
all positive ¢;’s, then replacing the unique item ¢; = 0 by
¢; = B and finally removing leading W’s. For the stan-
dard tetragram above, successive order reductions lead
to the standard configurations

[rzs], [i2] [oh (10)

the non-standard tetragram reduces to

1smem |, [2mim| |mmmE| (11

To summarize, we call the N'-gram configuration ¢ a le-
gal successor of the N-gram configuration c¢ if and only if
¢’ results from one expansion of ¢ as well as N +1 — N’
subsequent order reductions. By the shift r(c, ') we de-
note the total number of closed position markers l that
have been extinguished from the intermediate configu-
ration strings during that transformation. The shifts of
standard trigrams are, for example, 7([123],[1234]) = 0,
7([123],[123]) = 1, and so forth.

If ¢t was the absolute word position pointed to by the
first entry ¢ of ¢, then ¢' = t+7(¢, ¢') is the absolute posi-
tion related to (the onset of) configuration ¢’. Assuming
that the start configuration ¢(.S1) of the model points to
the initial sentence position wi, a consistent sentence-
configuration alignment is guaranteed during the entire
HIIM word production process.

Quite similar to HMM’s, the probability that the HIIM
produces a word sequence w can be obtained by forward
recursions; additionally, ML estimates of the transition
probabilities a;; (the partial permutation weights) are
provided by running the EM algorithm (for further de-
tails consult [3]). A probability distribution based on an
HIIM as defined above will be called a permugram lan-
guage model.

3.4. Sentence boundaries

In order to capture the particular word statistics at or
near sentence boundaries, auxiliary vocabulary items for
the out-of-sentence positions are introduced, and every
input sentence is expanded into an infinite word series
wy = Swiws ... wr—1wr$o$1%$2...; with respect to the
permugram model, the additional boundary markers $,
$, are treated just like ordinary words.

Formally, the conditional decomposition Pr(wy) turns
into an infinite probability product for the enlarged word
sequences. However, it is easily shown that all but a fi-
nite number of factors may be omitted from the prod-
uct; actually, each conditional probability of the form
P(oy = wlos =8,,...), t < s —r assumes the value 1 if
only w = $;_.4, is valid and 0 else.

4. EXPERIMENTAL RESULTS

In order to compare the permugram approach with tra-
ditional N-gram models, test set perplexities have been
computed for two German language modelling tasks, us-
ing a collection of standard as well as non-standard mod-
els.

4.1. Data

Two German text corpora served as basis for our experi-
ments: the Intercity corpus is made up of train timetable
inquiries, whilst the Verbmobil data contain translitera-
tions of face-to-face negotiation dialogs [17]. The total
number of dialog turns, words, and the vocabulary size
of both text collections is given in Table 1.

[ corpus [[ # turns 4 words  vocabulary size |
Intercity 2535 13.368 711
Verbmobil 2931 65.578 2112

Table 1. Statistics of text corpora used in the experiments

Each data set is divided into three disjoint subsets:
the training data (= 80%) are used to estimate all
non/standard N-gram counts, the cross-validation data
(=~ 10%) are fed into the EM algorithm in order to opti-
mize the permutation weights a;; and the configuration-
dependent interpolation coefficients p(v,S;), and the
test data (=~ 10%) serve to compute the test set per-
plexities.

4.2. Permugram configurations

The standard polygram (or interpolated N-gram) model
according to egs. (1), (2), (3) is a special case of a per-
mugram model; the HIIM’s for bigrams and trigrams are
shown in Figure 1. The numbers outside the configura-
tion boxes indicate the sentence position shift related to
an HIIM transition. Both models desribe a determinis-
tic word production process, moving through the word
sequence in original order (with identity permutation);
from the beginning of the sentence, the configuration or-
der is increased by one from position to position until the
model order N (2 and 3 in the examples) is arrived at.

d Hl’z%%g\

Figure 1. HIIM representation of bigrams (1) and trigrams (r)

Perhaps the simplest way to characterize (a generic set
of) permutations of arbitrary length with finite means is
to choose a periodic repetition in time, consisting of mul-
tiple copies of a small local index permutation pattern.
An obvious candidate is the meandric pattern shown in
Figure 2.

Figure 2. Meandric permutation pattern

The dashed box delimits exactly one period of the me-
andric permutation. Beginning from the leftmost word
position t, k places are skipped and position t+x+1 is oc-
cupied. Subsequently, each of the places skipped before
is processed stepwise from left to right until the entire
sequence of word positions ¢ + 1 through ¢ 4+ x has been
covered. The HIIM corresponding to a meandric permu-
tation with context order N = 2 and gap size k = 2 is
found in Figure 3. We denote permugram models of this
type by My

In order to allow more flexibility in word order re-
arrangement, mixture models of meandric forms were de-
fined. Particularly, we considered permugram models %
which are the convex combination of the permuted N-

gram models MY X =1,..., & together with the stan-
dard N-gram. Note that the HIIM of this mixture is
easily constructed by connecting in parallel the HIIM’s
of all the submodels MY .

The most complex HIIM structure that has been tested
allows the production process to choose freely any se-
quence of meander periods. This model is built by pro-
viding possible transitions from each MY offset towards
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Figure 3. The HIIM structure of meander Mg

cach MY onset in the above mixture HIIM; we will refer
to this “connected meander” model as 117 .

4.3. Perplexity figures

Test set perplexities were calculated for models with bi-
gram (N = 2) and with trigram (N = 3) context. Be-
sides the standard interpolated N-grams, single meander
(ML), mixture meander (X5), and connected meander
(HHN) models have been run, the maximum gap size &
ranging between 1 and 6. The two rightmost columns of
Table 2 leave x unspecified; actually, results for the best
performing x are presented.

N-gram MY ¥ my
Intercity
N=2 26.4 38.6 247 25.1
N=3 255 29.5 23.2 23.5
Verbmobil
N=2 139.7 217.1 138.0 134.3
N=3 129.4 178.3 129.1 123.1

Table 2. Test set perplexities of selected permugram models

Obviously, the meandric permutations alone perform
much worse than the standard N-gram with its original
word order; this is true for MZ s with larger gap & > 1,
too. However, if the word production process is allowed
to choose between competing permutations as is the case
in the mixture model, the test set perplexity can be sub-
stantially reduced. Note that in the Intercity domain, the
bigram mixture even outperforms the trigram standard
model.

For the Verbmobil corpus with its extremely long di-
alog turns, the periodically repeated patterns of the o
components do not provide sufficient flexibility to capture
the intrinsic dependency structure. Much more could be
gained when applying the connected meanders, which in
turn showed little (additional) effect for the Intercity cor-
pus.

5. CONCLUSION AND FUTURE WORK

We presented a new kind of stochastic grammar — the
permugram model. A permugram model is obtained by
linear interpolation of a large number of conventional bi-
gram, trigram, or polygram models which operate on dif-
ferent permutations of the input word sequence under
consideration. Using the permugram model, we achieved
test set perplexity reductions of 5-10% compared with
interpolated N-gram models; depending on the applica-
tion.

In spite of this success, we feel that more dramatic
improvements were possible if sentence scores could be
computed in a decision-directed fashion, i.e., by evalu-
ating the HIIM using the Viterbi algorithm instead of
Baum-Welch forward decoding. Under this condition,
the permugram model would decide on the best-fitting
word permutation for each input sequence rather than
averaging over the entire subspace spanned by the HIIM.

Unfortunately, the Viterbi permugram scores do no
longer form a valid distribution, and the missing renor-
malization coefficient is not accessible. Hence, an exper-
imental assessment of Viterbi permugrams on the basis
of perplexity is impossible. We envisage automatic sub-
corpus classification [10] as an appropriate testbed for
unnormalizable language models.
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