
3-D Reconstruction and CameraCalibration from Images with knownObjectsGudrun Socher Torsten Merz Stefan PoschUniversit�at Bielefeld, Technische Fakult�at,AG Angewandte Informatik,Postfach 100131, 33501 Bielefeld, Germanygudrun@techfak.uni-bielefeld.deAbstractWe present a method for camera calibration and metric reconstructionof the three-dimensional structure of scenes with several, possibly smalland nearly planar objects from one or more images. We formulate theprojection of object models explicitly according to the pin-hole cameramodel in order to be able to estimate the pose parameters for all ob-jects as well as relative poses and the focal lengths of the cameras. Thisis accomplished by minimising a multivariate non-linear cost function.The only information needed is simple geometric object models, thecorrespondence between model and image features, and the correspon-dence of objects in the images if more than one view of the scene isused. Additionally, we present a new method for the projection of cir-cles using projective invariants. Results using both simulated and realimages are presented.keywords: Least-squares model �tting, model-based vision, 3-D reconstruction,camera calibration, projective invariants.1 IntroductionWe present a method for camera calibration and metric reconstruction of thethree-dimensional structure of scenes with several, possibly small and nearly pla-nar objects in one process. One or more images from uncalibrated cameras areused. The only information needed is simple geometric models containing descrip-tions of objects as a set of vertices, edges, and circles, the correspondence betweenmodel and image features, and { for more than one view of the scene { the corre-spondence of objects in the images. Calibration is obtained by direct observationof objects in the scene. Therefore, the method lends itself for on-line calibration ofan active vision system. No preceding calibration with a special calibration pattern1This work has been supported by the German Research Foundation (DFG) in the projectSFB 360.
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is necessary and no mechanic or thermic in
uences resulting from di�erent timesof exposure distort the reconstruction.Our approach is inspired by model-based methods and approaches applying pro-jective geometry. Model-based approaches as presented by [Lowe 91, Goldberg 93]use three-dimensional models of single objects in one image to estimate the object'spose relative to the camera. Special simpli�ed partial derivatives which are di�cultto extend for more objects or additional images are used. Preceding camera cali-bration is necessary if not enough signi�cant model features are detectable in theimage or to stabilise the solution. [Mohr et al. 93, Boufama et al. 93, Faugeras 92]use images from uncalibrated cameras and estimate a projective reconstructiononly from known point correspondences. Additional metric information is incor-porated in a second step to derive a reconstruction in Euclidean space. Inaccuraciesdue to noise or false matches introduced in the �rst step are di�cult to correctin the second step where information available from the 3-D scene is taken intoaccount.[Crowley et al. 93] achieve robust results using the objects in the scene for cameracalibration. Their approach holds for single objects and shows how to calibratewith a minimum number of model points.In contrast to these approaches, we formulate the projection of the object modelsto one or more images explicitly according to the pin-hole camera model in orderto be able to estimate the pose parameters for all objects and for all camerasand the focal lengths of the cameras. Seemingly complicated projection functionswith complex partial derivatives have the advantage that a minimum number ofparameter values are to be estimated. E.g., three parameters determine a rotationrather than the nine entries of a rotation matrix. Furthermore, geometric informa-tion is explicitly captured without additional constraints. Our method holds forany model feature, not only for points, and for any number of known objects andimages. Moreover, we present a new method for the projection of circles using pro-jective invariants. A multivariate non-linear cost function measuring the deviationof projected model features from detected image features is minimised simultane-ously for all detected image features in all images using the Levenberg-Marquardtmethod. Constraints such as planarity or location of features other than thoseencoded in the object models can be incorporated easily.Experimental results from both simulated and real images are presented and showthe robustness of our approach for nearly planar scenes with small objects.2 Model-based 3-D Reconstruction and CameraParameter EstimationModel-based 3-D reconstruction is a quantitative method to estimate simultane-ously the best viewpoint of all cameras and the object pose parameters by �ttingthe projection of a three-dimensional model to given two-dimensional features. Themodel-�tting is accomplished by minimising a cost function measuring all di�er-ences between projected model features and detected image features as a functionof the objects' pose and the camera parameters. Common features in the scenes weare dealing with are points and circles. The projection of circles results in ellipses.
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The projection of one object model depends on 7 � n parameters where n is thenumber of used images. The seven parameters per view are the focal length, threerotational, and three translational parameters.Projection of model pointsThe projection of a model point is the transformation of the point1 xo from modelcoordinates o to the camera coordinate system l and the subsequent projectiononto the image plane bl. This can be expressed in homogeneous coordinates2 as~xbl = Ppblo(xo) = ��1 (Tbll � Tlo � �(xo)) (1)= ��1  bdx 0 Cx 00 bdy Cy 00 0 1 0 ! � cos � cos� cos � sin� � sin � txsin sin � cos�� cos sin� sin sin � sin�+ cos cos� sin cos � tycos sin � cos�+ sin sin� cos sin � sin�� sin cos� cos cos � tz0 0 0 1 ! � �(xo)! :� is a function for the transformation from a�ne to homogeneous coordinates.The projection of a model point in a second image plane br needs one additionaltransformation Trl from the reference coordinate system which we place in the �rstcamera coordinate system l to the second camera coordinate system r,~xbr = Ppbro(xo) = ��1 (Tbrr � Trl � Tlo ��(xo)) : (2)Projection of model circlesThe perspective projection of circles which are planar �gures can be understood asa collineation in the projective plane IP2. The cross ratio is invariant under everycollineation (see [Semple & Kneebone 52]). Let A;B;C; and D be four points ina projective plane, no three of them being collinear and a pencil of lines passingthrough these four points. P is the centre of the pencil. Its cross ratio k isk = [PA; PB;PC; PD] = A0C 0A0D0 � B0D0B0C 0 ; (3)with A0; B0; C 0; D0 being the intersections of this pencil with some line not passingthrough P .The locus of the centres P of a pencil of lines passing through A;B;C;D hav-ing a given cross ratio is a conic through A;B;C;D (Theorem of Chasles, see[Semple & Kneebone 52, Mohr 93] and Fig. 1). Thus, a conic is uniquely de�nedby four points and a cross ratio. Its quadratic form isax2 + 2bxy + cy2 + 2dx+ 2ey + f = 0 (4)and the coe�cients are determined usingkLABLCD + (1� k)LACLBD = 0 (5)1Vectors are written in small bold type characters.2Homogeneous transformations are denoted by T with subscripts indicating destination andsource coordinate frame of the transformation.
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with LIJ = (xI � x) (yI � yJ) � (yI � y) (xI � xJ ); I; J 2 fA;B;C;Dg(ref. [Mohr 93]). To determine the cross ratio of a circle with radius r and the fourpoints (r; 0), (0; r), (�r; 0), and (0;�r) we apply eq. (5) to the equation of a circle�kr2x2+(2kr2�4r2)xy�kr2y2+kr4 = 0. This results in 2kr2�4r2 = 0 ) k = 2:
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D’Fig. 1: Cross ratio of a pencil of lines on a conic.

Thus, the quadratic form of a pro-jected model circle is easily com-puted using four projected pointson the circle and the correspond-ing cross ratio in eq. (5). Thismethod holds with little extensionfor the projection of general el-lipses, too.The representation of an ellipse eas centre point m, radii l1 andl2, and orientation � is more convenient as the quadratic form and enables thecomponent-wise comparison with a detected image ellipse. This representation isobtained from the quadratic form withm = 1� ����� b cd e ���� ;� ���� a bd e �����T and � = 12 arctan� 2ba� c� with � = ���� a bb c ���� : (6)Let �1 and �2 be the real solutions of the polynomial �2� (a+ c) ��+ � = 0, thenthe radii arel1 =s���� �� � �1 ���� and l2 =s���� �� � �2 ���� with � = ������ a b db c ed e f ������ : (7)The projection of a model circle to the �rst and to the second image plane aredenoted by ~xbl = Peblo(xo) = �b (Tbll � Tlo � �c(xo)) ; (8)~xbr = Pebro(xo) = �b (Tbrr � Trl � Tlo � �c(xo)) : (9)An image ellipse ~xb is described by its centre point m, the radii l1 and l2 and itsorientation �. The function realising the transformation (eq. (6) and eq. (7)) of theprojected model circle in homogeneous coordinates to the ellipse representation is�b. A model circle xo is characterised by its centre point, the radius and a normalvector in model coordinates o. The function �c calculates the four points thatare projected and their cross ratio in homogeneous coordinates. This formulationof the perspective projection of a model circle allows us to measure easily thedeviation of projected and detected ellipses comparing �ve parameters.Model-�ttingThe pose of an object is well estimated from the image data if the value of thenon-linear multivariate cost functionC(a) = NXi=1 Xj2B �xbj i �P ibjo(a;xoi)�T � ��1 � �xbj i �P ibjo(a;xoi)� : (10)
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is minimal. The cost function C measures the deviation of projected model featuresxoi { these can be points or circles { from the corresponding image features. Thevector a contains all unknown parameters. B is the set of images of a scene. Nis the number of corresponding model and image feature pairs. Depending onthe feature, the vectors xbj i and xoi contain di�erent representations and theprojection functions P ibjo are the respective transformations. � is a covariancematrix which is used to model the admissible tolerance with respect to deviationfrom projected model to detected image features.Camera Parameter EstimationClassical camera calibration methods (e.g. [Tsai 85]) can not be performed on-lineas they demand a special calibration pattern. Depth estimation is then a two-stepprocess and it may lead to suboptimal solutions. We have explicitly modelled thecamera parameters in our projection functions and thus they are estimated usingthe knowledge of the 3-D structure of the objects in the scene. We estimate theexternal camera parameters and the focal length. The results show that principalpoint and scale factors are stable enough for our o�-the-shelf CCD cameras toassume �xed values. The in
uence of lens distortion to the results of our approachis quite small. We demonstrate this with simulated data in section 4. Nevertheless,it is possible to model the estimation of lens distortion in a manner similar to thatof [Li 94].[Tsai 85] shows that full camera calibration is possible with �ve coplanar refer-ence points. A solution for calibration derived with four coplanar points is uniquebecause four coplanar points determine a collineation in a plane and any furtherimaginary points in that plane as intersections of lines between lines through thefour points can be derived. Six non coplanar points determine a unique solutionas well (see [Yuan 89]).Calibration is possible with one camera view. Taking a stereo image leads to muchmore robust results. Furthermore, the pose of a circle with known radius can notbe computed uniquely from one view (see [Ma 93, Safaee-Rad et al. 92]). Takingat least two images for reconstruction, the pose of a circle in space is, if thefocal lengths are known, uniquely de�ned up to the direction of its normal vector(ref. [Dhome et al. 90]). The sign of the normal can be determined due to thevisibility of the projected ellipse. The focal lengths are determined with any non-circular object in the scene with at least four visible coplanar model points.3 MinimisationThe main problem of non-linear parameter estimation is to �nd a method whichguarantees convergence of the cost function (eq. 10) to a global minimum. Theminimisation using the Levenberg-Marquardt method (see [Press et al. 88]), whichis a combination of Newton's method and a gradient descent, converges to thenearest local minimum. The global minimum is found with good initial parametervalues. However, we do not have initial parameter estimates. Thus, we divide theglobal model �tting problem into three stages to step-wise enhance and monitorthe estimates of the parameters.
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Fig. 2: a) A scene and the re-sult of its 3-D reconstruction b)in a front and c) in a side view toshow the accuracy of the recon-struction w.r.t. the planar sur-face of the table.

The Jacobian matrix �@P ibjo(a;xoi)=@a�ij is anessential prerequisite for the minimisation and it isobtained by applying the generalised chain rule forthe concatenation of projection and feature repre-sentation extraction. The partial derivatives arecomputed using MAPLE3.Stage I: In the �rst stage, the poses of all objects are reconstructed individually,and separately for each camera view. As few parameters are to be estimated, theindividual reconstructions are performed very quickly; however the minimisationshave to be monitored in order not to let them converge to false local minima be-cause of inappropriate initial values. The initial value for the focal length is chosento be a commonly used length (e.g. 15mm). For the translation in z-direction wetake a typical object distance (e.g. 2m). The initial x- and y-translation parametervalues are calculated from the assumed focal length and z-translation, tracing theview ray through an image point and a model point. Rotation parameters can beset to any values.During minimisation the focal length is moni-tored. If it leaves an admissible range (10-100mmin our case), the object is rotated by negatingtwo rotational parameters and the minimisation isrestarted with the other parameters reset to theiroriginal initial values. The cost function is alsomonitored during minimisation. If the process con-verges to a local minimum with inadmissibly highcosts, the z-translation parameter is modi�ed ac-cording to a prede�ned scheme. To improve thespeed of convergence, it is useful to additionallyadjust the x- and y-translation parameters whichshould be consistent with the current z-translationand focal length.This monitored Levenberg-Marquardt iteration isstopped if either the change of the parameter es-timates from one iteration step to the next is lessthan a given threshold, or if the model �tting doesnot succeed, i.e. if a maximum number of itera-tions is reached or if the same local minimum isfound despite modi�ed parameter values.Stage II: Applying this method to each detected object, we obtain several esti-mates of the focal length for each camera and an estimate for the pose of eachobject relative to each camera. For a given camera the median of all estimates ofthe focal length from stage I is �xed at this stage and it is used to reconstructthe pose of each object in the scene. So in this stage, better initial estimates forobjects' poses are derived for each view of the scene.Stage III: The median focal length and the resulting objects' poses of stage IIare used as initial values for global model �tting. It is possible to estimate the3MAPLE V Release 3 c
 by Waterloo Maple Software and the University of Waterloo
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relative pose between di�erent cameras from the object correspondences. But,we found out that the minimisation process is not sensitive to the initial values ofthese parameters. Therefore, we take a rough estimation of commonly-used camerapositions. Monitoring of this global minimisation is not necessary because of thegood initial parameters values now available.4 Experimental ResultsVarious experiments with the approach outlined in the preceding sections havebeen performed using real images as well as synthetic data with simulated noise.It is not possible for us to measure the exact distance between the cameras and thescene and the exact focal lengths. We get results for the focal lengths which are verysimilar to those of our implementation of the algorithm of [Tsai 85]. The resultsof camera calibration and 3-D reconstruction are evaluated comparing measuredand reconstructed distances within the scene. Fig. 2 shows a scene and two viewsof its reconstruction from a stereo image. The side view indicates the accuracy ofthe reconstruction w.r.t. the planar surface of the table.4.1 Accuracy of 3-D reconstruction
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2Fig. 3: A scene with objectswith known relative poses.

In order to measure accuracy in 3-D reconstruc-tion we use a scene of objects with known relativeposes shown in Fig. 3. The pose of an object rela-tive to another is uniquely determined by the dis-tances between two points of the �rst object andone point of the other object and the angle betweentwo surface normals. Table 1 shows the accuracy of3-D reconstruction comparing reconstructed andmeasured distances and angle di�erences betweenthe top surface normals of all objects. The objectsare taken from a children's toolkit and are im-precisely manufactured, therefore inaccuracies ofmeasurements up to �1mm can occur.The results re
ect that the more features availablefor one object, the better the accuracy of the estimated pose. For the two holedbars (object 1 and 2 in Fig. 3) the four vertices and three or seven model circlesare visible on the top surface. The estimated relative pose is very close to themeasured one. The ring (object 4) is reconstructed using only the detected ellipseof the hole. The results show that for this object the largest errors occur.4.2 Sensitivity to errors in image coordinatesAccuracy of feature detection and number of used featuresThe accuracy of 3-D reconstruction and camera calibration is mainly in
uencedby the accuracy of image feature detection and the the number of features usedfor reconstruction and calibration. This is shown using simulated data. Equally
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Object �'[o] d0[mm] �d0[mm] �d0d0 [%] d1[mm] �d1[mm] �d1d1 [%]1, 2 2.7 293.5 1.9 0.7 191.9 2.1 1.11, 3 3.6 351 4.8 1.3 325.9 5 1.51, 4 1.4 111.7 3.7 3.4 - - -2, 1 2.7 293.5 1.9 0.7 313.9 2 0.62, 3 3.5 191.2 6.8 3.4 177.7 6.3 3.42, 4 2.4 198 2.6 1.3 - - -3, 1 3.6 351 4.8 1.3 317.1 3.2 13, 2 3.5 191.2 6.8 3.4 171.8 1.8 13, 4 4.6 306.3 9.6 3 - - -4, 1 1.4 111.7 3.7 3.4 175.7 2.2 1.34, 2 2.4 198 2.6 1.3 190.1 3.5 1.84, 3 4.6 306.3 9.6 3 282.2 9.6 3.3Table 1: Accuracy in 3-D reconstruction of the scene shown in Fig. 3. The table showsthe di�erence of the measured distance between the �rst point of the �rst object andone point of the second object �d0, the di�erence in distance between the second pointof the �rst object and the point of the second object �d1, and �' which measures thedi�erence between the surface normals of the two objects.distributed noise in the range of �0:5 pixel is added to all projected model-featuresof two three-holed bars (ex. Fig. 2) independently.The reconstructed distance between the two bars is used to measure accuracy.Fig. 4 shows the results of three di�erent simulations with 1000 runs in eachsimulation. The errors in the reconstruction from the simulated data seem quitelarge. This is due to the small number of available features for calibration andreconstruction, compared to usual calibration patterns, and because the addednoise is quite large.Notice the di�erent scaling of the histograms. Fig. 4a) shows the distribution ofthe reconstructed distances using one image and four points for reconstruction.The results improve if more features are used. Fig. 4b) shows the e�ect when fourpoints and three circles per object are used for reconstruction and calibration inone image. The mean of the reconstructed distances is 172.5mm and the standarddeviation is 16.6. A simulation taking four objects with four points per object inone image leads to similar results, � = 173:1 and � = 23:3. This time a total of 16features for four objects is used. This is worse than 14 features for two objects asin Fig. 4b), and this is re
ected by the results. The best results are achieved usingtwo views with the maximum number of features per object. The mean in Fig. 4c)is very close to the true distance, and the standard deviation is � = 3:5.Radial distortion No of views No of objects No of features �d0d0 [%]1 2 2�4 1.71 2 2�7 0.92 2 2�4 0.72 2 2�7 0.5Table 2: In
uence of radial distortion to the accuracy of reconstruction and calibration,�rmax = 4:5 pixel.Another experiment with synthetic data shows the in
uence of radial distortionto calibration and reconstruction. Radial distortion resulting in a maximum dis-placement of �rmax = 4:5 pixel at the corners of an image is added to a synthetic
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image. This is a commonly occurring distortion. Table 2 shows a maximal dif-ference between true and reconstructed object distance of 1.7%. The in
uence ofradial distortion becomes smaller if more features and more views of a scene areused for reconstruction and calibration. [Weng et al. 92] report similar results.5 Conclusion
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A method for camera calibration and metric3-D reconstruction from one or more uncali-brated images is presented. To this end, sev-eral objects of the scene in contrast to a spe-cial calibration pattern are used. These ob-jects are modelled as sets of vertices, edges,and circles and the correspondence betweenmodel and image features is exploited aswell as the correspondence of objects in dif-ferent views of the scene. The projection offeatures is modelled explicitly capturing thegeometric constraints given by a pin-holecamera model resulting in a minimum num-ber of parameters to be estimated. For theperspective projection of model circles wederive a new formulation using projectiveinvariants. This results in a simple methodfor the comparison of a projected model cir-cle with a detected image ellipse on the ba-sis of �ve parameters. To minimise a suit-able cost function we apply the Levenberg-Marquardt method in a three-stage process,monitoring the iteration in order to step-wise gain good initial parameter estimatesfor subsequent minimisations. The accuracyof 3-D reconstruction is shown using realimages. The relative error of distance andsurface normal between objects in the sceneis in the range of few percents. Using simu-lated data we show that the accuracy of theresults is mainly in
uenced by the accuracyof image feature detection and the the num-ber of features used, while radial distortionshows little impact on the accuracy.Future work will concern two extensions of our approach. First, the method willbe extended to re-calibrate the camera(s) using image sequences. This will allowus to iteratively enhance the estimates of the parameters and to support a visionsystem with active camera(s). Furthermore, other types of features, like edges,will be incorporated into model-�tting and minimisation in order to exploit moreinformation of the objects in the scene.
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