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 ABSTRACT

Recently, we described a two-step self-learning approach for
grapheme-to-phoneme (G2P) conversion [1]. In the first step,
grapheme and phoneme strings in the training data are aligned via
an iterative Viterbi procedure that may insert graphemic and
phonemic nulls where required. In the second step, a Trie structure
encoding pronunciation rules is generated. In this paper we
describe the alignment module, and give alignment accuracies on
the NETtalk database. We also compare transcription accuracies
for two approaches to the second step on three databases: the
NETtalk database, the CMU dictionary and the French part of the
ONOMASTICA lexicon. The two transcription approaches applied
in this research are a Trie approach [1] and an approach based on
binary decision trees grown by means of the Gelfand-Ravishankar-
Delp algorithm [2,3,4]. We discuss the choice of questions for these
decision trees - it may be possible to formulate questions about
groups of characters (e.g., "is the next letter a vowel?") that yield
better trees than those that only use questions about individual
characters (e.g., "is the next letter an ‘A’ ?"). Finally, we discuss the
implications of our work for G2P conversion.

1. INTRODUCTION

An important prerequisite for services involving speech
recognition and/or speech synthesis is information about the
correspondence between the orthography and the pronunciation(s).
Many applications involve using a dynamic vocabulary for which
it would be impractical (read impossible) to establish a dictionary
with complete coverage, and therefore they call for automatic
grapheme-to-phoneme (G2P) conversion.

A traditional way of handling words not present in a dictionary is
to apply a rule-based system for transcription; such systems
demonstrate impressive performance for some tasks [5]. However,
rule-based systems have an inherent problem with maintenance. It
is difficult to change some of the rules without introducing
unwanted side effects. Furthermore, porting such systems to new
tasks and especially to new languages is extremely time consuming
and requires expert phonetic knowledge. Instead, we propose a
two-step self-learning approach which automatically derives rules
for G2P conversion from training data. In the first step,
corresponding grapheme and phoneme strings in the training data
are aligned; in the second step, either a binary decision tree or a Trie
lookup data structure learns and stores G2P conversion rules from
the aligned strings.

2. ALIGNING THE DATABASES

The training data consist of many matching pairs of grapheme and
phoneme strings

Figure 1:  Alignment of graphemes and phonemes (’-’ = graphemic
/ phonemic null)

The alignment of the two strings within a pair is carried out by an
iterative Viterbi algorithm that may insert graphemic and phonemic
nulls in order to ensure that the grapheme string has the same length
as its phoneme string counterpart. The basis for this alignment is
the set of probabilities Pr( grapheme i | phoneme j), which for all
but the first iteration are estimated from the output of the previous
iteration. For the first iteration, these probabilities are estimated
from the grapheme and phoneme strings having equal length
(before nulls are inserted). More details are given in [1].

The next step is to employ this aligned database for training the
decision tree or the Trie structure. This will be described further in
the next two sections.

3.  BINARY DECISION TREE APPROACH

Binary decision trees are well-known pattern recognition tools that
have been applied to a variety of problems in speech recognition
and understanding, as well as in other fields [2,3,4]. They are
remarkable for their robustness and their ability to combine diverse
information sources. To grow a decision tree on a set of labelled
training data items, one must supply three elements:

•  a set of possible yes-no questions;

•  a rule for selecting the best question at a node;

• a method for pruning trees to prevent over-training.

The choice of the question set depends entirely on the application
(and on the ingenuity of the researcher), while the other two
elements are application-independent. For the experiments
reported here, we employed the well-known Gini criterion ([2], pp.
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103-104) to pick the best question at a node, and used the Gelfand-
Ravishankar-Delp algorithm [3] to carry out pruning.

For the G2P problem, we grow one decision tree per grapheme.
Consider the grapheme ‘G’. The training data items for the ‘G’ tree
consist of all the aligned grapheme-phoneme pairs in which the
grapheme string contains a ‘G’. The questions asked were about the
graphemic context. For instance, if we denote the position of the
grapheme of interest (‘G’) as 0, the preceding grapheme position as
-1, the succeeding position as +1, and so on, we can generate
questions like: "Is +1 ‘H’?" "Is -1 ‘U’?" "Is -2 ‘O’?", and so on.

We allowed questions about positions -5, -4, ..., -1, +1, ..., +4, +5.
Each leaf of the resulting tree will assign probabilities to possible
phonemic realizations of the grapheme. For instance, if there is a
leaf of the ‘G’ tree corresponding to [-2=‘O’ & -1=‘U’ & +1=‘H’],
this leaf should assign high probability to phoneme ‘f’. Note that in
the Trie approach (see next section) the order of grapheme
positions referred to is the same over all graphemes; in the decision
tree approach, it is possible that, for instance, the question at the
root of the ‘G’ tree will be about position +1, while the question at
the root of the ‘R’ tree concerns position -2.

In speech recognition, there is a well-known problem concerning
the modelling of a phoneme in context [4]. In the questions
considered by decision trees grown to solve this problem, it has
proved useful to group similar phonemes together: for instance, a
decision tree may contain questions like "Is -1 a diphthong?"
Although the questions in the G2P tree concern graphemes rather
than phonemes, it is of interest to see whether questions about
grapheme groups yield better trees. For our experiments, we
allowed questions about 10 classes of graphemes, which were more
or less a transposition of the phonetic classes used in [4]: vowels,
consonants, nasals, plosives, fricatives, affricatives, glicals, liquids,
glicals or liquids, and diphthongs (i.e., letters that can participate in
a diphthong).

The trees using classes of questions gave better results than those
allowing only questions on single graphemes, as expected. Note
that the first column in Table 1 gives the context span on both sides,
e.g. “1” means that questions about -1 and +1 are allowed. All
subsequent results for decision trees will thus be for trees using
question classes.

4. TRIE STRUCTURED APPROACH

The Trie consists of leaves and branches. Each leaf records
statistics about one grapheme in a well defined context. These

NETtalk

Without class questions
(%)

With class questions
(%)

Phoneme Word Phoneme Word

1 82.1 27.2 82.2 27.6

2 88.5 47.4 88.8 48.4

3 89.7 51.6 89.9 52.3

Table 1: Transcription accuracy obtained with decision trees with
and without class questions as a function of context span.

statistics are in the form of a list which, for a given grapheme Gj,
contains the number of occurrences ni of each possible phoneme φi
as found in the specific context in the entire training database.
Furthermore, each leaf has a pointer to the following leaf. The path
into the tree structure is defined by an order obtained from a
calculation of mutual information; i.e., graphemes with highest
mutual information are considered first. For details, see [5].

After the training, each node (which represents a specific
graphemic context) will have a list of possible phonemes and their
corresponding probabilities.

During the use of the Trie structure for transcribing new words each
grapheme in its context is looked up in the Trie. When the optimal
match has been found one of the phonemes available in the list on
this leaf   is output. In the most simple case this is the most probable
phoneme.

5. DATABASES

The databases used in this research comprise three corpora: the
NETtalk database [6], the CMU dictionary [7], and the
ONOMASTICA database for French [8]. The NETtalk database
consists of 20,000 American-English words and their
pronunciation. This database has the advantage that the graphemes
and phonemes have been aligned manually, allowing comparison
between automatic and manual alignment.

The CMU database does not contain alignments, but permits more
comprehensive testing of transcription accuracy, since it includes
more than 100,000 words, each accompanied by its American-
English transcription.

The third database is useful for assessing the portability of these
approaches across languages: it gives the French pronunciation of
100,000 surnames found in a French telephone directory. These
data are part of the ONOMASTICA1 database covering 11
European languages and a total of 8.5 million proper names.

Table 2 summarizes the sizes of the three databases.

1. The ONOMASTICA database is only available to aca-
demic partners in the ONOMASTICA project and only for
research purposes.

Phonemes Words

NETtalk
Train 96606 15000

Test 31174 5000

CMU dict.
Train 469074 75069

Test 187354 29999

ONOMAS-
TICA

Train 334166 63927

Test 167225 31964

Table 2: Number of phonemes and words in the training and test-
ing sections of the three databases



6. RESULTS

In this section, we first calculate the accuracy of the alignment
component, then compare the transcription accuracy of the decision
tree with that of the Trie.

6.1. Alignment

The NETtalk database is employed to evaluate the alignment
accuracy (since the NETtalk data have been aligned manually). In
Table 3, the percentage of correctly aligned phonemes and words is
shown after the first four iterations. A correctly aligned phoneme is
one located in the same position as the manually aligned phoneme,
while a correctly aligned word is a word without any alignment
errors at the phoneme level.

It is seen that the overall alignment accuracy saturates after only
two iterations.

To measure the effect of the automatic alignment on the
performance, we have carried out experiments on NETtalk with the
manually aligned data, then with the automatically aligned data.

The results in Table 4 indicate that the use of automatic rather than
manual alignment does not cause any significant drop in
performance for the two approaches.

6.2. Transcription Accuracies Obtained using
the Two G2P Approaches

The two transcription approaches are evaluated and compared to
each other. The results for NETtalk data are shown in Table 5.

The results for NETtalk suggest that given the training data
available, trees with a context span of 5 cannot be properly trained.
They also show that for this training set size (15,000 words), the
two approaches are roughly equivalent.

On CMU, with much more training data (75,000 words vs. 15,000
for NETtalk) the two approaches still have similar performance, but
less so than on NETtalk (see Table 6). They both seem to reach a

Acc. 1 Iter. 2 Iter. 3 Iter. 4 Iter.

Phon. 84.7% 94.1% 93.2% 93.2%

Word 78.1% 85.1% 83.7% 83.7%

Table 3: Alignment performance on NETtalk database

Manual alignment Automatic alignment

Context
span

Decision
tree (%)

Trie (%)
Decision
tree (%)

Trie (%)

1 82.5 82.8 82.2 82.4

2 89.2 89.1 88.8 88.9

3 90.6 89.8 89.9 89.6

Table 4: Phoneme transcription performances for Nettalk

ceiling around a context span of 3 (wider spans don’t yield better
performance).

The French ONOMASTICA tests allowed us to show that without
any modifications to the software, the Trie and the decision tree
approaches both perform well when trained and tested on a new
language (see Table 7). Note that because of the large amount of
training data, the level of accuracy is very high.

To gain insight about the strengths and weaknesses of the two
approaches, we tried to run experiments using only a fraction of the
original NETtalk training data. We kept a context span of 3 (which
generally gives good results), and increased the size of the training
data from 1,000 words to 15,000 words. The results are shown in
Table 8. The performance difference between the two approaches
when there are few training data available is probably due to the
better generalization capability of the decision trees.

We also examined the questions chosen for the decision trees
grown on CMU data. Questions about individual graphemes (e.g.,
‘B’) predominated over questions about classes, though the latter
made up about 1/3 of the questions. Among the class-based

NETtalk
Decision tree (%) Trie (%)

Phoneme Word Phoneme Word

1 82.2 27.6 82.4 27.9

2 88.8 48.4 88.9 47.8

3 89.9 52.3 89.6 50.6

4 89.9 53.0 89.7 51.4

5 89.8 52.6 89.8 51.7

Table 5: Transcription accuracy obtained on the NETtalk data-
base as a function of context span

CMU
Decision tree (%) Trie (%)

Phoneme Word Phoneme Word

1 83.3 32.7 83.7 31.6

2 89.3 49.1 88.6 46.8

3 90.8 56.9 89.0 48.1

4 91.1 58.0 89.1 48.4

5 91.1 57.9 89.1 48.5

Table 6: Transcription accuracy obtained on CMU

ONOMAS
TICA

Decision tree (%) Trie (%)

Phoneme Word Phoneme Word

1 92.3 64.1 92.5 58.0

2 97.4 88.0 96.6 74.8

3 97.8 90.2 96.6 75.2

4 97.9 90.5 96.6 75.1

5 98.0 90.8 96.6 75.2

Table 7: Transcription accuracy on French ONOMASTICA



questions, the classes vowel, consonant, and diphthong were
mentioned most frequently.

6.3. Computational Requirements

The size of the trees generated by the Trie and the decision tree for
the ONOMASTICA data range from 12Mb and 5 Mb for a context
span of 5 to 66kb and 337kb for a context span of 1, respectively.
However, both structures can be encoded much more compactly if
necessary.

Once generated, both structures can be used to generate phoneme
strings from grapheme strings very quickly (e.g., a few minutes for
30,000 grapheme strings). However, the processing time required
for training the decision tree is much greater than that required for
training the Trie. Using a SUN Sparc 20 for training with a context
span of 5 on the ONOMASTICA data, it took approximately 5
minutes to generate the Trie and 60 hours to generate the decision
tree (two expansions and two prunings). This difference is due to
the question-picking process that must be executed at each node of
the decision trees. However, the training is done off-line and only
once, so time needed for training the two approaches might not be
of a crucial importance. Note that these figures were obtained
without optimizing the software for speed.

7.  CONCLUSIONS AND FUTURE WORK

Both approaches presented in this paper are viable alternatives to
traditional rule-based systems for grapheme-to-phoneme
conversion. In a comparative study of the Trie approach and a
system based on rewrite rules, it was concluded that they yielded
approximately equal performance [9]. However, the Trie and the
decision tree approaches have an important advantage: they are
easily updated on new data and easily ported to new languages. For
rule-based systems new data calling for an extension of the rules,
or a new language, may create complications. It is well-known that
new rules can cause unwanted side-effects which again require
patches.

Of course, both the Trie and the decision tree approaches require a
training database of grapheme/phoneme pairs. If class-based
questions are to be used, the decision tree approach also requires a

Size of
training

db
(#words)

Decision tree (%) Trie (%)

Phoneme Word Phoneme Word

1000 83.2 29.8 80.5 21.5

2000 84.9 35.7 82.9 27.9

3000 86.3 40.7 84.7 32.4

4000 86.7 42.2 85.6 36.6

5000 87.2 44.4 86.5 39.3

10000 89.0 49.3 88.5 46.9

15000 89.9 52.3 89.6 50.6

Table 8: Transcription accuracy for various amounts of training
data from NETtalk (context span fixed to 3)

specification of grapheme classes. In practice, this is unlikely to
pose a problem: the decision tree approach is remarkably robust
with respect to the definitions of the grapheme classes.

Our future work will be on the search algorithms used to generate
phoneme strings from the Trie or tree structures. In earlier work [1],
some of us have already studied search algorithms that combine
bigram phoneme information with the information in the Trie to
generate a phoneme string from a given grapheme. Apart from
extending the span of this phonotactic information (e.g., to
phoneme trigrams) we are also considering an approach in which
decision trees could combine graphemic and phonotactic
information to score phoneme sequences. I.e., a decision tree might
contain questions both about the grapheme string, and about the
previously generated phonemes. We are seeking an algorithm that
generates pronunciations that cover the pronunciation space of a
word as much as possible, rather than obtaining two or three very
likely but very similar pronunciations.
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