
3D Data Driven Prediction for Active ContourModels with Application to Car TrackingJoachim Denzler and Heinrich NiemannLehrstuhl f�ur Mustererkennung (Informatik 5)Universit�at Erlangen{N�urnbergAbstractIn this paper we apply a new data driven 3D pre-diction step for active contour models to car track-ing on highways. The so called 3D bounding volume(BV) is a coarse 3D representation of a moving ob-ject, for which the 2D contour in the image planehas been extracted and tracked by active contours.By calculating the BV's shape and location in 3D anestimation of the object's motion is possible. Thus,in contrast to pure 2D tracking of the object's con-tour by active contour models knowledge about 3Dmotion is available. This is necessary, if changes inthe object's contour | for example, due to rotation| needs to be predicted.We present experiments in the area of car track-ing, which show that tracking the cars by activecontour models can be improved by the proposed3D prediction step. In addition, relative statementsabout the direction of the motion and the velocityof the cars are possible.1 IntroductionIn the past years active contour models have beensuccessfully applied to object tracking. Despite thefact that for object tracking a prediction step is anessential part, only few work is known which intro-duces a 2D prediction step into the framework ofactive contours. For example, [2] computes a 2Dprediction based on the normal 
ow measured atthe snake elements in the image. [12] proposes aKalman{snake which is capable for tracking 2D con-tours.There is one main reason for the lack of a 3Dprediction: For tracking moving contours, a predic-tion of an object's contour is only possible if 3Dknowledge about the object itself is available. Dueto the fact that active contour models are appliedto data{driven tracking no model knowledge is nor-mally available.In some application a coarse idea about the ob-jects is available, without having an explicit repre-sentation. For example, so called generic car mod-els have been used to track cars in tra�c scenes
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Fig. 1: BV for 2D contour prediction: The mappingsP, H, and C are formally described in Sect. 2.1[8, 10].the explicit parameters of the car model areestimated during the tracking itself. Another exam-ple is the generic model of humans for pedestriantracking [11]. This principle is transferred in thispaper to active contour models to introduce a datadriven 3D prediction step. For data driven trackingwhere no a{priori models of the object are availableone has to look for a description of the object whichenables to predict the 2D contour of the object byestimating the 3D position and the coarse shape ofthe object itself. The bounding volume of an object,which is a well known term in computer graphics, isthe smallest volume which completely contains theobject. These bounding volumes can be applied to2D contour prediction. The idea is the following (seealso Fig. 1): Initially extract the contour of the mov-ing object by the snake's energy minimization, thenestimate the parameters of the BV (i.e. the locationin 3D and its shape), such that the projected contourof the BV best matches the extracted active contour.Finally, use the computed location and shape in 3Dto update 3D knowledge about the motion and theshape of the object. For the next image the contourof the BV is projected into the 2D image plane toinitialize the active contour.In Sect. 2 the approach of 3D bounding volumes(BV) will be introduced. We also present the mo-



tion model and the estimation algorithm,which havebeen applied in the experimental part of this paper(Sect. 3). There, experiments in the area of cartracking on highways show that object tracking byactive contours can be improved and even relativestatements about the direction of the motion and thevelocity of the cars are possible. The paper closeswith a discussion of the results and an outlook tofuture work (Sect. 4).2 Theoretical Background2.1 3D Bounding VolumeDue to lack of space, we only shortly summarizethe idea of the BV. A more detailed description canbe found in [4]. Let M (a) be the set of 3D points ofa BV, parameterized by a vector a:M (a) = n(wxi(a);wyi(a);wzi(a))T j i = 1; : : : ; noThe upper left w denotes that the coordinates wxi,wyi and wzi of the point i refer to the 3D world.These points may be corners, edge points or in gen-eral surface points of the BV. For example, for arectangular solid, shown in Fig. 1, a parameter vec-tor a might be a = (l; w; h)T , with l; w and h be-ing the length of the edges of the rectangular solid.In general no restrictions for the object's shape aremade. The rotation R and the translation t mapthe points of M (a) to the set R; tM (a), which con-tains the rotated and translated 3D points of theBV. Now, a visibility test must be performed. In theliterature of computer graphics several algorithmscan be found (z{bu�er, scan{line, raytracing [6]).We de�ne a hiding operator H, which maps the setR; tM (a) of 3D points into the set R; tM 0(a) of visi-ble 3D points. Now, the set R; tM 0(a) � IR3 will beprojected onto the image plane by perspective pro-jection P . The result is the set R; tM 0P(a) which isequal to the 2D image of the BV's points. Finally,an operator C will compute the visible 2D contourof the BV, which leads to a set of points R; tCP(a)in IR2. These points need to be transformed to asequence of points hcii1�i�m, with ci 2 R; tCP(a),ordered counterclockwise to form a representation ofthis contour.In Fig.1 all steps of this approach are summa-rized. The mappings H and C are time critical forreal{time experiments. By taking as BV the spe-cial class of convex polyhedra these both mappingscan be done by projecting the corners of the convexpolyhedra into the image plane and calculating theconvex hull of these points. This computation is ob-viously less time consuming and can be applied toreal{time problems.For two contours hcii1�i�m and hc0ji1�j�n a dis-tance function dist(hcii1�i�m; hc0ji1�j�n), for exam-pledist(hcii1�i�m; hc0ji1�j�n) =

type of vehicle length width hightcar 4.0 2.0 1.5van 5.0 2.5 2.5truck 12.0 3.0 3.0Tab. 1: Parameters of the BV for di�erent cars.= mXi=1minc0j ���ci � c0j��	 + nXj=1minci ���ci � c0j��	 (1)is de�ned. This function measures the correspon-dence of two 2D contours. Now, for a given activecontour hc0ji1�j�n and a parameter description of aBV, the parameters R; t and a can be computed by(R; t;a)T = argminR; t;a dist(hcii1�i�m; hc0ji1�j�n) (2)where ci 2 R; tCP(a). The minimization in (2) re-sults in the parameters R; t and a of that BV, thecontour of which best matches | in the sense ofequation (1) | the active contour. Of course, am-biguities especially for the parameter R may occur(the Necker illusion); in that case, local minimamaybe reached. The experiments will show, that theseslocal minima are no problems for the prediction ofthe contour. To calculate the parameters R; t and awe use stochastic optimization techniques describedin [5].After this step we have a 3D estimate of the mov-ing object's BV. The only knowledge which is neededfor this step is a parametric representation of theBV, which has to be chosen in advance. In our ex-periments (see Sect. 3) we have taken a rectangularsolid.2.2 Motion Model and PredictionWith the algorithm presented in the previous sec-tion we can calculate for each 2D active contour theshape and location of a BV, which 2D contour bestmatches the active contour. Now, in the case ofimage sequence processing we get for each imagef(x; y; t) the parameters R(t); t(t) and a(t). Thus,an estimation of the shape parameters and the mo-tion of the BV in 3D is possible. Usual approachescan be found in estimation theory [1].Despite the fact, that the parameter vector a ofthe BV can also be estimated as described in the pre-vious section, we use for the experiments only threedi�erent parameter vectors a. This reduces the com-plexity of the search space. The parameter vectorscorrespond to three di�erent types of vehicles (car,van, and truck) and have been determined heuristi-cally and �xed in advance. The relative parametervalues can be found in Tab. 1. It is worth noting,that these values are only coarse estimations.For the motion model we apply the discrete{timemodel of a constant{velocity target [1]. The stateof the target (position, velocity) is estimated by aKalman{Filter.



Fig. 2: Results for tracking cars on a highway: the�rst and the last image of a sequence of 124 imagesare shown. First row: the extracted active contours.Second row: the estimated BV.3 Experiments and Results3.1 Experimental EnvironmentWe have tested our proposed method on highwayimage sequences (one example is shown in Fig. 2).This data set contains 10 sequences, each with alength of approximately 100 - 200 images. For the�rst image, each active contour is initialized inter-actively on the corresponding moving vehicle. Thisis due to the fact that we have no knowledge aboutthe movement of the camera and are thus not able toestimate independent motion in the image. An au-tomatic initialization in the case of known cameramotion has already been proposed in [9].Then, tracking is done with active contours with-out any prediction step. We use an active contourmodel, which is based on the original approach of[7] and which has been modi�ed to ful�ll real{timeconstraints [3].The image sequences, which have been used inthis paper, are very di�cult to process with activecontour models. The reason for this is that thereare background edges near the object (other vehi-cles), weak object contours (very low contrast), andlarge displacement of the vehicle in the image plane(especially for vehicles approaching the observer).Thus, normally the active contour looses the mov-ing vehicle after some images.Once the active contour has lost the object, thesecond experiment starts. As long as the estima-tion error of the Kalman{Filter is above a certainthreshold, tracking is done without the prediction,i.e. initialization of the active contour. After theKalman{Filter error is below the threshold, the pre-diction step by the BV is activated, for which thelocation in 3D has been already estimated and up-dated during the previous images. Then, for eachnew image the 3D location of the BV is predictedand its 2D contour is projected into the image plane.This 2D contour is used to initialize the active con-tour, which extracts the object contour by the nor-mal energy minimization.

3.2 Results
Fig. 3: Tracking a car approaching the observer bythe BV. Even the pose estimation is correct.
Fig. 4: Tracking a truck approaching the observer.In our experiments a total number of 13 vehi-cles have been tracked. The average number of im-ages, in which a vehicle has been visible, is 98 im-ages. Without any prediction only one sequence hasbeen completely tracked without an error. With theproposed 3D prediction step, we were able to cor-rectly track the vehicle over the whole sequence in6 of the 13 sequences. The average number of im-ages, in which a vehicle could be tracked, was 28images without prediction and 46 images with theprediction step. For one sequence neither with norwithout prediction step the vehicle could be tracked.The reason is, that there is a very low contrast inthe image and the distance to the vehicle is large,which results in a very small object contour. It iswell known that for such kind of image data activecontour models are not suited.In the following we will illustrate the advantagesof the algorithm. As one can see in Fig. 2, the BVdoes not correctly model the real 3D position of thevehicles. Nevertheless, the computed 2D contour ofthe BV, which is taken as initialization of the activecontour for each new image, is precise enough totrack the object correctly.In Fig. 3 and Fig. 4 two example sequences areshown, for which the tracking without 3D prediction



fails. Even if the large displacement of the contourin the image plane could be estimated, the simul-taneous growing of the contour cannot be predictedwithout a 3D model. As one can see, with the BVprediction step, the vehicles can be tracked correctly.In Fig. 5 the estimated relative distances for thethree vehicles (the van, the tanker, and the truck)are shown. No absolute 3D position can be com-puted, because no exact model for the vehicles andno calibrated cameras are available. But as one cansee, the relative change in the distance correspondsto the movement of the camera towards the threevehicles.
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0 20 40 60 80 100 120Fig. 5: Estimated relative distance of the three ve-hicles (see Fig. 2) to the camera over the image se-quence by means of the BV. The change in distancecorresponds to the movement towards the vehicles.4 Discussion and FutureWorkIn this contribution we have shown, that the pro-posed prediction method for active contour modelsis well suited to improve the performance of a datadriven tracking. Weak object contours, large dis-placements of the moving object and sudden loss ofthe object can be handled. The BV itself of coursecannot be taken as an exact representation of themoving object, i.e. the BV does not always modelthe real shape of the object. Nevertheless, the rel-ative motion (in this case the shrinking or growingdistance), which is the necessary information for aprediction step, is always modeled exactly. Withthis information statements about the motion direc-tion and velocity of the object can be made, whichis impossible without a 3D estimation.Up to now, there are several problems. The ini-tialization of the Kalman{Filter parameters is a verydi�cult task. Thus, if the active contour cannottrack the object without prediction su�ciently long,the Kalman{Filter may not be in steady state, andthus predict a wrong motion. In that case, as foreach wrong initialization of the active contour, theobject gets lost.A second problem occurs, when the active con-tour slowly looses the object's contour. Then, theKalman{Filter will predict an increasing distance of
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