
A New Energy Term Combining Kalman{Filter and ActiveContour Models for Object TrackingJ. Denzler, H. NiemannUniversit�at Erlangen{N�urnbergLehrstuhl f�ur Mustererkennung (Informatik 5)Abstract. In the past years active contour models have been applied in the �eld of object tracking.For object tracking a prediction step is necessary, especially when tracking in natural scenes with animhomogeneous background or for fast moving objects. Thus, in our paper we introduce a new energyterm which combines a Kalman{Filter based prediction with an active contour energy description. Forthis, a new energy term is proposed which can be applied for all prediction steps for which a con�denceof the predicted positions is available. We present results which show the improvement due to thisnew energy term for tracking a moving object in front of an inhomogeneous background and a partialocclusion during the tracking.Key words: active contour models, tracking, prediction1. IntroductionIn the �eld of real{time computer vision the so called active contour models (snakes,ACMs) have proven to be a promising approach to data driven object tracking [6, 7].There are di�erent approaches for solving the problem of energy minimization [1, 4, 9].Most of them have been developed for the analysis of static scenes and segmentation[5]. For the use in image sequences, they have mostly been transferred without anymodi�cation. Thus one gets the best results by assuming a homogeneous backgroundand a small displacement of the object. Object tracking using snakes fails in most of thecases, when an heterogeneous background is in the scene, in the case of partial occlusionsof the tracked object, and for weak object contours.For object tracking in image sequences a so called prediction step is needed. With-out prediction tracking is only possible for very simple objects, using a homogeneousbackground and a small displacement of the object between consecutive images. Thedisplacement of course depends on the smoothing of the energy, but there is a trade{o�between smoothing and accurate contour extraction. Small objects are likely to disap-pear if the smoothing is to large.For ACM a prediction step can be applied in three di�erent ways. First, the predictioncan be done independent of the energy minimization. In the following we will call thisan explicit prediction which means that in a separate prediction step the position of theACM is predicted. Second, the prediction can be included in the energy minimization bymodelling the coherence in time of the snake's new position with the positions observed1



during the past images. This means that positions in the image which are likely forsome snake elements, i.e. which lie on the estimated path of the movement, will get alower energy. The term implicit prediction for this prediction method takes into accountthat the prediction is implicitly done during the energy minimization. Third, one cancombine the explicit prediction and implicit prediction; in the explicit prediction thepositions of the snake elements are predicted and these predicted positions are weightedin the energy term.Up to nowmostly the �rst of the three prediction steps are mentioned in the literature.For example [2] takes advantage of the normal 
ow near the snake elements to iterativelypredict the movement of the whole contour before before the energy minimization isdone. One example which could be classi�ed as an implicit prediction is the Kalman{Snake of [10]. But this approach does not model the coherence in time through an extraenergy term for the ACM. The disadvantage of the explicit prediction is that despiteof an accurate prediction, missing energy minima can result in errors during the energyminimization (see Sect. 4).In our approach we show that a combination of implicit and explicit prediction resultsin an improvement of our real{time tracking system [7]. In the explicit prediction, weuse a Kalman{Filter. The estimated positions in the next image are weighted in theenergy term of the snake by using the error covariance of the estimations which one getsautomatically from the Kalman{Filter approach for each estimation. This can be donewithout increasing the computational e�ort.In the next section the mathematical preliminaries are introduced, both for the ACMand for the Kalman{Filter approach. In Sect. 3 this results in the de�nition of a newenergy term which directly combines an implicit and explicit prediction. In Sect. 4 wewill present results for this new approach which compare ACMs for object tracking in thecase of no prediction, a pure explicit prediction by a Kalman{Filter and a combination ofKalman{Filter and a new energy term for ACMs. The paper concludes with a discussionof the approach.2. Mathematical Background2.1. Active Contour ModelsIn the following we describe extraction of objects contours by ACMs for static images.Thus we have left out the indices for the time t of the image. An ACM can be describedas a parametric function v(s) = (xs; ys), s = 0; 1; : : : ; n� 1, with xs 2 [0; xmax]; ys 2[0; ymax]. Such an ACM has an energy E� de�ned byE� = n�1X0 [Ei(v(s)) + Ef (v(s)) + Ec(v(s))] : (1)In most cases the internal energy Ei is given byEi(v(s)) = 12 ��(s)jvs(s)j2 + �(s)jvss(s)j2� ; (2)2



where vs and vss are the �rst and second derivatives of v with respect to s. Theparameters �(s) and �(s) describe the sti�ness and elasticity of the ACM. Ef describesthe forces of the image on the snake and Ec summarizes all the other constraints of thesnake, for example, connections of snake elements to image features (spring forces) orthe limitation of the distance between the snake elements [9].The position of the ACM in an image is computed by minimizing the energy (1). Forminimization two approaches can be found in the literature. The �rst approach treats theminimization as a search problem in the 2D image plane [1, 11]. The second approach isbased on the variational calculus [9], by iteratively solving the Euler{Lagrange di�erentialequations. In the discrete case the following equations must be solved [9]:�(s)(v(s) � v(s � 1)) � �(s+ 1)(v(s + 1)� v(s)) +�(s � 1)(v(s� 2)� 2v(s � 1) + v(s)) � 2�(s)(v(s � 1)� 2v(s) + v(s+ 1) +�(s + 1)(v(s) � 2v(s + 1) + v(s + 2) +�@(Ef +Ec)@xs ; @(Ef + Ec)@ys �T = 0Let us rewrite this in matrix form for s = 0 : : :n� 1:Ax+ fx(x;y) = 0 and Ay + fy(x;y) = 0 (3)withx = (x0; x1; : : : ; xn�1)T ;y = (y0; y1; : : : ; yn�1)T ;fx(x;y) =  @(Ef +Ec)@xs ����s=0 ; @(Ef +Ec)@xs ����s=1 ; : : : ; @(Ef +Ec)@xs ����s=(n�1)!T ;andfy(x;y) =  @(Ef +Ec)@ys ����s=0 ; @(Ef +Ec)@ys ����s=1 ; : : : ; @(Ef +Ec)@ys ����s=(n�1)!T :For the computation of the unknown vectors x and y an iterative procedure is used thatconverges if x(k) = x(k�1) and y(k) = y(k�1), where x(k) and y(k) are the solutions atiteration step k. Thus, the equations (3) can be written as:Ax(k) + fx(x(k�1);y(k�1)) = 0 = 
(x(k�1) � x(k)) (4)Ay(k) + fy(x(k�1);y(k�1)) = 0 = 
(y(k�1) � y(k)) (5)with 
 2 IR being the stepsize, and transformed to:x(k) = (A+ 
I)�1 �
x(k�1) � fx(x(k�1);y(k�1))� (6)y(k) = (A + 
I )�1 �
y(k�1) � fy(x(k�1);y(k�1))� (7)Introducing a prediction step within this approach means that an additional energy termmust be found which handles the coherence in time of the movement during the tracking.As one can see in equations (6) and (7) the derivative of the energy must be computed.Thus it would be advantageous, if one can �nd an energy term for which a closed formsolution for the derivatives with respect to xs and ys exists. Such an energy term willbe developed in Sect. 3. 3



2.2. Kalman{FilterIn [10] a Kalman{Snake has been introduced. We describe in the following a moresimple and thus computationally less expensive dynamic system for the motion of thesnake elements in the 2D image plane. The snake elements are uncoupled. For thisreason, only n 3� 3 matrices have to be inverted, instead of one 3n� 3n matrix.Now for time varying images we have to add the time parameter to the snake model.Thus, xs;t and ys;t means the position of the s{th snake element in x{ and y{directionat time t. The dynamic system for the motion without distortion is then formulated by(see [3])xs;t+1 = xs;t + h _xs;t + h22 �xs;t; _xs;t+1 = _xs;t + h�xs;t; �xs;t+1 = �xs;t (8)ys;t+1 = ys;t + h _ys;t + h22 �ys;t; _ys;t+1 = _ys;t + h�ys;t; �ys;t+1 = �ys;t; (9)with s = 0 : : :n�1, which means that we assume constant acceleration which is distortedby the model noise mnt = (0; 0;mn3;t; : : : ; 0; 0;mn3n+3;t)T 2 IR6n (see equation (12)),where the left upper index m denotes that the noise is related to the model. Only thepositions of the snake elements can be observed, thus we get for the observation equationszs;t = xs;t + ons;t; zn+s;t = ys;t + onn+s;t (10)where ons;t = (on0;t; on1;t; : : : ; on2n�1;t)T is the observation noise, where the left upper in-dex o stands for observation. The complete description of the system can be summarizedas follows:xt = (x0;t; _x0;t; �x0;t; x1;t; _x1;t; : : : ; �xn�1;t; y0;t; _y0;t; �y0;t; y1;t; : : : ; �yn�1;t)T (11)xt+1 = Bxt + mnt with E[mntmnTt ] = mN t (12)zt = Cxt + ont with E[ontonTt ] = oN t (13)B = 0BBB@ Bh : : : : : : 00 Bh : : : 0... . . . ...0 : : : : : : Bh 1CCCA 2 IR3n�3n with Bh = 0@ 1 h h2=20 1 h0 0 1 1A (14)C = 0BBB@ 1 0 0 0 0 0 � � � 00 0 0 1 0 0 � � � 0... ... ... ... ... ... ... ...0 : : : : : : : : : : : 1 0 0 1CCCA (15)In these equations (11) is the state vector, (12) the state transition equation, (13) theobservation equation, and the matrices (14) and (15) the transition and observationmatrix, respectively. 4



Without going into detail, the following recursive update equations can be computed[8], starting with an initial state estimation the error covariance matrix of which is P (�)0 :� error covariance matrix extrapolation P (�)tP (�)t = BP (+)t�1BT + mN t (16)� Kalman{Gain matrixKtKt = P (�)t CT hCP (�)t CT + oN ti�1 (17)� error covariance matrix update P (+)tP (+)t = [I �KtC]P (�)t (18)We have left out the complete state estimation equations in this brief overview of thetheory. The important part of this approach for our new energy term is the errorcovariance matrix P (+)t (equation (18)) which gives a measure for the con�dence of thesnake elements' estimated positions. This is exactly the measure which is needed in theenergy, as it will be described in the next section.Instead of equations (11) to (15) any other system description is possible. We havealso tested a model description in which a common displacement in the image plane forall snake elements have been introduced, to satisfy the constraint that contour elementsof the moving object have a common motion direction. Then the system cannot beuncoupled and due to the increased computational e�ort our real{time experimentsshowed a worse result compared to the model description in equation (8).3. Introduction of a new Energy TermIn Sect. 1 we have motivated the advantage of a combination of implicit and explicitprediction. Let us now assume that we get a prediction for the position vp of the ACMin one image as a result of an explicit prediction step. Again we have left out thetime index t. Such a prediction step is in our case a prediction by the Kalman{Filter(Sect. 2.2).The following energy term for an implicit prediction takes into account the resultsof the explicit prediction step. To be more precise, we recursively calculate the errorcovariance P (+) (compare equation (18)) of the predicted positions. On the one hand, ifthe error covariance is small, the prediction is rather accurate; on the other hand, a largecovariance means, that the predicted positions are not very reliable. An energy termEp(v(k);vp), depending on the actual position v(k) at iteration step k and the predictedposition vp is shown in (19). It shows the demanded behavior, i.e. small energy on apredicted position, if this position is very reliable, and large energy, if the position is5



unreliable,Ep(v(k);vp) = � 1j2�P (+)j1=2 exp��12 (v(k) � vp)T �P (+)��1 (v(k) � vp)� (19)The advantage of this term is that there exists a closed form of rEp which is requiredin the Euler{Lagrange di�erential equations (3).rEp(v(k);vp) = @Ep@v(k) = �Ep(v(k);vp)�P (+)��1 (v(k) � vp) (20)Thus the equations which must be solved (compare equations (4) and (5)), becomeAv(k) + Ep(v(k);vp)�P (+)��1 (v(k) � vp) +rf(v(k)) = 0 (21)The principle of this new energy term (19) is clari�ed in Figure 1. Without the new
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Figure 1. Left: external energy of the contour of a circle without prediction. Right: in
uence of thenew energy term. Predicted positions of snake elements are weighted with respect to theircon�dence (point A, strong con�dence; point B, weak con�dence).energy term, the external energy which mainly determines the object's contour, lookslike Figure 1, left. One can see that the predicted position of the explicit prediction hasno in
uence on the shape of the ACM. If there is a strong background edge near a weakobject's contour, the snake elements will move toward the strong background edge.In Figure 1, right, the predicted positions are weighted in the external energy by thecon�dence of the prediction which is described by the error covariance matrix P t(+).The snake{element on the left side (point A) has been strongly weighted due to a smallerror covariance, while the prediction of the element on the right side (point B) hasonly a small in
uence on the external energy. Thus, this element can move into thetrue minimum, while the �rst element will remain on its predicted position, even if theobject's contour is weak or if there is a strong background edge near the object.6



Figure 2. Images 420, 430, 440, 450, 460 of a real{time experiment. First row: without prediction.Second row: prediction using a 2D motion model and a Kalman{Filter (see Sect. 2.2). Thirdrow: prediction in combination with the new energy term, described in Sect. 3.4. Experiments and ResultsWe have used an experimental setup described earlier in [7]. A toy train is movingin front of a robot on which a camera is mounted. The movement of the robot iscalculated by matching the center of the snake with the center of the image. We havechosen a light object in front of an inhomogeneous background (see Figure 2). Wehave tested the quality of tracking using snakes for three di�erent approaches: withoutprediction (Figure 2, �rst row), with an explicit prediction step, based on the a 2Dmotion description in the image plane (Figure 2, second row), and with an combinationof implicit and explicit prediction based on the new energy term in the ACM (Figure 2,third row).Using the standard variational approach without any prediction (Figure 2, �rst row)the strong background edges near the moving object cause an error in the contour ex-traction. Using the explicit prediction step, described in Sect. 2.2 the tracking can beimproved. But after the partial occlusion of the object, the ACM is caught by theoccluding background object (Figure 2, second row). This behavior can be eliminatedby introducing the new energy term described in Sect. 3. In Figure 2, third row, theprediction which has a strong con�dence after 40 successfully tracked images, is strongly7



weighted and thus the ACM does not lose the object contour.5. ConclusionIn this paper we have developed a new approach for combining Kalman{Filter and ACMsin the context of object tracking. For object tracking with ACMs a prediction step isessential. Three di�erent methods for including a prediction step have been introduced.For the special case of a prediction by Kalman{Filter, we have proposed an energyterm which handles the con�dence in the predicted positions within the energy of thesnake. The con�dence which can be described by the error covariance matrix is onevalue which is returned by the iterative Kalman{Filter equations. Thus, for any modelof the object's motion which can be described within the Kalman{Filter approach, amixture of implicit and explicit prediction can be done using the proposed energy termin the ACM energy. One advantage of our approach is that a closed form solution of thederivative of this energy term with respect to the snake elements exists which is neededin the variational calculus to iteratively solve the Euler{Lagrange di�erential equations.Another advantage is the small additional computational e�ort compared to other purelyimplicit and explicit prediction steps, presented earlier in the literatureOur experiments showed for a 2D movement of the snake elements that the per-formance in real{time object tracking can be increased, even for partial occlusions andstrong background edges near the object.References[1] A. Amini, T. Weymouth, and R. Jain. Using dynamic programming for solving variational problemsin vision. IEEE Trans. on Pattern Analysis and Machine Intelligence, 12(9):855{867, 1990.[2] M. Berger. Tracking rigid and non polyhedral objects in an image sequence. In ScandinavianConference on Image Analysis, pages 945{952, Tromso (Norway), 1993.[3] C.K. Chui and G. Chen. Kalman Filtering. Springer Verlag, Berlin, Heidelberg, 1990.[4] L.D. Cohen and I. Cohen. Finite-element method for active contour models and balloons for 2{Dand 3{D images. IEEE Trans. on Pattern Analysis and Machine Intelligence, 15(11):1131{1147,1993.[5] T.F. Cootes, C.J. Taylor, D.H. Cooper, and J. Graham. Active shape models | their training andapplications. Computer Vision Graphics and Image Processing, 61(1):38{59, 1995.[6] R. Curwen and A. Blake. Dynamic contours: Real{time active splines. In A. Blake and A. Yuille,editors,Active Vision, pages 39{58. MIT Press, Cambridge, Massachusetts, London, England, 1992.[7] J. Denzler and H. Niemann. Combination of simple vision modules for robust real{time motiontracking. European Transactions on Telecommunications, 5(3):275{286, 1995.[8] A. Gelb, editor. Applied Optimal Estimation. The MIT Press, Cambridge, Massachusetts, 1979.[9] M. Kass, A. Wittkin, and D. Terzopoulos. Snakes: Active contour models. International Journal ofComputer Vision, 2(3):321{331, 1988.[10] D. Terzopoulos and R. Szeliski. Tracking with Kalman snakes. In A. Blake and A. Yuille, editors,Active Vision, pages 3{20. MIT Press, Cambridge, Massachusetts, London, England, 1992.[11] D.J. Williams andM. Shah. A fast algorithmfor active contours and curvature estimation.ComputerVision Graphics and Image Processing, 55(1):14{26, 1992.8


