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ABSTRACT

In this paper we present a new approach of combining sto-
chastic language models and traditional linguistic models to
enhance the performance of our spontaneous speech reco-
gnizer. We compile arbitrary large linguistic context depen-
dencies into a category based bigram model which allows us
to use a standard beam-search driven forward Viterbi algo-
rithm for real time decoding. Since this recognizer is used
in a dialog system, the information about the last system
utterance is used to build dialogstep dependent language
models. This setup is verified and tested on our corpus of
spontaneous speech utterances collected with our dialog sy-
stem. Experimental results show a significant reduction of
word error rate.

1. INTRODUCTION

In the last years it has been shown that the consideration of
language constraints is vital for effective and efficient speech
recognition. Typically, these language constraints are mo-
deled in a so called language model which will restrict the
allowed seqences of words in an utterance [7]. The a prio-
ri probability P(w) for a word sequence w = wiws ... wn,
can be expressed as a product of conditional probabilities
P(w¢|wyws ... wy—1). Approximation of the history of the
word w; is done by limiting the number of considered pre-
ceding words to n. For this n-gram approach n is typically
restricted to n = 2 (bigram) or n = 3 (trigram):

Pw) = P(wn)-[] P(wi|wicngs.. wis)

t=2

n—1

Another type of stochastic language models are category
based n-gram models [3]. Words are pooled in categories or
word classes, usually under linguistic aspects. If one word
is allowed to belong to more than one category, all possi-
ble category sequences z = z122...zmn leading to a word
sequence w = wiwWs ... Wy have to be considered when cal-
culating it’s probability:

Pw) = Y P(x)P(wi|z)-

m

JIPGil zimnsa - zic) Plwi] )
=2 n—1

Unfortunately, the search space of a Viterbi continous
speech decoder grows exponentially with the order n of the

language model. Thus, for large vocabulary real time Viter-
bi decoding on standard hardware, the context has to be
reduced to n = 2.

On the other hand, linguistic models can easily describe
large context dependencies using a grammar G to genera-
te a language L(G) of accepted word sequences. Grammars
can be used as language models for speech recognition [2].
The approach is quite similar to the usage of stochastic lan-
guage models. The conditional probabilites P(w) of allowed
sequences can be made by following paths in the generati-
on of L(G) and multiplying the inverse branching factor at
each step. Grammar based models are known to be very
restrictive and have a quite low perplexity for a comparable
coverage. Unfortunately their robustness against spontane-
ous speech phenomena is fairly limited.

Thus, it seems promising to combine both types of mo-
dels: linguistic models are expected to lead to a better word
accuracy for “clean” utterances whereas stochastic models
are much more robust for spontaneous speech.

An approach to represent a finite state grammar as a word
bigram for recognition of strongly structured commands can
be found in [8]. The lexicon size is considerably increased
by indexing the words to maintain context information. It
is shown how the overhead can be reduced drastically by
using a tree structured lexicon. Our approach is based on a
category based decoding algorithm. Thus, no lexicon entries
have to be duplicated.

In this paper we present a new approach of combining
linguistic models and stochastic models. First we describe
the basic models for recognizing short phrases and combine
the grammatical units to generate a linguistic bigram mo-
del. Then we show in detail the mechanism for combination
of stochastic and linguistic models. Performance measures
are evaluated using our corpus of spontaneous speech data
collected by our spoken dialog system [6, 10] which is able to
answer inquiries about German Intercity train connections.
It is accessible via public telephone line since January 1994
and we are recording all calls to the system. Different pha-
ses of system performance are described in [5] as well as
phenomena observed in spontaneous speech dialogs.

2. LINGUISTIC BIGRAM MODELS

The linguistic models used in our approach can be represen-
ted as a finite state grammar or, graphically, as transition
networks. They are constructed manually while investiga-
ting a subset of our collected corpus. They are not expected
to cover all utterances of this subset but to represent fre-
quent sentences such as:

Ich wiirde gerne morgen friith so gegen halb sieben
von Miinchen nach Hamburg fahren (1 would like
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Figure 1. Example of the transition network for
German time expressions

to take a train from Munich to Hamburg tomorrow
morning about half past six)

ich méchte vor vier Uhr in Stuttgart ankommen (1
want to arrive in Stuttgart before 4 o’clock)

nein, am Freitag (no, on Friday)

The first step of building these models is to define a set of
not necessarily distinct word categories such as City, Num-
ber24, or Number60, which are the terminal symbols of the
finite state grammar. They are used to define transition
networks of arbitrary complexity, which are the nonterminal
symbols of the finite state grammar. First we define transiti-
on networks for simple expressions, such as SimpleTime (Fi-
gure 1). These networks are used as building blocks to define
networks for more complex expressions like Time. Time can
handle German time expressions like:

zwischen sechs Uhr und sieben Uhr dreiffig (bet-
ween six o’clock and seven thirty)

This process is continued to build networks that cover com-
plete utterances, e.g. answers to the question “At what time
would you like to leave?”. A typical answer to this question
is the eliptical utterance shown above, but of course com-
plete sentences are possible, too:

Ich mochte zwischen sechs Uhr und sieben Uhr
dreifiig abfahren (I would like to leave between
six o’clock and seven thirty)

This kind of transition network is a model for one particular
dialog step. It can be used as a dialogstep dependent mo-
del, assuming the recognizer in a dialog system is informed
about the previous system utterance. Additionally, all dia-
logstep dependent networks can be combined to build one
dialogstep independent transition network which does not
depend on a prior: information.

Before this kind of model can be stored in a category ba-
sed bigram, every node of the transition network has to be a
word category. Thus, we expand the models by successively
inserting the simple networks into the more complex net-
works to build a flat transition graph. The nodes of every
inserted subnetwork are marked to ensure that the nodes
of the resulting graph are distinct. For example, when in-
serting the subnetwork SimpleTime into Time (Figure 1) in

two different positions the resulting Time network contains
two different nodes for Uhr.

In our case, 439 different words are stored in 40 categories
and 8 subnetworks are used to build 5 dialogstep dependent
networks and one dialogstep independent network. After ex-
pansion, the dialogstep independent transition graph con-
tains 231 nodes. Each node represents one of the 40 word
categories and is identified by a unique name. These 231
nodes are used as categories for our category based bigram.
Therefore all relevant history information can be preserved
by storing only the predecessor category during decoding.
The conditional emission probabilities P(w;|z;) of word w;
in category z; can either be assigned uniformly or they can
be estimated by parsing the utterances of our corpus that
are covered by the linguistic models. Currently, the bigram
transition probabilities P(z;|z;) are assigned uniformly ac-
cording to the branching factor. The resulting category ba-
sed bigram model is suitable for direct usage within the
recognizer [10].

3. COMBINATION OF LANGUAGE MODELS

Construction of linguistic models aims to incorporate as
much of the utterance history as possible into the recogniti-
on process. Many different grammars and formalisms have
already been built and used in natural language recognition
and understanding. Unfortunately there is not great success
in building models for spontaeous speech. Typical effects
of spontaneous speech are (by definition) spontaneous and
are usually not conforming to any grammars. On the other
hand, stochastic n-gram models are robust against effects
of spontaneous speech,

It is well known, that a more specialized model results
in better recognition rates, but robustness is only gained
using more general models. The basic idea of our approach
is to combine a highly specialized linguistic model and a
robust stochastic model. Combination of language models
is done the same way as combining HMMs: the resultung
model is made up by parallel search through both of them.
It is up to the Viterbi recognizer to find a path through one
of the models. Since several paths are possible, the reco-
gnizer will decide on the path with the highest probability.
Paths within the linguistic language model and within the
stochastic model are treated equally. Therefore the combi-
ned model is expected to inherit the specific advantages of
both components: the highly specialized linguistic model is
expected to lead to better paths for grammatical correct ut-
terances whereas the stochastic model ist expected to cover
the spontaneous effects of speech.

Both models are represented as categorial bigrams. In or-
der to build a parallel model the underlying HMMs have to
be combined. An HMM M = (A, B, x) consists of transiti-
on probabilities A, emission probabilities B and a vector
of probabilities of initial states. Combining two HMMs M,
and M5 is performed by building a new HMM M according
to the following block matrices:

(A 0 (B 0 _ (05 m
a= (1) 2= (F) == (0508)
Using this method, the transition from one HMM to the
other one is prohibited and the inital states of both models
are entered with equal probability. Therefore, it is possible
to combine arbitrary language models but to keep the paths

separated. All paths stay in the same language model, there
is no transition from one model to the other.



[ sample | calls [ user turns | words |
training 804 7732 | 27852
validation 54 441 1577
test 234 2383 8346

Table 1. Overview of training-, validation-, and test
sample

4. DIALOGSTEP DEPENDENT MODELS

In a spoken dialog system the interaction between user and
system leads to a quite predictable kind of utterances. In
fact, the system uses predictions to restrict the recognizers
search space for subsequent user utterances. This is per-
formed by using different, dialogstep dependent language
models. One observation is that the system has a set of
typical questions, e.g. asking for the departure city. An ave-
rage user usually answers these questions. To evaluate this,
the corpus was partitioned into sets of user utterances ac-
cording to the previous system utterance. Thus, the actual
utterance had no influence on the dialogstep it was assigned
to. That way, we got a subcorpus of user utterances for each
of our 14 dialogsteps. Using these subcorpora we made up
dialogstep dependent stochastic language models.

When building dialogstep dependent partitions of the
whole corpus, a subcorpus might have insufficient size. Some
of the dialogsteps have quite low occurance. Small subcor-
pora of training data would lead to a mismatch between
model and reality. We solved this problem by generalizing
the dialogsteps. Generalization is done by combining dialog-
steps which lead to similar user utterances. The resulting
subcorpus is considerably larger and sufficient for the trai-
ning of stochastic models.

As shown in the previous section, the usage of linguistic
models promises better performance. Therefore we made up
linguistic models for each dialogstep, too [1]. The dialogstep
dependent linguistic models only cover uttererances that
correspond to the preceding system utterance and are quite
strict. Unfortunately, in a dialog system the user is free to
deviate from the modeled behavior. As a consequence such
an utterance would be recognized poorly: it is out of the
coverage of that linguistic model.

Again, the solution is to combine a highly specialized,
dialogstep dependent linguistic model and a more general
(dialogstep dependent) stochastic model as described in the
previous section. Both of them are better suited for a par-
ticular dialogstep since they are based on a specific subcor-
pus. Therefore they are expected to result in better reco-
gnition rates as well as faster computation.

5. EXPERIMENTS & RESULTS

Our collection of spontaneous speech data, which totals to
8 h 36 min of speech signals, is divided into a training sample
used for training of acoustic parameters and stochastic lan-
guage models, a validation sample for optimizing recognizer
parameters, and a test sample (Table 1). Varying acoustic
conditions and system development steps are represented in
these samples proportionally (Table 2). The linguistic mo-
dels were built manually while investigating 1742 utteran-
ces that were recorded by microphone (Table 2) before we
defined our training sample. For comparison, we removed
the 536 microphone utterances from our test sample for all
experiments reported in this paper.

All linguistic models were built without training of transi-
tion probabilities and word emission probabilities; these we-
re assigned uniformly. The dialogstep dependent linguistic

| users | acoust. cond. | turns |
seminaive microphone 1742
seminaive PABX 584
experts PABX 491
naive,seminaive PSTN 7739

Table 2. Overview of user type and acoustic condi-
tions

model was built using the five dialogstep dependent transi-
tion networks ’INITIAL’, 'TIME’, ’GOALCITY’, "SOURCECITY’,
DATE’ together with the dialogstep independent transition
network as backdrop model. The dialogstep independent
model covers 67.1 percent of the utterances in the test sam-
ple, it’s perplexity on this subset is 20.34. The dialogstep
dependent linguistic model covers 64.0 percent of the test
sample, 1ts perplexity on these utterances is 15.26.

The stochastic models are trained using a set of 300 di-
stinct categories, which consist of 64 handcrafted catego-
ries, 235 single-word categories containing the most frequent
words not included in the handcrafted categories and one
category for all other words. The lexicon consists of 1558
words.

Seven different dialogstep dependent stochastic models
were trained on distinct subsets of the training sample and
tested on the corresponding subsets of the test sample, whe-
reas the general stochastic model was trained on the whole
training sample. For example, the "TIME’-model was trai-
ned and tested on utterances following questions like “At
what time would you like to leave?” or “At what time would
you like to arrive?”.

Our approach of combining bigrams described in section 3
is suitable for combining arbitrary category based bigrams.
As we were particularly interested in combining stochastic
and linguistic models and we had two stochastic and two
linguistic models, there were four possible combinations.
Additionaly we evaluated our system with all models for
themselves and with no language model at all.

The perplexities of all stochastic and combined linguistic-
stochastic models on the test sample can be found in Ta-
ble 3. As we expected, there was no reduction in perplexity
by combining different models; since the probability of all
utterances that are not covered by our linguistic model is
halved. The resulting word accuracies of all models on the
test sample can be found in Table 4. The dialogstep depen-
dent linguistic model performs much poorer than the dia-
logstep independent linguistic model since it is very restric-
ted. When combined with a stochastic model, the dialogstep
dependent linguistic model outperforms the dialogstep in-
dependent linguistic model. Combining the baseline system
(dialogstep independent stochastic model) with a dialogstep
dependent linguistic model reduces the word error rate by
3.3 percent while a dialogstep dependent stochastic model
reduces the word error rate by 4.3 percent. A 6.0 percent
reduction is achieved by combining dialogstep dependent
linguistic and stochastic models.

The corresponding real time factors on a HP735 work-
station can be seen in Table 5. Of course, the dialogstep
dependent linguistic model is much faster than any other
model (70 percent CPU-time reduction compared to the
baseline system). The dialogstep dependent stochastic mo-
del leads to a 15 percent reduction of CPU-time. The best
performing model, the combination of dialogstep dependent
models, does not need significantly more CPU-time than the
baseline system.



stochastic model
2 general  dst.dep.
5 = none 22.00 18.22
@8 general [ 2447 20.20
= 8 dst.dep. 23.36 18.76

Table 3. Perplexities of different combinations of
language models

stochastic model
= none general dst.dep.
5 <  hone 47.69 26.87 25.72
50 ¥ general [ 38.25 26.36 25.67
£ £ dst.dep. [46.49 | 25.99 25.26

Table 4. Word error rates resulting from different
combinations of language models

6. SUMMARY

In this paper we presented a uniform approach to combine
linguistic and stochastic language models. Liguistic langua-
ge models define a recognition grammar and cover large
context dependencies, but are very restricted. On the other
hand, stochastic models are more robust. Linguistic models
can be represented in the same formalism as stochastic mo-
dels. We use a categorial bigram representation for both of
them. For combining two (arbitrary) language models we
constructed a parallel model which allows the unmodified
recognizer to search in both models in parallel. Preliminary
experiments with a reduced training set have been conduc-
ted and showed a substantial improvement in recognition
rate.

A sample of about 7700 utterances was used for training
stochastic dialogstep dependent language models. A smaller
subset of about 1700 utterances was selected for construc-
ting the linguistic models. The new combined model reduces
the word error rate by 3.3 percent and leads to a marginal
increase in computation time. While this is much less than
our preliminary experiments with reduced training sets pro-
mised, it is still a remarkable improvement for recognition
of spontaneous speech. We think that our approach is of
special interest for domains where user utterances are quite
restricted and only small training samples are available.

7. FURTHER WORK

Currently we use uniform distributions for the linguistic
models. These should be replaced by estimations according
to training set. The transition from one language model to
another is prohibited. More complex utterances could be
handled by allowing transitions between different langua-
ge models in special states, e.g. during silence periods. For
further evaluation, calculation of the word accuracy (WA)
should be substituted by calculation of the accuracy of se-
mantic concepts (SA). When integrated in a spoken dialog
system, the recognizers SA plays a dominant role while it’s
WA is irrelevant. The role of language models will be further
investigated.
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stochastic model
= none general dst.dep.
5 = none 3.98 3.08 2.60
& ¥ general [ 2.04 3.86 3.50
E E dst.dep. [ 0.64 | 3.53 3.10

Table 5. Real time factor resulting from different
combinations of language models
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