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ABSTRACT

In this paper discuss three basic problems of cur-
rent spoken dialog systems: (1) the problem of
understanding speech, (2) the additional prob-
lems imposed by spontaneous speech, and (3) the
problem of dialog processing. We describe dif-
ferent definitions of the term wunderstanding and
propose some theses for an interpretation system.
We show two principal methods for enhancing
the robustness against phenomena of spontaneous
speech. Then we discuss several definitions of
the term dialog used within the speech commu-
nity. Interpretation of utterances within a dialog
context is necessary to resolve ambiguities. Af-
ter that we discuss some factors of dialog control
that have great influence on the next user utter-
ance. Since evaluation of dialog systems is not yet
standardized, we show the definition of a measure
for the systems capabilities to understand utter-
ances. This measure can be calculated automati-
cally. Finally, we report some figures for our own
spoken dialog system. The references given in this
paper are expected to be a quite comprehensive
starting point for further readings.

1 INTRODUCTION

Currently, we see a fairly large number of auto-
mated systems upcoming which pretend to guide
a natural spoken dialog with a human [28, 32, 5,
30,2,3,7,9,14,17, 19, 24]. Unfortunately, every-
one has got his/her own meaning for important
things like wnterpretation, understanding, dialog
or quality measures. These different views of the
world are mainly caused by the fact that there
is no commonly agreed standard for applications
nor a common benchmark for dialog systems.

In this paper we want to shed some light on the

terms understanding and dialog. While some of
the theses given in the paper might be provoca-
tive, we aim to start discussions in the community
about proper (and commonly agreed) definitions.
In the following section we discuss possible defi-
nitions and properties of the term understanding
in the context of spoken utterances. Aspects of
understanding spontaneous speech are treated in
section 3. In section 4 we discuss the term dialog
in the context of spoken human-machine dialogs.
After that we summarize in section 5 the cur-
rent approaches to rate various aspects of dialog
systems. In section 6 we present a short descrip-
tion of our own demonstration system and present
some evaluation results.

2 UNDERSTANDING SPEECH

A typical spoken dialog system consists of a
word recognizer, a parser, and a dialog manager.
While there exist different approaches (like an in-
tegrated knowledge base coupled with a search
mechanism, compiled network, blackboard archi-
tecture), most of the systems mentioned above
utilize this kind of modular approach. Consider-
ing these modules we can ask the questions: what
1s understanding and in which module 1s it per-
formed? Experts in different fields have differ-
ent views of the understanding process. Some of
them are:

Understanding = recognizing the word se-
quence. An utterance might be called under-
stood when the correct (i.e. actually spoken) se-
quence of words was recognized. From this point
of view the words are to be identified with their
meaning.

Understanding = building internal struc-
ture. Here a sequence of words is seen as just



a carrier to transport intentions from the speaker
to the hearer. This means that words (or acoustic
waveforms) have no meaning per se but could
be replaced by other words (or word sequences)
which carry the same intention.

Understanding = deducing all conse-
quences. While an internal structure is just a
collection of data, the effect of this data has to
be considered. A suggestive example is the usage
of performative verbs like in | judge you guilty!.
Consequences are known and must be deduced in
order to obtain all implications of an utterance.

Understanding = appropriate and intel-
ligent reaction. In a theory of black boxes
where we are just tired to explain the invisible
understanding process, we can say a person or
system has understood if it reacts in an appro-
priate and intelligent way. This might include
performing actions (e.g. Stop!) or replying to a
statement (e.g. Answer this question!).

This set of possibilities to define the term un-
derstanding speech is not intended to be complete.
It should show that a variety of plausible descrip-
tions 1s available and reside in different scientific
fields, from philosophy to engineering. But this
variety does not help any further since they do
provide a verbal description, but they don’t spec-
ify any methods for implementations. Since we
are interested in having an operational system,
we need more concrete guidelines for specifying
the understanding process.

From the system engineers point of view we
came across a set of heuristics which are shown
below. They constitute the foundation of our
demonstration dialog system described later.
While these theses are to some extent ad hoc, un-
scientific, and unproven, they still seem to work
quite well.

These 1 Understanding speech s based on the
wnterpretation of semantic information. Speech is
just a carrier for pieces of semantic information.

Everything below semantics is not considered.
While the syntax is relevant to analyze an utter-
ance, for understanding the intentional content
we can safely ignore all morphological and syn-
tactic information like words or NPs, VPs and so
on. By definition the semantic content abstracts
from the actual wording. We are interested in
some kind of meaning, not in the surface form.

These 2 We need a formalism to represent se-
mantic information. We need a mechanism to

interpret semantic information. We need to sep-
arate data and algorithms.

We assume that a parser returns (mainly/only)
semantic information about the utterance. Thus
the information exchanged between the parser
and the dialog manager has to be represented
in some semantic language. On the other hand
the interpretation process that “makes sense” of
the users utterance has to consider dialog context
and world knowledge. Therefore an interpreta-
tion process utilizing different knowledge sources
is started on the semantic representation — re-
sulting in the understanding of the utterance.
Coupling the representation formalism and the
interpretation mechanism in a compound know-
ledge base might cause difficulties regarding the
maintenance of the system.

These 3 For semantic description of utterances
we need an adequate level of representation — not
too simple and not too complicated.

We hope that nearly every knowledge engineer
would agree that finding a proper representation
formalism is not a science but an art. In principle
all representation formalisms are supposed to be
of equal power. But there is never the right one.

These 4 It is not useful to represent or interpret
all possible relations of objects. Only a small part
of them is meaningful and relevant in the dialog
context.

While there are approaches to make up the
most general knowledge base of the world, we
think that spoken dialog system does not re-
ally need to deduce everything. Applying large
amounts of world knowledge would lead to in-
creasing sets of ambiguities which are meaningless
within the current domain of the system. Restric-
tion of the system capabilities to a certain (small)
world increases the effectiveness for “proper” di-
alogs that do not leave the application domain.

These 5 Idioms and phrases need to be described
as a whole. Ambiguities that are generated by tak-
ing the verbal interpretation are (usually) unin-
tended.

Idiomatic and phrasal expressions are used that
often in (spontaneous) speech that they deserve
simplified processing and could be easily excluded
from ordinary linguistic analysis. A simple pat-
tern matcher can assign a semantic interpretation
to phrases like May | ask you a question? without
performing expensive analysis steps.

These 6 Utterances containing the same mean-
g should have the same representation, utter-



ances containing a similar meaning should have
a similar representation.

Apart from the idiomatic and phrasal expres-
sions, the composition principle is a basic prop-
erty of the language: further descriptions of ob-
jects are simply performed by attaching PPs or by
relative clauses. Therefore the resulting semantic
representation should reflect the minimal change
imposed by this description by having only small
parts modified. Thus, the composition principle
should be employed into the semantic representa-
tion formalism.

These 7 Understanding utterances can be per-
formed by stmple deduction rules with local scope,
together with the generation of references into
some environment.

An environment is a suitable place to store ini-
tial world knowledge as well as dynamic refer-
ents. Given a structured semantic representation
induced by the composition principle, we claim
the existence of simple deduction rules. The in-
terpretation process is applying these rules and
results in chains of deduction steps.

These 8 For the representation of elementary
actions a small number of primary types is suf-
ficient. Further distinction is performed by addi-
tional attributes.

In a particular application domain we just need
to represent a few relevant types of actions. Ac-
cording to [27] it is appropriate to have only 12 of
them. While this might be a quite domain depen-
dent design decision, we still believe that a small
number of primary actions is sufficient.

These 9 Not every ambiguity has to be resolved.
Ambiguity in utterances might be present but ir-
relevant. Ambiguity might be used intentionally
or systematically and must be preserved in that
case.

A well known example for a structural ambi-
guity is the sentence | saw the man with the tele-
scope. While it is hard to tell the owner of the
telescope, this sentence can be translated easily
into, for instance, German — retaining this am-
biguity. However it is a quite hard problem to de-
cide automatically, whether some ambiguity has
to be resolved or might/must remain present in
the resulting semantic description.

These 10 An understanding system is nonmo-
notonic. There is no “proven” knowledge; “facts”
make only sense with respect to their contert.

Utterances or even parts of a single utterance
might be contradictory. Since a speaker could not
be forced to talk in first order logic, we have to
expect contradictions. Self repairs within sponta-
neous speech (cf. next section) are a special case
of contradiction. In the interpretation mechanism
there must be provisions to revise or even “forget”
objects or attributes.

These 11 An interpretation system 1is incom-
plete. There are always propositions which could
not be interpreted.

Since individuals have different models of the
world, there 1s currently no chance to find the
most general model'. Considering the current
state of the art it is useful to limit the systems
capabilities to a certain small domain and a sim-
ple task. We need to accept that a spoken dialog
system is allowed to fail.

These theses have quite some impact on the
resulting system. By considering them we get a
clearer idea of the capabilities and limits of the
overall system as well as its components. Obvi-
ously, some of these theses could be discussed.
This is what they are made for!

3 SPONTANEOUS SPEECH

Spontaneous speech differs from clean language
and in the theses shown above there was no
provision to deal with specific phenomena ob-
served in spontaneous speech. Common effects
are (cf. [25, 33]): elliptic utterances, irregular
word order, self corrections, restarts, or utter-
ances containing multiple sentences. These ef-
fects are more often observed than regular, gram-
matical utterances. Everyday speech does not fol-
low the hard rules of grammar. A more detailed
analysis shows that:

e prosody and speaking speed differ from read
speech,

e utterances follow a quite simple pattern with
low linguistic complexity,

e users’ creativity in building new utterances is
very limited, they use the same words as the
system (parrot syndrome) or they complete
system utterances using ellipses, and

o effects of false starts, hesitations and self cor-
rections are not systematic — they can hap-
pen at every word position within an utter-
ance.

1 This model must include the idea of self reference —
another difficult problem.



Considering these findings, we need special pro-
visions to automatically understand spontaneous
utterances. First of all, the word recognizer has
to be trained with real data, i.e. data containing
an appropriate amount of these irregular utter-
ances. Both steps of training the word models as
well as the language models benefit from a sam-
ple of spontaneous data. Variations in prosody
and speed are mainly incorporated into the word
models. The other effects mainly influence the re-
sulting language models. Recent advances in the
field of speech recognition show that the language
models have a large impact on the recognizers ac-
curacy.

A major problem is the linguistic analysis of
the effects of spontaneous speech described above.
We assume that the linguistic analysis is per-
formed by a parser, which utilizes a lexicon and
a grammar. For the analysis of ungrammatical
input there are two different directions:

e All variations of expected ungrammaticality
are analyzed and a grammar of spontaneous
speech 1s build by merging these additional
rules with a grammar of written language.

e The grammar only contains proper rules and
all ungrammaticality has to be handled by the
parsers ability to deal with partial parses.

The first case seems computational expensive
since it allows nearly arbitrary combinations. Us-
ing a search mechanism we have to find the best
parse out of many different “ungrammatical” (but
modeled!) continuations. Considering the possi-
bility of misrecognition within the acoustic rec-
ognizer, this approach would always find an in-
terpretation — even when processing garbage in-
put. Actually, this approach is counterproductive
when we consider the word recognizer to deliver
not only the best word string but a word lattice
or a word graph. We can easily image that due to
a few rules of spontaneous phenomena the search
space explodes.

A robust linguistic processor needs to be able to
analyze partial utterances and to represent par-
tial parses. In this case the grammar contains
the clean theory not extended with rules to cover
spontaneous phenomena. It is up to the parser
to find maximal consistent subsequences in the
recognized word string or word graph. For that
purpose the parser utilizes a lexicon and a set of
grammar rules that define possible combinations
of words as well as the semantic representation
of the phrases resulting from these combinations.
Traditionally, a parser can either analyze a given

input with respect to the underlying grammar or
it fails. Thus, all spontaneous speech phenomena
that are to be understood by the system have
to be modeled in the grammar. Apart from the
fact that it is quite unrealistic to foresee all types
of errors, corrections etc. this approach becomes
prohibitive when the word recognizer delivers a
word graph instead of the best word string. Using
such an interface it is the task of the parser to find
the best scoring grammatical(!) path through the
graph. But if the grammar models ungrammati-
cal strings that may occur in spontaneous speech,
the grammar becomes worthless for separating
grammatical from ungrammatical paths through
the graph. Furthermore, this approach is com-
putationally too expensive since it allows nearly
arbitrary combinations.

Therefore a less rigid parser must be used which
allows partial parsing if the grammar does not
permit a complete analysis of the input. Such a
robust parser does not fail if no result spanning
the whole input can be generated but delivers one
or more partial results instead. These partial re-
sults represent grammatically well-formed utter-
ance fields. A sequence of such utterance field
objects (UFO) can then be handed over to the di-
alogue manager which tries to combine the parts
using contextual knowledge.

4 HUMAN-MACHINE-DIALOG

In this section we want to clarify the third of the
keywords given in the title of this paper. Please
keep in mind that we restrict ourselves to task
oriented spoken dialogs between a human and a
machine. For the moment human—human dialogs
or multimodal dialogs are not considered.

4.1 WHAT IS A DiALOG?

In a dictionary [1] you get two? basic definitions
of the word dialog: a conversation between two or
more people and an exchange of itdeas or opinions.
Since the term dialog is explained by other terms
(conversation or exchange) we can not make use
of this definition for our problem.

On the other hand, several so called dialog sys-
tems have already been built. They are not com-
parable since every system developer has a differ-
ent view of a dialog regarding quality of a dialog
or power of their systems. In the following we
distinguish three classes of dialog systems. Their

2The other definitions are not relevant in our context.



Type | Initiative Response

Menu | system direct answer,

no history

direct answer,
limited history
answers, questions of
both partners,

large history

Q&A | user

Conv. | mixed

Table 1: Different types of dialog systems.

main difference lies in the role of the dialog initia-
tive and the sort of expected response. An short
overview 1s given in Table 1.

Menu Systems are controlled by the system.
All system utterances are of the kind Do you want
choice a, b, or ¢c? and the user is just allowed to
answer directly. A typical example for this kind
of systems is the automated hotline telephone ser-
vice of a large company, which is typically based
on touch tone recognition in spite of the presence
of speech recognition technology.

Question & Answer Systems are designed
in a way that the user takes the initiative and
formulates a complete request. The response is a
set of data that fulfills the request. In rare cases
it 1s possible to refer to the result of the previous
request. Typically, a dialog consist of one or two
user turns. The original ATIS systems meet this
definition.

Conversational Systems have the ability to
move the initiative from one dialog partner to the
other one (and back again, of course). Dialogs
contain several turns and they contain requests,
answers, clarifications, confirmations, and so on.
In conversational systems the reaching of a com-
plex goal is split into several steps which are per-
formed in sequence, while in Q& A systems these
steps are combined into a single exchange. The
later conversational ATIS and the family of the
SUNDIAL systems are typical examples for this
class.

The given order shows increasing dialog com-
plexity. The systems tasks are extended, too: the
interpretation process needs to apply more know-
ledge for understanding an utterance, and the
conversational capabilities of the dialog manager
require more elaborated dialog models and ac-
cess to the dialog history. Obviously, the class of
conversational systems is the desired solution for
speech communication systems. For other modal-
ities we already have some examples of success-
ful systems (e.g. automatic cash machines, flight

Speech

Figure 1: Understanding demonstrated by dialog
behavior.

schedules information) in our everyday life. In the
following we concentrate on conversational dialog
systems.

With this view of a dialog system we get back
to the four different definitions of the term “un-
derstanding” shown in section 2. The only plausi-
ble definition remaining is that of a proper system
reaction. Figure 1 illustrates this point of view.
In the following two subsections we discuss the
remaining problems of interpreting an utterance
and finding a proper system reaction.

4.2 INTERPRETING UTTERANCES

Interpretation of an utterance can be separated
into several steps:

e A sequence of semantic descriptions is con-
structed by a parser which applies linguistic
knowledge to the recognized word string or
word graph. As shown in sections 2 and 3, in
general there is no chance to find a parse cov-
ering the whole utterance in every case. Infor-
mation about the order of the semantic units
is needed for processing of some of the spon-
taneous effects, like self repairs.



e These semantic descriptions have to be em-
bedded into an environment containing the
dialog context (anchoring). The dialog con-
text is used for the disambiguation of el-
lipses. The environment has to be dynamic
(cf. These 10), it defines the focus of the cur-
rent interpretation [20].

e The final step in the interpretation process is
to apply the deduction rules (cf. These 7) to
the anchored semantic objects. These rules
represent the world knowledge and the do-
main knowledge of the system, and their task
is to extract the meaning® of the utterance.

As a result we get the pragmatically relevant
information conveyed in the utterance. Based on
that and the current dialog state an appropriate
system reaction has to be planned.

4.3 SYSTEM REACTION

It remains to find a proper system reaction.
When we assume that the interpretation process
found the correct meaning of an utterance, we
need to specify the mechanism to generate a sys-
tem utterance given a dialog state and an user ut-
terance. We just mention, that there have been
proposals for rule based systems and finite au-
tomata to accomplish this task. For a user it is
irrelevant by which means the system utterance
was decided on. However, there are some factors
to be considered which influence the users opinion
about the system:

Confirmation strategies specify if the sys-
tem has to ask the user for confirmation of pa-
rameters. With the current state of the art we
must consider misrecognition and misunderstand-
ing. A way to limit the bad effects of misunder-
standing is to show the user parts of the inter-
nal state, i.e. to present the pieces of informa-
tion found in the user utterance: Look, this is
what | understood. Concerning the eloquence of
the system, there are different strategies of confir-
mation possible: no confirmation at all, isolated
confirmation of single parameters, confirmation
of several parameters, and confirmation of para-
meters together with a new system initiative. De-
pending on the overall system performance one of
these static strategies might be selected manually.
Moreover, a “smart” dialog system could try to
figure out the current understanding performance
based on the number of rejections or corrections

3 According to [1] the meaning is something that one
wishes to convey, esp. by language.

within the user utterances. This kind of dynamic
adaptation of the confirmation strategy shows the
users that the system has problems or recovers
from trouble in understanding the user.

Initiative strategies have already been dis-
cussed in section 4.1: a sophisticated system is
supposed to perform a mixed initiative dialog.
Nevertheless, the initiative strategies might be
changed dynamically according to the current un-
derstanding performance, too. A conversational
system is expected to guide the dialog when the
user is not doing so. An active user leading the
conversation should not be restricted. Thus, the
initiative strategy has to be adapted to the user
according to his abilities.

Formulation of system utterance is well
known to affect the users behavior. Given the
same informational content, different wordings
can make the system look smart or dumb. Even
the quality of the synthesized speech affects the
users utterances, both in content and in appear-
ance: some users tend to mimic the systems utter-
ances using the same words and the same prosody.
A lot of these effects are already reported from
WOZ experiments [11, 23].

Currently, there are no sufficient examinations
of the effect of the different strategies. However,
with the number of demonstration systems the
corpora of spoken human machine dialogs is grow-
ing rapidly. A systematic variation of the strate-
gies outlined above is worth to be performed.
This will lead to much better models of real users
and their behavior.

In order to model the system reaction, there
seems to be agreement in the community to use
dialog acts [6] to describe the users and systems
intentions. In a very simple interpretation system
it is sufficient to extract the parameters of each
utterance that are relevant for the task. When
a system evolves towards conversational capabil-
ities, the representation of conversational inten-
tions benefits from the usage of dialog acts. How-
ever, there is still no commonly agreed defini-
tion of the term dialog act [8, 26, 31, 22]. While
we would appreciate a proper definition we still
doubt that a comprehensive and complete list of
dialog acts is possible and would be accepted by
everyone. There are always excuses to use a dif-
ferent ontology or methodology.

On the other hand there seems to be agreement
that the dialog planning process is determined by
the most recent user utterance, the dialog state
(i.e. all user and system utterances of the cur-



rent dialog), and the static strategy parameters.
Therefore we can see the dialog state as a dis-
crete point in the space of possible dialogs, and
the generation of an system utterance is a tran-
sition in this dialog space. It is the goal of a
dialog step function DSTEP to specify the sub-
sequent dialog state for each particular point in
the dialog space. The DSTEP function represents
the systems dialog model, and it contains the ef-
fect of the dynamic strategies. Again, there is
no common agreement on how to implement this
transition function.

5 EVALUATION METHODOLOGY

After building a spoken dialog system, we want
to find a rating whether it is a good or a bad
system. There are two principal approaches to
system evaluation [29]: the black box evaluation
methodology only considers input output behav-
ior of the whole system, whereas in the glass box
evaluation the intermediate results of modules are
analyzed.

When analyzing the systems behavior, the cru-
cial problem is that there is no single “reference”
dialog. Judging the appropriateness of a system
utterance has to be performed manually by a ref-
eree. This independent expert has to provide an
annotation of each system utterance in the con-
text of the current dialog. There could not be a
reference answer since several different system re-
actions might “make sense” and are permitted as
proper system utterances. When the annotation
of each dialog is performed, the corresponding
rating of appropriate system reactions can be cal-
culated automatically. The next and most impor-
tant measure for system evaluation is the result-
ing dialog success rate, i.e. finding out whether
the users general request was satisfied. Finally, a
dialog is supposed to be better when it was per-
formed faster, both in the number of turns and
the time elapsed to get the information. Unfor-
tunately, these measures differ largely for differ-
ent domains and tasks. Thus, a comparison of
different systems is not easy to accomplish. First
approaches to standardized system evaluation are
reported in [29, 12, 16].

Evaluation of single components requires access
to internal protocols of the dialog system, e.g. at
module interfaces. As described above, the typ-
ical result of a word recognizer is a word string
or word graph, the result of a parser is a seman-
tic description. Since we want to deal with larger
corpora of data, we prefer to have an automatic

method to calculate the performance of a mod-
ule. Apart from the dialog manager the other
modules can be evaluated by comparing their ac-
tual result against a reference result, i.e. for the
word recognizer we need the transliteration and
for the parser we need a semantic annotation of
the users speech. As argued above, the dialog
manager could not be evaluated by comparing the
system utterance with some reference utterance.
For the recognizer and the parser this approach
is feasible and leads to ratings that could be com-
pared with other systems.

Word Accuracy (WA) is a widely accepted eval-
uation measure for word recognizers. The auto-
matic calculation of WA for a given set of recog-
nition results requires the existence of reference
transliterations for all spoken utterances. The
reference answers consist of a transcription of
what was actually spoken. WA is calculated as
a percentage using the formula

Ws 4+ Wr+ W,
1_$)% (1)

where W 1s the total number of words in the
transliteration, and Wg, Wy, Wp are the num-
ber of reference words which were substituted,
inserted, and deleted in the recognized string, re-
spectively. This measure is easily extended to
rate the accuracy of word graphs considering their
density.

WA= 100(

Accordingly, we define the quality of a parser
by calculating the semantic concept accuracy
(CA) which considers only the information con-
tent represented by semantic units (SU):

SUs +SUr+ SUp
— 2
R Y

where the semantic units are attribute-value pairs
that are present in the semantic annotation.
The substitutions, insertions, and deletions are
counted in analogy to (1). The definition of
the attributes relevant for understanding is de-
termined by domain dependent task parameters
which reflect the functionality of the system, and
by dialog control markers for words and phrases
like yes, no, good morning, could you repeat etc.

A =100 (1

As an intermediate result we can calculate the
coverage of the parser by measuring the semantic
concept accuracy obtained on the transliteration,
i.e. assuming to have a perfect word recognizer.
This gives an indicator of the parsers ability to
deal with phenomena of spontanecous speech?.

4 Interestingly, the parser does not need to find correct
parses for all utterances. Actually there might be parts
which could not be parsed. If these parts do not contain
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Figure 2: Architecture of the automatic evalua-
tion system.

In order to obtain a measure for the under-
standing accuracy, the CA is calculated when
feeding actual recognizer output into the parser.
Thus, the chain of word recognizer and parser are
evaluated as a whole which 1s a step further to-
wards black box evaluation of a system. As a
side effect the comparison between WA coverage
and the obtained understanding accuracy shows
the robustness of the parser against recognition
erTors.

Utilizing the reference transliterations and the
semantic annotations all these measures can be
calculated in an automatic way. Figure 2 shows
this procedure, where the program eval_seg is
used to calculate the Levenshtein distance. A
mapping procedure might be necessary to per-
form format conversion between the parser out-
put and the semantic annotation formaft.

6 A SPOKEN DIALOG SYSTEM

semantic information, the retrieved semantic units are not
distorted and the resulting CA is not affected.

pragmatic interpretation
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application
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language best string /
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Figure 3: Architecture of our spoken dialog sys-
tem.

At Erlangen University we have installed a train
time table information system (T3I) which is able
to answer inquires about German intercity train
connections. This system is shown in Figure 3
and contains the three major modules word rec-
ognizer, parser and dialog manager. This system
is connected to the public telephone network and
was used to collect dialogs with naive users. A
first collection of about 1000 dialogs was used as
a test corpus to evaluate the system and the mod-
ules (cf. [14, 4]). Table 2 gives an overview of the
test corpus.

A semantic annotation scheme was developed
containing the task parameter names and the di-
alog control marker as attributes. Together with
their corresponding values they make up the se-
mantic units for equation (2). Additional attrib-
utes had to be introduced for underspecified (el-
liptic) utterances, e.g. when replying a sole city
name to a question on the location of departure.
Disambiguation is performed by the dialog man-
ager using the dialog context, so the semantic an-
notation needs to represent this ambiguity. Thus
we obtained a total of 38 different classes of se-
mantic units.

Total number of dialogues 1092
Total number of utterances 10114
Total number of words 33477
Average of words per utterance 3.31
Total number of semantic units 14584
Different classes of semantic units 38

Table 2: Figures of the test corpus.

Discussions arose when calculating the seman-
tic concept accuracy since the semantic units con-
sist of the pair of a parameter and its value. Lets



say, for example, the user had uttered

Ich mochte morgen nach Bonn
(I want to go to Bonn tomorrow)

(3)

and the correct semantic annotation consists of
the two SUs

[goalcity : Bonn, date:tomorrow| . (4)

A substitution of morgen (tomorrow) with the
word morgens (in the morning) results in the se-
mantic units

oalcity : Bonn, partofday :mornin 5
g y p y g

leading to a misunderstanding of both the seman-
tic concept and its value. On the other hand the
substitution of Bonn with Berlin would result in

[goalcity : Berlin, date:tomorrow]| (6)

with only the value of the parameter goalcity
being misunderstood. One could argue that the
latter case is more severe than the previous, but
the definition (2) judges both as equal®.

Since we consider both the parameter name
and the value as properties of the semantic unit,
the whole unit must be recognized correctly. A
quick comparison with possible word recognizer
errors shows, that (2) is an appropriate measure.
When counting the word errors we do not consider
homophones to be less severe (e.g. | look in your
[eyes | ice]), and we do not consider a mismatch in
tense or gender as a less severe error. All of them
are just wrong. The calculation of the semantic
concept accuracy is performed in analogy result-
ing in an error no matter how close the result is.

First results using this dialog corpus have al-
ready been reported in [14]. In [13] we found
that, while the system evolved, 53.1% of all di-
alogs were finished successfully. An average dia-
log took 154 seconds of connection time and con-
tained 9.2 user utterances. Using this corpus with
our current word recognizer, we obtained a WA of
79.1% [18]. The parser has a coverage of 92.8% on
the transliterations of spontaneous speech. The
sequence of word recognizer and parser results in
a CA of 79.8% [4]. We found that in our case
the relation between WA and CA is nearly lin-
ear, which means that the word recognizer and
the parser are well matched.

7 SUMMARY

In this paper we tackled the difficulties of defin-
ing the term understanding. We presented a set

5 Actually, it does not matter whether only the para-
meter name, only the value, or both are misunderstood.

of theses which we think are worth to be consid-
ered when building a speech understanding sys-
tem. While robustness against phenomena of
spontaneous speech might be modeled explicitly,
we favor the approach of generating partial de-
scriptions. Three different definitions of the term
dialog were presented and only the conversational
system was found challenging for further research.
Final steps of understanding an utterance are the
anchoring within a dialog context and the contex-
tual interpretation utilizing world knowledge. A
dialog control mechanism which specifies the sys-
tem reaction is seen as the application of a dialog
step function. In this model, every dialog state is
represented as a discrete point within a space of
possible dialogs. Dialog strategies, e.g. regarding
the confirmation or dialog initiative, are repre-
sented as parameters of the dialog step function.
Experiments have shown that the actual wording
of the system utterance is an important strategy
parameter, too. For evaluation of understanding
systems, we presented the measure semantic con-
cept accuracy which is calculated in analogy to
word accuracy. A short description of our own
spoken dialog system, some effects observed, and
the resulting figures complete this paper.
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