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Abstract

This paper presents a parallel control algorithm for pattern understanding using
a sematic network formalism for knowledge representation. Any-time capabilities,
which are important for real world applications, are achieved by the use of iterative
optimization techniques, like e.g. genetic algorithms, and the parallel processing of
knowledge.

First results from an application of the algorithm in the linguistic analysis of the
speech understanding system EVAR are given to demonstrate the feasibility of the
approach.

1 Introduction

Knowledge based processing of complex patterns, like e.g. the understanding of continu-
ously spoken speech, requires the mapping of sensor data into a system’s internal model
of the task domain in order to fulfill a given task in an optimal manner. Usually this
mapping is provided by several different operations which may be divided into two phases
of processing. First, in a data-driven phase operations for preprocessing and initial seg-
mentation are applied to achieve a description of the signal in terms of meaningful simple
constituents, like e.g. word hypotheses. Results are input to knowledge based or symbolic
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processing, which has to extract the information relevant to perform a suitable reaction
by man or machine. Due to both non perfect segmentation and ambiguous knowledge
this requires the processing of many competing intermediate results, which is considered
as a main reason for the fact that symbolic processing usually cannot meet real time
restrictions imposed by many applications.

Parallel processing offers the desired speed, and a variety of algorithms for problems
from data-driven processing have been developed, especially in image processing [8]. In
contrast, parallel symbolic processing is much less investigated, although some major
problems of the field, like e.g. parallel search techniques [9] or parallel knowledge repre-
sentation [3], are discussed in the literature.

In this paper we describe a control algorithm for semantic network based pattern
understanding and its use in a speech understanding system. The algorithm focusses
on the achievement of any-time behaviour by both parallel knowledge processing and
parallel iterative optimization. Section 2 briefly describes the network formalism and
introduces an example which is used throughout the remainder of the paper. Section
3 gives the main idea of the control algorithm and Section 4 discusses the development
of parallel inferences in the sematic network that allow both a fast computation of the
desired symbolic description and the efficient restriction of large search spaces. Finally,
Section 5 reports first results, and Section 6 gives a conclusion and an outline of further
work.

2 Knowledge Representation

A semantic network is a directed, labeled graph consisting of nodes (called concepts) for
the representation of facts or objects and links that provide relations between concepts.
In our formalism, which is discussed in detail in [6], a concept may have an arbitrary
number of attributes and structural relations for the definition of its (physical) properties
and their dependencies.

Concepts may be related to another by three different types of links. Whereas part links
for the decomposition of a concept into simple constituents can be found in most semantic
network systems, concrete links are introduced to allow the representation of different
levels of abstraction that must be considered in pattern analysis. Finally, specialization
links which are also common to most semantic networks, are used to establish inheritance
of attributes, relations, and links from general concepts to more special ones.

In order to increase the efficiency of knowledge representation, a concept is allowed to
represent several variants of an object or a conception. For that purpose, part and concrete
links may be marked obligatory or optional and may be grouped in sets of modalities,
each modality providing a valid description of a concept. Note, that by this means less
concepts are neccessary, and therefore the size of the knowledge base is kept moderate,
but ambiguities are introduced that have to be resolved during analysis.

Figure 1 gives an example from the knowledge base of the speech understanding system
EvVAR [7]: On the morpho-syntactical level, a complex syntactic constituent, the noun
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Figure 1: An excerpt from the linguistic knowledge base of the speech understanding
system EVAR [7].

group (SY_NG), is decomposed into syntactic classes, like e.g. article (SY_DET), adjective
(SY_ADJ), noun (SY_-NOMEN), and proper noun (SY_NPR). As indicated by the dashed
boxes, a noun group may consist either of a proper noun on its own (first modality of
SY_NG, like e.g. “Erlangen”) or may be build up from an article, an adjective and a
noun (second modality, like e.g “the next train”). Since article and/or adjective could be
omitted in an utterance these parts are marked optional in the latter. Via a concrete link
each of those concepts is linked to a concept H-WHYP which serves as an interface to
intial segmentation, i.e. word recognition.

The utilization of knowledge for the computation of instances and modified concepts
is defined by six inference rules [6]. Instances establish a correspondence between some
portion of the signal and the related concepts. The computation of an instance (e.g. for
SY_PNG) is strictly data—driven and demands the existence of instances for at least all
obligatory parts (e.g. SY_.PRAEP, SY_NG) and concretes. In contrast, the computation of
modified concepts for the use of restrictions from intermediate results may also be modell—-
driven, i.e. values for SY_NG may be restricted, if a modified concept for SY_PNG already
exists.

3 An iterative control algorithm

In Section 1 the computation of a symbolic description that allows the optimal fulfilment
of a given task was defined as the objective of knowledge based processing. If the goals
of analysis are represented by competing goal concepts C,,,1 < 1 < £, in the semantic
network formalism described above, the desired description can be obtained from an
instance [(C,,).

Assuming the availability of a heuristic judgement function G for the scoring of in-
stances as a prerequisite, instantiation of the goal concepts results in a judgement vector

g = (GU(CL)),- -, GU(C,)), -, GU(Cy))), (1)

where [(C,,) is the instance computed for the i-th goal concept. An optimal description
is provided by an instance with a maximal judgement G(I(C,,)), and it is the purpose of
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a control algorithm to provide an efficient solution to this optimization problem. Utilizing
the fact that instantiation of concepts only depends on

e the assignment (A;, O]'(i)), t=1,..., u, of segmentation results O, to some attributes
A; of primitive concepts, and

e the choice (CY, Hl(k)), kE=1,...,\ of a modality H; for each instance of a concept
(') that enables multiple definitions of an object,

the computation of a best scored instance may be solved by combinatorial optimization.
For that purpose, the current state of analysis is summarized in a (g + A)—dimensional
state vector

ro= ((A,0;9);(Cr, H™)) (2)
and the result of instantiation is rewritten as a function

g(r) = (GU(Cy)),...,GU(Cy)),....GU(Cy))lr), (3)
of the state vector r.

For the reliable computation of a best scored instance from the judgement vector in
Equation (3) a cost function ¢(r) is introduced. The distance

6(r) = min{(e: — g(r)/llg(r)I))"} (4)

from an ideal decision function e; is an appropriate choice, provided that a perfect seg-
mentation and the choice of the “correct” state of analysis support the instantiation of a
single goal concept. For example consider the decision functions e; defined by

(5)

For the minimization of ¢, iterative optimization procedures, like e.g. threshold acceptance
and the great deluge algorithm [2], or genetic algorithms [5], are applied. Figure 2 gives
an outline of a genetic algorithm for optimal instantiation, since in a comparative study

o — { 1 if (', provides the desired symbolic description

0 else.

[4] this algorithm results in the best speed of convergence.

Parallel iterative optimization is provided by a simultaneous evaluation of state vec-
tors, or — in case of genetic algorithms — subsets of state vectors. To prevent a single
search from convergence in a local minimum, processors may exchange results according
to different strategies; see [1]. Since communication is expensive in our computing envi-
ronment we employ a simultaneous independent search, i.e. do no state exchange until
the first processors has finished its search.

The use of iterative optimization results in the desired any-time-behaviour, since a
coarse solution is obtained, if less computing time is available, and a refined result is
computed, if more iterations can be performed. However, according to Equation (3) the
evaluation of a state vector r requires the computation of instances for the goal concepts
in each iteration. Since a decrease in computing time for each iteration will result in
a better any-time-behaviour, in the next section parallel processing is applied to the
semantic network operations neccessary for the computation of instances.



create a set of state vectors R.:={rc1,...,7p}
FOR ALL »r.; € R,
compute g(r.;) and ¢.; = ¢(r.;) according to Equation (3) and (4).

WHILE computing time is still available

initialize a new set R, := 0

create a temporary set Ry := {ry1,...,7,} by application of
selection, crossover and mutation to elements from R,

FOR ALL 7¢; € R;

compute g(r¢;) and ¢;; = ¢(rs;) according to Equation (3) and
(4).

select the p best states from R.U R; and put them into R,

let R.:= R, and report the best scored instance obtained from the

state vector 7. peqr With lowest cost as the solution

Figure 2: A genetic algorithm for optimal instantiation.

4 Parallel Knowledge Processing

Parallel semantic network systems usually make use of an isomorphic mapping of concepts
of the knowledge base on the processors of a parallel hardware [3], which is appropriate if
concepts are simple. To prevent concepts with a large number of attributes and relations
from being a bottleneck in parallel instantiation, in our approach to parallel knowledge
processing a network of concepts is automatically converted into a fine grained task graph.
This is achieved by a two—stage process which first computes the number of (obligatory and
optional) instances needed for the instantiation of goal concepts by a top—down expansion
of the knowledge base, see Figure 3 for an example from the network in Figure 1.

The expanded network is then refined into a directed, acyclic graph D = (V, E), where
each node v; € V represents the computation of an attribute, a relation, or the judgement
of an instance. The creation of links requires the examination of dependencies between
the procedures attached to the concepts. If node v; is an argument to the procedure that
computes a value for node v;, a directed link ¢;; = (v;,v;) € F is provided to express that
computation of node v; has to be finished before the computation of v; may start.

For the computation of instances, nodes of the task graph are executed in parallel
from bottom to top of the graph, starting with the attributes that provide an interface
to segmentation results, and finishing with the judgement of goal concepts. Thus, instan-
tiation is strictly data—driven, which is appropriate, if both results from segmentation
and knowledge are quite unambiguous. However, in order to restrict the search space for
iterative optimization, the combination with a modell-driven propagation of constraints
from intermediate results is useful.

The construction of the task graph strongly supports the propagation of constraints,
since it allows to use restrictions from all levels of knowledge both once before and during
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Figure 3: Excerpt from the expanded network for parallel instantiation.

analysis. As an example, consider the leftmost node (H-WHYP); in Figure 3. Since
from the construction of the expanded network it is apriori known that (H-WHYP); is
a concrete of the preposition (SY_PRAEP);, we can restrict the word hypotheses match-
ing (HLWHYP); to the set of prepositions. Because it is also known that (H-WHYP),
contributes to an instance of (P_ANKUNFTSORT); (i.e. to a destination place), we can
further restrict the set of all prepositions to the prepositions which are used to express
this pragmatic intention (like e.g. “nach” (“t0”) in contrast to “von” (“from”)). More-
over, if the destination has not yet been instantiated successfully in the n-th iteration
of the control algorithm, we can restrict the task graph for iteration n 4+ 1 to the nodes
associated with the instances in the dashed box. This way, computing time is saved by
the computation of less nodes as well as by a reduction of the search space, since the
modality for (SY_NG)s is restricted to the first one (i.e. the proper noun, cf. Section 2).

5 Experimental Results

As a testbed for our any—time approach to pattern understanding we use the linguistic
analysis in the speech understanding system EVAR [7]. The aim of the system is to perform
a dialog with a user in order to answer a request about the German InterCity train time
table. For that purpose, knowledge about the syntax (concepts named SY_..., see Figure
1) and semantics (S-...) of the German language is represented in a semantic network as
well as pragmatic knowledge (P_...). An additional level of abstraction (concepts named
H_...) provides the interface to word recognition, and also a dialog model, which is not
considered here, is integrated into the knowledge base.

The expansion of the knowledge base (154 concepts without dialog model) results in a
network of approx. 6500 nodes, which is reduced to a network of approx. 1300 modified
concepts by the modell-driven propagation of constraints from pragmatics (cf. Section 4).
Thus, compared to the mere data-driven approach in [4] computing time for each iteration
is decreased by a factor of 5. Moreover, due to the elimination of nodes, the search space
for iterative optimization is reduced by several orders of magnitude. The final refinement



correct pragmatic intentions [%]
p=1 ‘pzZ‘p:3‘p:4 ‘p:5
1| 724 | 746 | 78.6 | 80.6 | 81.8
73.1 | 787 | 81.3 | 82.7 | 83.3
10 || 73.8 | 79.8 | 81.6 | 83.4 | 84.2
25 76.5 | 81.4 | 83.2 | 83.6 | 84.5
50 || 78.8 | 83.5 | 84.8 | 85.8 | 86.0

Figure 4: Percentage of correctly analyzed pragmatic intentions for n iterations and si-
multaneous independent search using p = 1,....5 processors.

of modified concepts yields a task graph of approx. 11.000 nodes that have to be computed
in each iteration of the algorithm.

In a first series of experiments we used 134 typical user requests in a natural language
input mode, which, however, does not mean to exclude the assignments (A;, O;) from
(word) hypotheses to initial nodes of the task graph from optimization. For example, the
utterance “Ich mochte von Erlangen nach Heidelberg fahren.” (“I want to go from FErlan-
gen to Heidelberg”) contains two proper nouns which may be assigned to (H-WHYP), in
Figure 3. Since in natural language input mode no acoustic score of a (partial) interpre-
tation is provided, we use the number of frames of the word chain with longest duration
for the judgement of instances. A new state of analysis is accepted, whenever the number
of covered frames is increased.

A pragmatic intention is a concept of the task domain that defines a conception the sys-
tem is able to talk about. Figure 4 reports the percentage of correctly classified pragmatic
intentions with respect to both the number of iterations n and the number of processors
p for parallel iterative optimization. Any-time characteristics are shown by the increasing
percentage of correctly classified concepts with an increasing number of iterations. The
most important pragmatic intention, i.e. the destination place, is correctly classified in 85
percent within n = 5 iterations (p = 1), and therefore the system should be able to start a
clarification query about the missing intentions, like e.g. departure time. For p =2,....5
the benefits of parallel processing for an improvement of results becomes evident, but a
more efficient parallel search has to be subject of further work.

6 Conclusion

In this paper a parallel control algorithm for semantic network based pattern understand-
ing was applied to a speech understanding system.

Future work will concentrate on the achievement of dialog capabilities, and on the
further improvement of iterative optimization by a dialog guided initialization of the
search space. For the further improvement of real-time behaviour, incremental processing



of word hypotheses should be investigated.
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