
N. Pavesic, H. Niemann, S. Kovacic, F. Mihelic (Eds.), 3rd Slovenian-German and 2nd SDRVWorkshop on Speech and Image Understanding, April 24-26, 1996, Ljubljana, Slovenia, pp. 105-114.INTEGRATING LARGE CONTEXT LANGUAGEMODELS INTO A REAL TIME WORD RECOGNIZERF. Gallwitz1, E.G. Schukat-Talamazzini2, H. Niemann11 Lehrstuhl f�ur Mustererkennung 2 Institut f�ur InformatikUniversit�at Erlangen{N�urnberg Friedrich-Schiller-Universit�at JenaMartensstr. 3 Am Leutragraben 191058 Erlangen 07740 JenaAbstractIn this paper we present a new recognizer architecture that allows the e�cient inte-gration of language models with arbitrary large context information, e.g. polygrammodels, into the recognition process. Instead of using these models for rescoring then best word chains generated using bigram information, we extract the best wordchain, or optionally the n best word chains, directly from the word lattice using anA? algorithm that incorporates full language model information. For comparison,we developed an improved architecture for fast generation of the n best word chainsusing bigram information. Experimental results show, that direct incorporation offull language model information increases word accuracy signi�cantly even whencompared to rescoring the 1000 best word chains. At the same time, computationtime is drastically reduced.1 IntroductionIt is well known that the consideration of language constraints is vital for e�ective and ef-�cient speech recognition. Typically, these language constraints are modeled in a stochas-tic language model which will restrict the allowed sequences of words in an utterance [5].The a priori probability P (w) for a word sequence w = w1w2 : : : wm can be expressed asa product of conditional probabilities P (wtjw1w2 : : : wt�1). Approximation of the historyof the word wt is done by limiting the number of considered preceding words to N�1. Forthis N-gram approach N is typically restricted to N = 2 (bigram) or N = 3 (trigram).Polygram language models (section 2) allow for a robust estimation of language modelparameters for even larger values of N .P (w) = P (w1) � mYt=2P (wtjwt�n+1 : : : wt�1| {z }N�1) (1)Another type of stochastic language models are category based N -gram models [2].Words are pooled in categories or word classes, usually under linguistic aspects. If oneword is allowed to belong to more than one category, all possible category sequencesz = z1z2 : : : zm leading to a word sequence w = w1w2 : : : wm have to be considered whencalculating its probability:

n best word chainsforward backward
categorialbigram polygram

bestwordchainrescoringA*-searchbeam search wordlattice sorted list of
Figure 1: Recognizer architecture based on lattice-n-best algorithm and polygram rescor-ing of the n best word chains [6]P (w) = Xz P (z1)P (w1jz1) � (2)� mYi=2P (zij zi�N+1 : : : zi�1| {z }N�1)P (wijzi) (3)Unfortunately, the search space of a Viterbi continuous speech decoder grows expo-nentially with the order N of the language models. Thus, for large vocabulary real timeViterbi decoding on standard hardware, context is normally reduced to N = 2. On theother hand, language models with N > 2 usually have lower perplexities, i.e. they leadto better word accuracy.One solution for integrating large context language models into the recognizer e�-ciently is the n-best-paradigm. The recognition process is separated into two steps: First,the n best word chains are generated using a bigram language model. These are rescoredusing a higher order language model, for example a polygram model, which can be donewith very little computational cost.There are di�erent algorithms for generating the n best word chains [6]. One solutionthat causes little overhead is the lattice-n-best algorithm, which was �rst proposed in [13,12]. It is only suboptimal, i.e. it does not always generate the n globally best word chains,but it is much faster than exact n-best algorithms [6]. The lattice-n-best algorithm isseparated into a time synchronous forward decoding, in which a word lattice is generated,and a backward search for generating the n best word chains. The resulting recognizerarchitecture with polygram rescoring is shown in Figure 1.In this paper, we present two modi�cations of the lattice-n-nbest algorithm that sig-ni�cantly improve its performance. In section 2, we explain some details of the polygram

language models. In section 3, we discuss details of the lattice-n-best algorithm and showsome drawbacks of this approach. We will also present a modi�ed architecture to generatethe n best word chains more e�ciently. In section 4 we show how we integrate polygramlanguage models directly into the A? algorithm to avoid n-best rescoring completely.Experimental results are presented in section 5.2 Polygram Language ModelsIn order to fully exploit the information present in the lower-order language models, thecompeting estimates can be combined by linear interpolation:~P (wjuv) = %0 1L + %1P̂ (w) + %2P̂ (wjv) + %3P̂ (wjuv) (4)where L is the size of the vocabulary V. The weights %i of this convex combination ofconditional trigram, bigram, unigram, and zerogram (1=L) probabilities can be optimizedwith respect to a cross validation data set running the well known EM algorithm [1]. Fora parametric re�nement of the model, the %i may be considered functionally dependenton (part of) the word history uv. This approach can be generalized to the polygramformula introduced in [7]:~P (wjv) = NXi=0 %i � P̂i(wjv) ; v 2 VN�1 (5)Thus, smoothed N -gram probabilities | of arbitrary order N | are obtained by com-bining all i-gram language models, i = 0; : : : ; N . The word predictor P̂i(wjv) in eq. (5)denotes the maximum likelihood estimate of the conditional i-gram probability for wordw emerging from context v.A non-linear smoothing process called rational interpolation for conditional N -gramprobabilities was introduced in [10]:~P (wjv) = PNi=0 %i � gi(v) � P̂i(wjv)PNi=0 %i � gi(v) =: Q(wjv)Q(v) ; (6)where gi(v) is a history-dependent weight function. For details on language model inter-polation strategies refer to [4, 10].3 Modi�ed Lattice-n-Best AlgorithmThe basic idea of the lattice-n-best algorithm is to keep additional costs to generatingonly the best word chain as low as possible: During the forward beam search, a bignumber of di�erent paths is generated, each representing a possible sequence of words.Instead of only generating the best scoring path at the end of the utterance, all words

that are included in one of the alternative search paths are stored as word hypothesesI tetb (wj; zl) := (wj; zl; tb; te; �(wj;l)), where tb and te are the �rst and last time frame ofthe word hypothesis, respectively, wj is the word's lexicon index, zl is the word category,and �(wj;l) is the acoustic score of the word hypothesis. Of course, zl does not have tobe stored if only pairwise disjoint word categories are allowed. The result of the forwardbeam search is a set of alternative word hypotheses with tb � 1 and te � T , where 1is the �rst frame of the utterance and T is the last frame. This set of word hypothesesis called word lattice, and no path information is associated with the word hypotheses.Additionally, the maximum category-dependent path probabilities �t(s� (l)) are storedfor all categories zl, with 1 � l � D, where D is the number of categories and s� (l) isthe symbolic end node of all word models in category zl. These probabilities are used inthe second step of the lattice-n-best algorithm, the backward A? search.The A? algorithm is a heuristic approach to determining the minimal cost path or then minimal cost paths in a �nite state-space, details can be found in [8, 9]. The basic ideais that nodes on promising paths are expanded successively, meaning that an estimate f̂of the total path costs f is calculated for all possible successor nodes:f̂(vi) = ĝ(vi) + ĥ(vi) (7)An estimate ĝ(vi) of the costs from the start node to the current node vi can be calculatedby summing up costs of all transformations along this path. The algorithm's e�ciencydepends on a good estimate of the remaining costs ĥ(vi) from the current node vi tothe goal. In the lattice-n-best algorithm we start the search at the end of the utteranceand search for the minimal cost paths through the word lattice to the beginning of theutterance. Finding the path with the highest probability p is equal to �nding the pathwith minimum costs� log(p), which gives us an additive cost function. In our case, ĝ(vi) isthe sum of all acoustic costs and bigram costs from the end of the utterance to the currentnode, it can be calculated iteratively. The reason for searching in backward directionis, that we can now easily calculate an estimate of ĥ(vi) for each node, because duringforward beam search, the maximum category dependent path probabilities �t(s� (l)) werestored [6]:ĥ(I taj+1taj (wj; zlj)) = 8>><>>: � log(Panf(zl)#) for taj = 1� log(max1�k�Df�taj (s�(k)) �B(zk; zlj)#g �$) for taj > 1 ; (8)where B(zl; zk) = (P (zl j zk)P (wl j zl)) is the bigram probability of word wl whenthe predecessor category is zk, and # is the linguistic weight factor. Because the samebigram probabilities and linguistic weight factor were used during forward search, this isan optimal estimation of the remaining costs; it is identical with the costs of the best pathto the beginning of the utterance. That means, that only nodes lying on the n optimalpaths have to be expanded to generate the n best word chains. Thus, this algorithm isexpected to be very fast compared to the computation time necessary for building theword lattice.

categorialbigram
sorted list ofn best word chainspolygram

rescoringbackward-DPforwardbeam search A*-searchforward
bestchainrescoring word

wordlattice rescoredword lattice

(a)categorialbigram polygram
rescoringbackward-DPforwardbeam search bestwordchainA*-searchforwardwordlattice latticerescored word
(b)Figure 2: (a) Recognizer architecture based on forward beam search, lattice rescoring,bigram directed A? search, and polygram rescoring of the n best word chains (b) Recog-nizer architecture based on forward beam search, lattice rescoring, and polygram directedA? search

This is actually true for relatively short utterances. The number of alternative wordhypotheses in the lattice is low at the beginning and end of the utterance, and itsmaximum is around the middle of the utterance. For short utterances of about 5 seconds,a typical value for the number of alternative word hypotheses ending in one frame is about20, depending on the acoustic quality and the beam-width used during forward beamsearch. But when utterances are longer, about 30 seconds or more, this value may easilybecome two orders of magnitude higher than this. That means, that the computationtime for generating 100 best, 1000 best or even more word chains is no more tolerable,because the time for expanding one single node grows linearly with the number of wordhypotheses per time frame.A heuristic solution of this problem is the restriction of word hypotheses per frame byde�ning a �xed maximum number m. Only the best scoring m words ending in one timeframe are stored in the word lattice. This limits the computation time for expanding onenode, but another problem arises: The cost estimation function ĥ is no longer exact. Thisis due to the fact, that �taj (s�(k)) was calculated using words that possibly do not belongto the best m words ending in one frame. In consequence, we found it almost impossibleto generate n-best word chains with the lattice-n-best algorithm for utterances longerthan about 20 seconds. For many utterances, it was even practically impossible to �ndthe single best word chain using this algorithm, because 100000 and more nodes wereexpanded without reaching the beginning of the utterance.To solve this problem, we completely ignore the �-scores calculated during forwardbeam search. Instead, we rescore the lattice using dynamic programming. The rescoringis based on the categorical bigram and on the acoustic scores associated with the wordhypotheses. If the rescoring is done in a forward direction and the number of wordhypotheses per frame is not restricted, the new �0-scores and the �-scores do not di�er.If the number of word hypotheses per frame is restricted to about m = 20, the time forrescoring the word lattice is almost negligible. But now the A? algorithm for the n-bestgeneration is much faster and can handle long utterances without any problems, becausenow it is based on an exact estimation of the remaining costs. It generates word chainswith increasing costs; the best word chain is always found �rst [9]. Of course, the searchdirection of the A? algorithm is no more important, if the �-scores are recalculated. Wecan just as well do a backward rescoring of the word lattice and a forward A? search. Bothapproaches produce identical results. The resulting architecture with polygram rescoringof the n best word chains is shown in Figure 2a.4 Polygram directed A? SearchThe generation of n best word chains in linear time still does not solve the main problemof the n-best paradigm: To ensure that a constant amount of all word chains in the wordlattice is generated, n obviously has to grow exponentially with the number of words inan utterance. For example, if 3 alternative hypotheses exist for each word in an utteranceof 15 words, n = 315 = 14; 348; 907 di�erent word chains could be generated.This is the reason why we implemented another architecture that directly integrates

sample calls user turns wordstraining 804 7732 27852validation 54 441 1577test 234 2383 8346Table 1: Overview of training-, validation-, and test samplepolygram language models into the A? algorithm (Figure 2b). As before, we use bigraminformation for rescoring the word lattice with dynamic programming to get an estimatefor the remaining costs ĥ, but with a slight di�erence: Instead of using the languagemodel weight #, which is optimized for best performance of the forward beam search,we use the polygram language model weight #p. This parameter can easily be optimizedby rescoring the n best word chains of a validation sample, and its optimal value isusually signi�cantly higher than the optimum value of #. For the experiments describedin section 5, the parameters were optimized to # = 1:5 and #p = 5:0. We can use polygramlanguage model information to score nodes during the A? search, because for every nodevi in the state space the complete history up to the beginning of the utterance can bedetermined (Figure 3). We can use this history to calculate a ĝ-score for all possiblesuccessor nodes using language model scores according to eq. (1) for arbitrary largevalues of N . But now our estimation of the remaining costs ĥ is no longer exact. We cankeep di�erences between polygram and bigram scores low by training both models on thesame data, but ĥ is no lower bound for the real path costs to the end of the utterance.Thus, we do not always �nd the best path �rst. Nevertheless, there is a good chance thatthe �rst path found using polygram information is at least as good as one determined byrescoring a large number of word chains that were generated using bigram information.We can additionally generate more than one word chain, which increases the probabilityof �nding the globally best one. We will evaluate this in section 5.5 Experiments and ResultsAs our recognizer is used as a module of our spoken dialog system [3, 11] which is ableto answer inquiries about German Intercity train time tables. the results reported inthis paper were evaluated using our corpus of spontaneous speech data collected by oursystem. It totals to 8 h 36min. of speech and is divided into a training sample used fortraining of acoustic parameters and language models, a validation sample for optimizingrecognizer parameters, and a test sample (Table 1).The average number of words per utterance in the test sample is only 3.5, whichshould be an ideal domain for n-best rescoring. We trained both a polygram model(N = 5) and a bigram model using a system of 300 handcrafted word categories andrational interpolation (eq. (6)) on the training sample. We generated the 1000 best wordchains using the modi�ed lattice-n-best algorithm for all utterances in the validation testsample to optimize the polygram weight #p. Then we used the setup shown in Figure 2a

ENDaroundtillo'clockelevenstopfoundsevenBEGIN
B(o'clock j eleven) backward DP

o'clock word latticefound tillaround eleven
eleven stopo'clockseven

speech signal

o'clockelevenelevenfoundaround best word chainP̂ (o'clock j BEGIN around eleven)eleven
eleventill forward A?

t

Figure 3: Word recognition based on lattice rescoring and polygram directed A? search.Bigram information is used for rescoring the word lattice, while polygram informationis used for the forward A? search to extract the best word chain, or, alternatively, then best word chains. Note that the state space searched by the A? algorithm is no tree,because due to word border shifts di�erent paths representing identical word chains mayend in one time frame, and thus may be recombined. If only the best word chain isrequired and polygram history is restricted to N � 1 words, paths ending in one timeframe with equal sequences of N � 1 words may be recombined, too.

0

20

40

60

80

100

%

0 5 10 15 20
nFigure 4: Amount of utterances where the globally best path in the word lattice is oneof the �rst n word chains generated by polygram directed A? searcharchitecture error rate error red. real time fac.no rescoring 23.54 % - 2.1810-best rescoring 22.04 % 6.4 % 3.24100-best rescoring 21.69 % 7.9 % 5.291000-best rescoring 21.68 % 7.9 % 7.08polygram dir. A? (1-best) 20.94 % 11.0 % 2.44Table 2: Comparison of word error rate and real time factorwith n = 1000 to generate the best word chains on the test sample. Using the samepolygram weight, we generated only the �rst word chain using the setup from Figure 2a.Figure 4 shows, that generating more than n = 1 word chain with the polygram directedA? algorithm increases the probability of �nding the globally best word chain. For valueslarger than n = 5 this increase is only very small, while computation time increaseslinearly with n.The resulting word error rates and real time factors can be seen in Table 2. Polygramdirected A? search is signi�cantly faster than rescoring only the 10 best word chains, andit achieves a recognition accuracy that even outperforms 1000-best rescoring.6 ConclusionsIn this paper we presented di�erent word recognizer architectures that use large contextlanguage model information to generate the best word chain. Our results show, thateven on a sample of very short utterances (3.5 words average) n-best rescoring does notperform as well as a direct extraction of best word chains from the word lattice using the

polygram directed A? algorithm. We expect the algorithm to work equally well on longerutterances, where n-best rescoring cannot signi�cantly reduce word error rate becauseof the exponentially increasing number of di�erent word chains.AcknowledgementsThe work presented in this paper was partly supported by the DFG (German ResearchFoundation) under contract number 810 830-0. The authors would also like to sincerelythank Thomas Kuhn, now at Daimler-Benz AG, Ulm, for valuable suggestions and dis-cussions.References[1] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum Likelihood from Incomplete Data via theEM Algorithm. J. Royal Statist. Soc. Ser. B, 39(1):1{22, 1977.[2] A.-M. Derouault and B. Merialdo. Natural Language Modeling for Phoneme-to-Text Transcription.IEEE Trans. on Pattern Analysis and Machine Intelligence, 8(6):742{749, 1986.[3] W. Eckert, T. Kuhn, H. Niemann, S. Rieck, A. Scheuer, and E.G. Schukat-Talamazzini. A SpokenDialogue System for German Intercity Train Timetable Inquiries. In Proc. European Conf. onSpeech Technology, pages 1871{1874, Berlin, 1993.[4] U. Essen and V. Steinbiss. Cooccurrence Smoothing for Stochastic Language Modeling. In Proc.Int. Conf. on Acoustics, Speech, and Signal Processing, volume 1, pages 161{164, San Francisco,1992.[5] F. Jelinek, R.L. Mercer, and L.R. Bahl. Continuous Speech Recognition. In P.R. Krishnaiah andL.N. Kanal, editors, Handbook of Statistics, volume 2, pages 549{573. North-Holland, 1982.[6] T. Kuhn. Die Erkennungsphase in einem Dialogsystem, volume 80 of Dissertationen zurK�unstlichen Intelligenz. in�x, St. Augustin, 1995.[7] T. Kuhn, H. Niemann, and E.G. Schukat-Talamazzini. Ergodic Hidden Markov Models and Poly-grams for Language Modeling. In Proc. Int. Conf. on Acoustics, Speech, and Signal Processing,volume 1, pages 357{360, Adelaide, Australia, 1994.[8] N.J. Nilsson. Principles of Arti�cial Intelligence. Tioga Publishing Co., Palo Alto, CA, 1980.[9] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley,Reading, MA, 1984.[10] E.G. Schukat-Talamazzini. Stochastic language models. In Electrotechnical and Computer ScienceConference, Portoroz, Slovenia, 1995.[11] E.G. Schukat-Talamazzini, T. Kuhn, and H. Niemann. Speech Recognition for Spoken DialogSystems. In H. Niemann, R. De Mori, and G. Hahnrieder, editors, Progress and Prospects ofSpeech Research and Technology, number 1 in Proceedings in Arti�cial Intelligence, pages 110{120.In�x, 1994.[12] R. Schwartz and S. Austin. E�cient, High-Performance Algorithms for N-Best Search. In Speechand Natural Language Workshop, pages 6{11, Hidden Valley, Pennsylvania, 1990. Morgan Kauf-mann.[13] V. Steinbiss. Sentence-Hypotheses Generation in a Continuous-Speech Recognition System. InProc. European Conf. on Speech Technology, volume 2, pages 51{54, Paris, 1989.

