N. Pavesic, H. Niemann, S. Kovacic, F. Mihelic (Eds.), 8rd Slovenian-German and 2nd SDRV
Workshop on Speech and Image Understanding, April 24-26, 1996, Ljubljana, Slovenia, pp. 105-114.

INTEGRATING LARGE CONTEXT LANGUAGE
MODELS INTO A REAL TIME WORD RECOGNIZER

F. Gallwitz!, E.G. Schukat-Talamazzini2, H. Niemann!

! Lehrstuhl fiir Mustererkennung 2 Institut fiir Informatik
Universitat Erlangen—Niirnberg Friedrich-Schiller-Universitidt Jena
Martensstr. 3 Am Leutragraben 1
91058 Erlangen 07740 Jena
Abstract

In this paper we present a new recognizer architecture that allows the efficient inte-
gration of language models with arbitrary large context information, e.g. polygram
models, into the recognition process. Instead of using these models for rescoring the
n best word chains generated using bigram information, we extract the best word
chain, or optionally the n best word chains, directly from the word lattice using an
A* algorithm that incorporates full language model information. For comparison,
we developed an improved architecture for fast generation of the n best word chains
using bigram information. Experimental results show, that direct incorporation of
full language model information increases word accuracy significantly even when
compared to rescoring the 1000 best word chains. At the same time, computation
time is drastically reduced.

1 Introduction

It is well known that the consideration of language constraints is vital for effective and ef-
ficient speech recognition. Typically, these language constraints are modeled in a stochas-
tic language model which will restrict the allowed sequences of words in an utterance [5].
The a priori probability P(w) for a word sequence w = wyws . . . w,, can be expressed as
a product of conditional probabilities P(w;|w ws . ..w;_1). Approximation of the history
of the word wy is done by limiting the number of considered preceding words to N —1. For
this N-gram approach N is typically restricted to N = 2 (bigram) or N = 3 (trigram).
Polygram language models (section 2) allow for a robust estimation of language model
parameters for even larger values of N.

m

Pw) = P(w)-]] P(w| winy1 .. wi1) (1)

t=2

N-1

Another type of stochastic language models are category based N-gram models [2].
Words are pooled in categories or word classes, usually under linguistic aspects. If one
word is allowed to belong to more than one category, all possible category sequences
zZ = 2123 ... 2y leading to a word sequence w = wyws ... w,, have to be considered when
calculating its probability:

categorial

bigram polygram

&_/
sorted list of
n best word chains

word

lattice @
. @ . - [best
_| forward backward foiiiiis . _~ word
WV\/ beam search J# A*-search J rescornng Z?afin

Figure 1: Recognizer architecture based on lattice-n-best algorithm and polygram rescor-
ing of the n best word chains [6]

P(w) = 3 P(z)P(wi|z1) - (2)

z
. H P(Zz| Zz'—N—i—l e Zz_l)P(’U)Z|Zz) (3)
i —_——

N-1

Unfortunately, the search space of a Viterbi continuous speech decoder grows expo-
nentially with the order N of the language models. Thus, for large vocabulary real time
Viterbi decoding on standard hardware, context is normally reduced to N = 2. On the
other hand, language models with NV > 2 usually have lower perplexities, i.e. they lead
to better word accuracy.

One solution for integrating large context language models into the recognizer effi-
ciently is the n-best-paradigm. The recognition process is separated into two steps: First,
the n best word chains are generated using a bigram language model. These are rescored
using a higher order language model, for example a polygram model, which can be done
with very little computational cost.

There are different algorithms for generating the n best word chains [6]. One solution
that causes little overhead is the lattice-n-best algorithm, which was first proposed in [13,
12]. Tt is only suboptimal, i.e. it does not always generate the n globally best word chains,
but it is much faster than exact n-best algorithms [6]. The lattice-n-best algorithm is
separated into a time synchronous forward decoding, in which a word lattice is generated,
and a backward search for generating the n best word chains. The resulting recognizer
architecture with polygram rescoring is shown in Figure 1.

In this paper, we present two modifications of the lattice-n-nbest algorithm that sig-
nificantly improve its performance. In section 2, we explain some details of the polygram

language models. In section 3, we discuss details of the lattice-n-best algorithm and show
some drawbacks of this approach. We will also present a modified architecture to generate
the n best word chains more efficiently. In section 4 we show how we integrate polygram
language models directly into the A* algorithm to avoid m-best rescoring completely.
Experimental results are presented in section 5.

2 Polygram Language Models

In order to fully exploit the information present in the lower-order language models, the
competing estimates can be combined by linear interpolation:

P(w|uv) = Qg% + 01P(w) + g2P(wl|v) + o3P (w|uv) (4)
where L is the size of the vocabulary V. The weights g; of this convex combination of
conditional trigram, bigram, unigram, and zerogram (1/L) probabilities can be optimized
with respect to a cross validation data set running the well known EM algorithm [1]. For
a parametric refinement of the model, the g; may be considered functionally dependent
on (part of) the word history uv. This approach can be generalized to the polygram
formula introduced in [7]:

P(w|v) = ggi-ﬁz(wv), ve YV (5)

Thus, smoothed N-gram probabilities — of arbitrary order N — are obtained by com-
bining all i-gram language models, i = 0,..., N. The word predictor P;(w|v) in eq. (5)
denotes the maximum likelihood estimate of the conditional i-gram probability for word
w emerging from context v.

A non-linear smoothing process called rational interpolation for conditional N-gram
probabilities was introduced in [10]:

>V 0 gi(v) - Bi(w)v) . Q(w|v)
>N 0i - gi(v) CQv)

where g;(v) is a history-dependent weight function. For details on language model inter-
polation strategies refer to [4, 10].

Plulv) = (6)

3 Modified Lattice-n-Best Algorithm

The basic idea of the lattice-n-best algorithm is to keep additional costs to generating
only the best word chain as low as possible: During the forward beam search, a big
number of different paths is generated, each representing a possible sequence of words.
Instead of only generating the best scoring path at the end of the utterance, all words

that are included in one of the alternative search paths are stored as word hypotheses
Itt:(wj,zl) = (wjy, 21, tp, te, v(wj;)), where t, and ¢, are the first and last time frame of
the word hypothesis, respectively, w; is the word’s lexicon index, z; is the word category,
and v(w,,;) is the acoustic score of the word hypothesis. Of course, z; does not have to
be stored if only pairwise disjoint word categories are allowed. The result of the forward
beam search is a set of alternative word hypotheses with ¢, > 1 and ¢, < T, where 1
is the first frame of the utterance and 7' is the last frame. This set of word hypotheses
is called word lattice, and no path information is associated with the word hypotheses.
Additionally, the maximum category-dependent path probabilities ay(s,(l)) are stored
for all categories z;, with 1 < [< D, where D is the number of categories and s,(l) is
the symbolic end node of all word models in category z;. These probabilities are used in
the second step of the lattice-n-best algorithm, the backward A* search.

The A* algorithm is a heuristic approach to determining the minimal cost path or the
n minimal cost paths in a finite state-space, details can be found in [8, 9]. The basic idea
is that nodes on promising paths are expanded successively, meaning that an estimate f
of the total path costs f is calculated for all possible successor nodes:

flo) = §(vi) + h(v) (7)

An estimate §(v;) of the costs from the start node to the current node v; can be calculated
by summing up costs of all transformations along this path. The algorithm’s efficiency
depends on a good estimate of the remaining costs h(v;) from the current node v; to
the goal. In the lattice-n-best algorithm we start the search at the end of the utterance
and search for the minimal cost paths through the word lattice to the beginning of the
utterance. Finding the path with the highest probability p is equal to finding the path
with minimum costs — log(p), which gives us an additive cost function. In our case, g(v;) is
the sum of all acoustic costs and bigram costs from the end of the utterance to the current
node, it can be calculated iteratively. The reason for searching in backward direction
is, that we can now easily calculate an estimate of h(v;) for each node, because during
forward beam search, the maximum category dependent path probabilities ay(s, (1)) were
stored [6]:

L —1og(Pans(2)?) for t,, =1
h(l, " (wj, ;) = , (8)

_ : Dy,
log(lrgrlkzag%{ataj(sT(k)) B(z, ;)" }-w) for to, > 1

where B(z;,2x) = (P(z1 | zx)P(w; | z)) is the bigram probability of word w; when
the predecessor category is zx, and ¥ is the linguistic weight factor. Because the same
bigram probabilities and linguistic weight factor were used during forward search, this is
an optimal estimation of the remaining costs; it is identical with the costs of the best path
to the beginning of the utterance. That means, that only nodes lying on the n optimal
paths have to be expanded to generate the n best word chains. Thus, this algorithm is
expected to be very fast compared to the computation time necessary for building the
word lattice.

forward
beam search

vwe

forward
beam search

3

categorial
bigram

word
lattice

word
lattice

categorial
bigram

rescored

backward-DP
rescoring

BV

sorted list of
n best word chains

polygram

(a)

lattice

backward-DP
rescoring

(b)

word lattice

rescored word

forward
A*_search

: , :

: best
rescoring — word
chain

polygram

best

forward J_ word
A*-search chain

Figure 2: (a) Recognizer architecture based on forward beam search, lattice rescoring,
bigram directed A* search, and polygram rescoring of the n best word chains (b) Recog-
nizer architecture based on forward beam search, lattice rescoring, and polygram directed

A* search

This is actually true for relatively short utterances. The number of alternative word
hypotheses in the lattice is low at the beginning and end of the utterance, and its
maximum is around the middle of the utterance. For short utterances of about 5 seconds,
a typical value for the number of alternative word hypotheses ending in one frame is about
20, depending on the acoustic quality and the beam-width used during forward beam
search. But when utterances are longer, about 30 seconds or more, this value may easily
become two orders of magnitude higher than this. That means, that the computation
time for generating 100 best, 1000 best or even more word chains is no more tolerable,
because the time for expanding one single node grows linearly with the number of word
hypotheses per time frame.

A heuristic solution of this problem is the restriction of word hypotheses per frame by
defining a fixed maximum number m. Only the best scoring m words ending in one time
frame are stored in the word lattice. This limits the computation time for expanding one
node, but another problem arises: The cost estimation function A is no longer exact. This
is due to the fact, that O, (8-(k)) was calculated using words that possibly do not belong
to the best m words ending in one frame. In consequence, we found it almost impossible
to generate n-best word chains with the lattice-n-best algorithm for utterances longer
than about 20 seconds. For many utterances, it was even practically impossible to find
the single best word chain using this algorithm, because 100000 and more nodes were
expanded without reaching the beginning of the utterance.

To solve this problem, we completely ignore the a-scores calculated during forward
beam search. Instead, we rescore the lattice using dynamic programming. The rescoring
is based on the categorical bigram and on the acoustic scores associated with the word
hypotheses. If the rescoring is done in a forward direction and the number of word
hypotheses per frame is not restricted, the new o/-scores and the a-scores do not differ.
If the number of word hypotheses per frame is restricted to about m = 20, the time for
rescoring the word lattice is almost negligible. But now the A* algorithm for the n-best
generation is much faster and can handle long utterances without any problems, because
now it is based on an ezact estimation of the remaining costs. It generates word chains
with increasing costs; the best word chain is always found first [9]. Of course, the search
direction of the A* algorithm is no more important, if the a-scores are recalculated. We
can just as well do a backward rescoring of the word lattice and a forward A* search. Both
approaches produce identical results. The resulting architecture with polygram rescoring
of the n best word chains is shown in Figure 2a.

4 Polygram directed A* Search

The generation of n best word chains in linear time still does not solve the main problem
of the n-best paradigm: To ensure that a constant amount of all word chains in the word
lattice is generated, n obviously has to grow exponentially with the number of words in
an utterance. For example, if 3 alternative hypotheses exist for each word in an utterance
of 15 words, n = 3'® = 14, 348, 907 different word chains could be generated.

This is the reason why we implemented another architecture that directly integrates

| sample | calls | user turns | words |

training 804 7732 | 27852
validation 54 441 | 1577
test 234 2383 | 8346

Table 1: Overview of training-, validation-, and test sample

polygram language models into the A* algorithm (Figure 2b). As before, we use bigram
information for rescoring the word lattice with dynamic programming to get an estimate
for the remaining costs h, but with a slight difference: Instead of using the language
model weight 9, which is optimized for best performance of the forward beam search,
we use the polygram language model weight 9J,. This parameter can easily be optimized
by rescoring the n best word chains of a validation sample, and its optimal value is
usually significantly higher than the optimum value of ¢J. For the experiments described
in section 5, the parameters were optimized to 9 = 1.5 and 9, = 5.0. We can use polygram
language model information to score nodes during the A* search, because for every node
v; in the state space the complete history up to the beginning of the utterance can be
determined (Figure 3). We can use this history to calculate a g-score for all possible
successor nodes using language model scores according to eq. (1) for arbitrary large
values of N. But now our estimation of the remaining costs h is no longer exact. We can
keep differences between polygram and bigram scores low by training both models on the
same data, but h is no lower bound for the real path costs to the end of the utterance.
Thus, we do not always find the best path first. Nevertheless, there is a good chance that
the first path found using polygram information is at least as good as one determined by
rescoring a large number of word chains that were generated using bigram information.
We can additionally generate more than one word chain, which increases the probability
of finding the globally best one. We will evaluate this in section 5.

5 Experiments and Results

As our recognizer is used as a module of our spoken dialog system [3, 11] which is able
to answer inquiries about German Intercity train time tables. the results reported in
this paper were evaluated using our corpus of spontaneous speech data collected by our
system. It totals to 8 h 36 min. of speech and is divided into a training sample used for
training of acoustic parameters and language models, a validation sample for optimizing
recognizer parameters, and a test sample (Table 1).

The average number of words per utterance in the test sample is only 3.5, which
should be an ideal domain for n-best rescoring. We trained both a polygram model
(N = 5) and a bigram model using a system of 300 handcrafted word categories and
rational interpolation (eq. (6)) on the training sample. We generated the 1000 best word
chains using the modified lattice-n-best algorithm for all utterances in the validation test
sample to optimize the polygram weight ¥,. Then we used the setup shown in Figure 2a

speech signal

- eleven ~
around i stop
.L. .M. word lattice
found seven
o’clock
_ eleven _
END °
around ‘\ /
till e B(o’clock | eleven)
o’clock
eleven backward DP
stop
found
seven /
BEGIN e

forward A*

<{— best word chain

e

P(o’clock | BEGIN around eleven)

Figure 3: Word recognition based on lattice rescoring and polygram directed A* search.
Bigram information is used for rescoring the word lattice, while polygram information
is used for the forward A* search to extract the best word chain, or, alternatively, the
n best word chains. Note that the state space searched by the A* algorithm is no tree,
because due to word border shifts different paths representing identical word chains may
end in one time frame, and thus may be recombined. If only the best word chain is
required and polygram history is restricted to N — 1 words, paths ending in one time
frame with equal sequences of N — 1 words may be recombined, too.

Figure 4: Amount of utterances where the globally best path in the word lattice is one
of the first n word chains generated by polygram directed A* search

‘ architecture ‘ error rate ‘ error red. ‘ real time fac. ‘
no rescoring 23.54 % - 2.18
10-best rescoring 22.04 % 6.4 % 3.24
100-best rescoring 21.69 % 7.9 % 5.29
1000-best rescoring 21.68 % 7.9 % 7.08
polygram dir. A* (1-best) | 20.94 % 11.0 % 2.44

Table 2: Comparison of word error rate and real time factor

with n = 1000 to generate the best word chains on the test sample. Using the same
polygram weight, we generated only the first word chain using the setup from Figure 2a.
Figure 4 shows, that generating more than n = 1 word chain with the polygram directed
A* algorithm increases the probability of finding the globally best word chain. For values
larger than n = b5 this increase is only very small, while computation time increases
linearly with n.

The resulting word error rates and real time factors can be seen in Table 2. Polygram
directed A* search is significantly faster than rescoring only the 10 best word chains, and
it achieves a recognition accuracy that even outperforms 1000-best rescoring.

6 Conclusions

In this paper we presented different word recognizer architectures that use large context
language model information to generate the best word chain. Our results show, that
even on a sample of very short utterances (3.5 words average) n-best rescoring does not
perform as well as a direct extraction of best word chains from the word lattice using the

polygram directed A* algorithm. We expect the algorithm to work equally well on longer
utterances, where n-best rescoring cannot significantly reduce word error rate because
of the exponentially increasing number of different word chains.

Acknowledgements

The work presented in this paper was partly supported by the DFG (German Research
Foundation) under contract number 810 830-0. The authors would also like to sincerely
thank Thomas Kuhn, now at Daimler-Benz AG, Ulm, for valuable suggestions and dis-
cussions.

References

[4]

[5]

[11]

A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum Likelihood from Incomplete Data via the
EM Algorithm. J. Royal Statist. Soc. Ser. B, 39(1):1-22, 1977.

A .-M. Derouault and B. Merialdo. Natural Language Modeling for Phoneme-to-Text Transcription.
IEEFE Trans. on Pattern Analysis and Machine Intelligence, 8(6):742-749, 1986.

W. Eckert, T. Kuhn, H. Niemann, S. Rieck, A. Scheuer, and E.G. Schukat-Talamazzini. A Spoken
Dialogue System for German Intercity Train Timetable Inquiries. In Proc. European Conf. on
Speech Technology, pages 1871-1874, Berlin, 1993.

U. Essen and V. Steinbiss. Cooccurrence Smoothing for Stochastic Language Modeling. In Proc.
Int. Conf. on Acoustics, Speech, and Signal Processing, volume 1, pages 161-164, San Francisco,
1992.

F. Jelinek, R.L. Mercer, and L.R. Bahl. Continuous Speech Recognition. In P.R. Krishnaiah and
L.N. Kanal, editors, Handbook of Statistics, volume 2, pages 549-573. North-Holland, 1982.

T. Kuhn. Die Erkennungsphase in einem Dialogsystem, volume 80 of Dissertationen zur
Kiinstlichen Intelligenz. infix, St. Augustin, 1995.

T. Kuhn, H. Niemann, and E.G. Schukat-Talamazzini. Ergodic Hidden Markov Models and Poly-
grams for Language Modeling. In Proc. Int. Conf. on Acoustics, Speech, and Signal Processing,
volume 1, pages 357-360, Adelaide, Australia, 1994.

N.J. Nilsson. Principles of Artificial Intelligence. Tioga Publishing Co., Palo Alto, CA, 1980.

J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley,
Reading, MA, 1984.

E.G. Schukat-Talamazzini. Stochastic language models. In Electrotechnical and Computer Science
Conference, Portoroz, Slovenia, 1995.

E.G. Schukat-Talamazzini, T. Kuhn, and H. Niemann. Speech Recognition for Spoken Dialog
Systems. In H. Niemann, R. De Mori, and G. Hahnrieder, editors, Progress and Prospects of
Speech Research and Technology, number 1 in Proceedings in Artificial Intelligence, pages 110-120.
Infix, 1994.

R. Schwartz and S. Austin. Efficient, High-Performance Algorithms for N-Best Search. In Speech
and Natural Language Workshop, pages 6-11, Hidden Valley, Pennsylvania, 1990. Morgan Kauf-
mann.

V. Steinbiss. Sentence-Hypotheses Generation in a Continuous-Speech Recognition System. In
Proc. European Conf. on Speech Technology, volume 2, pages 51-54, Paris, 1989.

