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Abstract

This work addresses various probabilistic ap-
proaches which are suitable for classification and
localization of 3-D objects in gray-level images.
We first present a statistical model for appear-
ance based vision. The statistical behavior of
image features, the projection model, the rota-
tion and translation, as well as the assignment
of model and image features are represented as
a single density function. The second approach
ranks correspondence hypotheses between model
and image features by the probability that they
are correct. For each hypothesis the object’s pose
is recovered and the region of the pose space com-
patible with the image uncertainty is computed.
The introduced algorithms have been fully im-
plemented. Examples demonstrate the suggested
methods with real image data. Keywords: sta-
tistical object modeling, statistical object recog-
nition, pose estimation, probabilistic peaking ef-
fect

1 Introduction and Motivation

There has been considerable and still increasing
interest in applications of probabilistic methods
for image analysis [8, 15, 17]. In many fields of
computer vision statistical principles may lead
to improvements compared with standard tech-
niques, because uncertainty manifests itself in
many aspects of image processing. The interpre-
tation process is based on sensing information.
Uncertainty results from image acquisition prop-

erties, like camera distortion, quantization errors,
varying illumination conditions, or from model
incompleteness, e.g. In addi-
tion the output of low—level preprocessing algo-
rithms like edge detection may be inaccurate or
incomplete. High-level processes must take into
account this probabilistic behavior. The devel-
opment of robust computer vision algorithms re-
quires the understanding and adequate modeling
of uncertainty.

camera models.

This work concerns with new ideas to combine
continuous and discrete random variables for the
statistical description of objects in the space of
observations. The probabilistic models consider
the statistical behavior of features (like points,
lines, angles or ratios of lengths), and the match-
ing of model and image features. We will give
recipes for the construction of statistical models
which will either use composed probability den-
sity functions or the probabilistic peaking effect
by tracing iso—angle and iso-ratio curves on the
viewing sphere. We both show how the matching
problem of observed and model features can be
circumvented within the probabilistic formalism
by marginalization, and discuss the generation of
statistical match hypotheses and their ranking in
the other case. The suggested models account for
various types of uncertainty, and for each object
class and pose hypothesis a probabilistic measure
can be computed. Thus, the Bayesian decision
rule can be applied to classify observed objects.
The presented statistical framework will be tested
for 3-D object recognition and localization using
2-D gray-level images.



2 Statistical Classification

The object recognition problem is understood as
the assignment of (a subset of) observed image
features to a class Q, (1 <k < K'), which repre-
sents a single object or a set of special types of
objects. Objects are usually represented as mod-
els and one of the major problems in computer
vision is the recognition of 3-D objects in a scene
as instances from a database of models. The com-
putation of a transform which maps the model to
the observed image features is commonly sum-
marized as the localization problem of objects.
In most applications, observed features depend
on the object’s pose. Thus classification and lo-
calization processes usually influence each other.

Statistical classifiers [4, 11] known from pattern
recognition require feature vectors ¢ of fixed di-
mensions and a probabilistic characterization of
classes {Q4]1 < k < K}. The conditional densi-
ties p(c|Q) and the a priori probabilities p(,)
should be known for each class €2, of objects. For
an observed feature ¢, the optimal decision rule
with respect to misclassifications is

A = argmaxp(Q|c)

p(Q:) ple|Qy)
p(e)

= argmax ) (1)
K

i.e. we decide for the class with maximum a-
posteriori probability. A classifier which is based
on this decision rule is called Bayesian classifier
[11]. The definition of the required a—posteriori
probabilities is a highly non—trivial task, and it is
a priori not obvious how this statistical concept
can be applied to solve the object recognition and
localization problem.

We clarify necessary extensions of the basic a-
posteriori probabilities for single feature vectors
by a simple example. Let us consider a 3—D cube,
where the considered features are the cube’s 3—-D
vertices. An object is thus not associated with
a single, but a set of features. Any 2-D view of
this object appearing in a gray-level image is the
result of a mapping from the 3—-D model into the
2-D image space combined with a rotation and
translation in the model space. This transforma-
tion includes the following parts (see Figure 1):

e 3-D rotation R and translation ¢,

e self-occlusion,

e projection P from the model into the image

space, and

Figure 1: The transformation from the model

into the image space

e segmentation errors (e.g. multiple detected
point features in Figure 1).

This consideration shows that the number of ob-
served, lower dimensional image features is not
expected to be constant for arbitrary images.
The cardinality of the available feature set de-
pends on the viewing directions, on the illumina-
tion conditions, and on the used segmentation al-
gorithms. In addition to components mentioned
above, the correspondence (. between the fea-
tures in a model of class €, and image features,
and the range information is lost.

3 Statistical Modeling

The statistical description of 3—D objects appear-
ing in images can be divided up into different sta-
tistical components: The uncertainty of observ-
able features, the dependency of features on the
object’s pose, and the correspondence between
model and image features.

3.1 Statistical Modeling of Features

Common features used for object recognition are
point or line features as well as related mea-



sures like ratios or angles [2, 10]. An object
in the model space is characterized by the set
¢, = {cu1,¢u2,...,Cpp, } of model features. Of
course, different features require different statis-
tical representations. Independent of its concrete
geometrical appearance, each observable feature
o underlies either a parametric distribution
given by a continuous density p(ox|a., R,t) or
a discrete probability p(ox|R,t) € [0, 1]. Herein,
a,,; characterizes the distribution of the corre-
sponding model feature ¢, ; and the parameters
R and t represent the degrees of freedom for
the object’s pose. The density p(ox|a., R,t),
including model- and pose—specific parameters,
results from the probability density function
p(egilas,) attached to ¢, by applying a stan-
dard density transform [1]. The mapping from
the model into the image space is characterized
by R and ¢.

The composed density which characterizes the

set of observed features O = {01,09,...,0,,} is
given by
p(0|{aﬁ717 ce aﬁv”ﬁ}? R, t) =
H p(0k|aﬁ7lk7 R t) , (2)
k=1

if the correspondence is known and statistical in-
dependence is assumed. The concrete representa-
tion of the involved probabilities depends on the
used features and dependency structures.

If, for example, normally distributed 3-D fea-
tures are given, then a, includes the 3-D mean
vector and the (3 X 3)-covariance matrix. If an
orthogonal projection from the 3—-D model space
into the 2-D image space is assumed, an affine
transform is given by

o = Rcﬁ,l +t (3)
where oy,t € IR?, ¢,; € R®, and R € IR**.
The observable image features are also Gaussian
distributed. The mean vector of the transformed
feature is Ry, ; + ¢ and the covariance matrix is
RX, RT [1].

3.1.1 Point Features

Point features are quite often used for object
recognition and localization. Statistical tests in
[13, 16] show that point features in the image
space are normally distributed. Let oy € IR? be

the 2-D point feature and ¢,; € IR® the cor-
responding also normally distributed 3-D point
feature. With respect to these constraints, we
get

p(orla. R, t) = N(oy|Ru,+t,RY,  RT) | (4)

i.e. uncertainty of features is characterized by
Gaussian density functions including the mean
vector, the covariance matrix, and the parame-
ters R, t for the feature transform. For each fea-
ture, the densities differ in the mean vectors and
covariance matrices, but they all share the pose—
specific parameters R and t.

3.1.2 Straight Line Segments

The statistical modeling of straight line segments
is similar to point features. A 3-D straight line
segment ¢, ; is characterized by an initial and an
end point, i.e. ¢u; = (€ri1,€Ch2) € R® x R3.
If statistical independence of these normally dis-
tributed points is assumed for simplicity, the sta-
tistical behavior of the straight line feature ¢, is
given by

2
p(cﬁ,l|aﬁ,l) = H N(CH,I,SU"LH,I,S? EH,[,S)- (5)

s=1

Due to the projection from the 3—D model space
into the 2-D image space, the depth information
and the identification of initial and end points
get lost. In (3) we have seen, how the rotation,
translation, and projection affects the densities
for single point features. The lost identification
of initial and end points is substituted by a ran-
dom process. Possible orders of point pairs are
assumed to be uniformly distributed. If two pairs
of points are feasible, then we have

p(ok |a%,lv R7 t) =

2
P ECHL RS SRR A0

T s=
where 7 covers all permutations. For two observ-
able 2-D straight line features o1 and o3 the ra-
tio r € IR between these straight line segments’
length and the angle 6 € [0°;360°] between them
can be computed, and can be used for recogni-
tion and localization. The statistical modeling of
these features can either be derived from (6) ap-
plying a complicated density transform, or from
the computation of discrete probabilities for finite

intervals, as suggested in [14].



Figure 2: Iso-ratio (left, where log,(r) € [—2;2])
and iso—anlge (right) curve for two lines of equal
length and with 45° between them.

3.1.3 Ratios and Angles

If (cxp,cn2) € IR? x IR? are the corresponding
model lines of 0; and 0y, and v € IR® denotes
the viewing direction, we have the following con-
straints for r and 6:

el X v =rleg, x v =0 (7)
and
(¢l xv)(e)y X v)— cosble, ; xvlle, o x 6] =0, (8)

where cfw = Cxs1 — Cxs2, 5 = 1,2. For the nor-
malized viewing direction v € IR® with |jo||* = 1,
iso-tatio and iso—angle curves can be defined. Ex-
amples for these curves are shown in Figure 2,
and their computation is done by an algorithm
for tracing algebraic curves which relies on ho-
motopy continuation [14].

In order to compute the probability for ob-
serving a set O = {04,...,0,} of features, the
density function for each measured value oj in
the image is required. For a pair (logy(r),8) of
ratio and angle this probability depends on the
viewing direction v or on the object’s pose in the
scene. Instead of using parametric densities in-
cluding parameters of the feature’s geometry and
its pose, discrete probabilities will be computed
for each viewing direction. The (logy(r), 8)-space
can be quantized on a rectangular grid. For each
rectangle, the average value of the discrete prob-
abilities is computed and stored in a table. Fig-
ure 3 shows the tessellation of the sphere (left)
and the derived 2-D probability function (right).
Each region in the parameter space is limited by
upper and lower bounds for ratios and angles.
Because of (7) and (8) the mentioned boundary
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Figure 3: Tessellation of the viewing sphere (left)
and the joint probability function (right)

values define polygons on the sphere, whose area
A results from

A = iai—(z—Q)ﬂ ) (9)

where z is the number of vertices of the polygon,
and a; € [0;27] is the spherical angle between
two adjacent angles. To obtain a probability, the
area A is divided by 4=, the area of the complete
sphere. Such a table can be computed for each
ratio—angle—pair. Thus for each observed feature
pair and a given viewing direction the discrete
probability can be computed.

So far, we have seen that different types of
features result in different statistical representa-
tions. Both parametric, and non—parametric den-
sities can be used for object recognition purposes.
If the correspondence of model and image fea-
tures is known, the introduced probability den-
sity functions can be used for the computation of
the probability for observing a set of features.

3.2 Statistical Modeling of Feature
Correspondences

If no background features exist, each observable
feature og, 1 < k < m, corresponds to a model
feature ¢, ;, where x is the object’s class num-
ber. This matching can be denoted by a m—
dimensional random vector ¢,., whose k—th com-
ponent is the index [ of the corresponding fea-
ture ¢, of o. If point features are used, for
example, op represents a 2-D image point and
¢, denotes the corresponding 3-D model point,
then the correspondence is given by (.(ox) = I,
and p((.(or) = 1) is the probability that oy cor-

responds to ¢, ;. For each correspondence (,



which assigns a set O = {oy,...,0,} of ob-
served features to corresponding model features

C.={cx1,....Cxn}, ajoint discrete probability
p(¢) = I p(Calon)) (10)
k=1

can be computed, and each hypothesized corre-
spondence can be weighted by a statistical mea-
sure.

3.3 Construction of Model Densities

Combining the probability density function for
the observed features O and the correspondence
(x between model and image features, we get the
density function

p(Ov CH|BH7 Rv t) =

m
p(CH) Hp(okmm(,{(ok)vRv t) ) (11)
k=1
i.e. a probability for the appearance of O and
(, for a given set of pose parameters. Here B,
summarizes the discrete probabilities for corre-
spondences and the parameters a,;, 1 <1 < n,.
Usually, the correspondences between model and
image features are latent. In [7] the elimination
of the missing correspondence by marginalization
is suggested. This is possible due to the proba-
bilistic modeling of the correspondence between
involved features. Other approaches, however,
prefer the ranking of match hypotheses based on
probability measures [15].

Assuming that the correspondence is not part
of the observation, the joint probability density
function for observing O is given by the marginal
density

p(O|Bm Rv t) =

0G0 [T okl crion B - (12)

CH k=1

Thus available image features are judged with-
out knowing the correspondences. This is conse-
quently at least democratic in that all correspon-
dences are considered, and the density function
is not tied to a special (..

The formalized statistical description of ob-
jects can be applied for solving the object recog-
nition problem, if the available image features
and their statistical behavior is known. A central
problem thus is the estimation of model parame-
ters or of discrete probabilities, respectively.

4 Model Acquisition

Since the statistical representation of features de-
pends on the geometric structure of image prim-
itives, model generation methods differ for dif-
ferent types of features, and are related to used
projection models.

4.1 Normally Distributed Features

If normally distributed 3-D features are assumed,
3-D mean vectors and (3 X 3)-covariance matri-
ces as well as discrete probabilities for correspon-
dences have to be estimated. The sample data
consist of a representative set of 2-D views (see
Figure 4 for example views). For each sample
view the pose parameters are known, because a
calibrated camera mounted on a robot’s hand is
used. Due to the missing depth and the non—
observable assignment between model and image
features, we have to deal with an incomplete data
estimation problem in a fairly high—dimensional
search space. An established method for solv-
ing estimation problems based on incomplete ob-
servations is the Expectation Maximization algo-
rithm (EM algorithm) [3]. In [7, 8] a detailed
derivation and discussion of iterative parameter
estimation algorithms for normally distributed
point and line features are discussed. These algo-
rithms require no heuristics for computing corre-
spondences of features in different views. Model
generation works unsupervised with respect to
the missing correspondence. The model parame-
ters are automatically computed using training
images and segmentation results from different
views.

4.2 Estimation of Ratio—Angle Proba-
bilities

The estimation of discrete probabilities for ratio
and angle features requires that we take into con-
sideration each pair of edges in the model space.
These 3-D edges have to be known in advance,
i.e. 3-D models of involved objects are neces-
sary for computing the statistical behavior of im-
age features. In contrast to normally distributed
image features, the components of model densi-
ties cannot be estimated from a set of 2-D views.
The 3-D structure of considered objects has to be
known in advance. In practice, an aspect graph
and a suitable tessellation of the viewing sphere
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Figure 4: Examples for 2-D training views and
the computed point and line features.

is used to generate the table of discrete proba-
bilities for each pair of edges off-line [15]. An
example is shown in Figure 5.

5 Statistical Object Recogni-
tion and Localization

5.1 Classification

The classification is generally based on the
Bayesian decision rule (1). The observation here
is restricted to the set of image features, i.e.
points, lines, angles, or ratios. When the object’s
pose is known, for each object class the a pri-
ori probability is given, and the marginal density
(12) is available, (1) can be applied for the class
decision.

Due to the statistical modeling of correspon-
dences, it is also possible to rank match hypothe-
ses. Hypotheses can be listed and tested during
the recognition stage.
lated to a search in the correspondence space, and
the judgement of hypothesized correspondences
is done using p({x(ox)) for observed features, the
probability for feature correspondences.

The classification is re-

5.2 Localization

The computation of pose parameters from three
points or a trihedral corner has been extensively
studied [5, 6]. The pose parameters consist of
three rotation angles and three components of

[
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Figure b5:

Tessellation,
ratio/iso—angle curves, and the computed prob-
ability for the marked pair of edges

aspect graph,

translation vectors. If the representation of ob-
served features in the model is done by para-
metric densities, the localization of objects corre-
sponds to a parameter estimation problem based
on a smooth density function. Independently of
feature correspondences, the pose, characterized
by the parameters R and ¢, can be determined
by the maximum likelihood estimation

{R,t} = argmaxp(O|B,,R,t) (13)

Rt
for a given set O of observed features. The max-
imization can be done by standard optimization
techniques [12].

In contrast to the reduction of pose estimation
to a continuous optimization problem, the use
of ratio—angle pairs and their discrete probabil-
ities enforce the solution of discrete optimization
tasks controlled by hypothesized correspondences
of model and image features. Since the rota-
tion angles and the translation vector are not ex-
plicitly represented as discrete probabilities, pose
computation for the weak perspective projection
model is divided into the following parts: the
computation of the viewing direction, the rota-
tion angle of the image about the viewing direc-
tion, the scale factor, and the (two-dimensional)
translation vector.

With (7) and (8) it follows that each measured
angle or ratio imposes a one-dimensional con-
straint on possible viewing directions. In order



Recognition [%)] || Run Time [sec]

3-D points ‘ lines points ‘ lines

Q 47 44 466 1882

Qs 78 82 485 2101

Q3 58 36 465 1933

04 89 76 471 1520
|average [ 68 | 59 | 472 | 1859 |

Table 1: Recognition rates and run time for a test
set of 1600 images including objects of Figure 6

to determine the viewing direction at least two
constraints are needed. Once the viewing direc-
tion is known the remaining components can be
recovered using standard 2-D pose estimation [2].

6 Experimental Results

The algorithms were developed and tested on dif-
ferent platforms and different objects.

6.1 Recognition Results using Point
and Line Features

The experiments using normally distributed
point and line features apply the statistical ap-
proach to learning, localization, and classification
of objects in gray—level images. Figure 8 and Fig-
ure 9 show some example images. These results
prove that the algorithms work with the presence
of occlusion and uncertainty (cmp. Figure 7 for
the occlusion of a 2-D object). Table 1 summa-
rizes recognition results and run times on a HP

7000/735.

E =
Ql QQ QS Q4

Figure 6: Polyedral 3-D objects

6.2 Recognition Results using Ratio
and Angle Features

The model database consists of five polyhedral
3-D objects. We extract edges from the gray—
level images using the Canny edge detector and

\.
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Figure 7: Localization and occlusion

@

Figure 8: Scene including two polyhedral objects

detect lines. Based on these line features, ratio
and angle feature sets are computed. For each
feature set match hypotheses and their proba-
bilities were derived from pre—computed look—up
tables. Table 2 summarizes the run time (Sun
Sparc 10) for the examples shown in Figure 10,
11, and 12.

7 Summary and Conclusion

This paper presented a probabilistic approach to
solve the 3-D object recognition problem. The
statistical modeling of objects is based on com-
posed density functions including discrete proba-
bilities for feature correspondences, and discrete
or continuous probability density functions for
modeling the statistical behavior of image fea-
tures dependent on the viewing direction. Con-
sidered features were point and line features with
parametric densities and scalar measures derived
from line features, which were characterized by
discrete probabilities. It is shown, how differ-

9

Figure 9: Object scene including background fea-
tures



Figure | Feature Match Total
Sets Hypotheses | Run Time

10 25 3134 68 min

11 11 1516 12 min

12 16 15672 26 min

Table 2: Experimental results using ratio and an-
gle features

Figure 10: Classification and localization results
using ratio, and angle features

ent types of model densities can be applied for
object recognition and pose estimation. Exper-
imental results demonstrate the correctness of
the chosen statistical framework. Future research
should concentrate on more efficient localization
algorithms and extensions for the recognition of
more complex objects in natural scenes instead
of simple polyhedral objects. Furthermore, an
objective comparison of different recognition al-
gorithms should not only discuss theoretical rela-
tions, but should also be tested on common sam-
ple data. The development of a suitable test set
is planned.
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