
Probabilistic Methods for 3{D Object RecognitionJoachim Hornegger1, Heinrich Niemann1, and Ilan Shimshoni21Lehrstuhl f�ur Mustererkennung,Universit�at Erlangen{N�urnberg,Martensstr. 3, D{91058 Erlangen, GermanyEmail: fhornegger,niemanng@informatik.uni-erlangen.de2Department of Computer Science,Technion,Technion City 3200, IsraelEmail: ilan@csa.cs.Technion.ac.ilAbstractThis work addresses various probabilistic ap-proaches which are suitable for classi�cation andlocalization of 3{D objects in gray{level images.We �rst present a statistical model for appear-ance based vision. The statistical behavior ofimage features, the projection model, the rota-tion and translation, as well as the assignmentof model and image features are represented asa single density function. The second approachranks correspondence hypotheses between modeland image features by the probability that theyare correct. For each hypothesis the object's poseis recovered and the region of the pose space com-patible with the image uncertainty is computed.The introduced algorithms have been fully im-plemented. Examples demonstrate the suggestedmethods with real image data. Keywords: sta-tistical object modeling, statistical object recog-nition, pose estimation, probabilistic peaking ef-fect1 Introduction and MotivationThere has been considerable and still increasinginterest in applications of probabilistic methodsfor image analysis [8, 15, 17]. In many �elds ofcomputer vision statistical principles may leadto improvements compared with standard tech-niques, because uncertainty manifests itself inmany aspects of image processing. The interpre-tation process is based on sensing information.Uncertainty results from image acquisition prop-

erties, like camera distortion, quantization errors,varying illumination conditions, or from modelincompleteness, e.g. camera models. In addi-tion the output of low{level preprocessing algo-rithms like edge detection may be inaccurate orincomplete. High{level processes must take intoaccount this probabilistic behavior. The devel-opment of robust computer vision algorithms re-quires the understanding and adequate modelingof uncertainty.This work concerns with new ideas to combinecontinuous and discrete random variables for thestatistical description of objects in the space ofobservations. The probabilistic models considerthe statistical behavior of features (like points,lines, angles or ratios of lengths), and the match-ing of model and image features. We will giverecipes for the construction of statistical modelswhich will either use composed probability den-sity functions or the probabilistic peaking e�ectby tracing iso{angle and iso{ratio curves on theviewing sphere. We both show how the matchingproblem of observed and model features can becircumvented within the probabilistic formalismby marginalization, and discuss the generation ofstatistical match hypotheses and their ranking inthe other case. The suggested models account forvarious types of uncertainty, and for each objectclass and pose hypothesis a probabilistic measurecan be computed. Thus, the Bayesian decisionrule can be applied to classify observed objects.The presented statistical framework will be testedfor 3{D object recognition and localization using2{D gray{level images.



2 Statistical Classi�cationThe object recognition problem is understood asthe assignment of (a subset of) observed imagefeatures to a class 
� (1 � � � K), which repre-sents a single object or a set of special types ofobjects. Objects are usually represented as mod-els and one of the major problems in computervision is the recognition of 3{D objects in a sceneas instances from a database of models. The com-putation of a transform which maps the model tothe observed image features is commonly sum-marized as the localization problem of objects.In most applications, observed features dependon the object's pose. Thus classi�cation and lo-calization processes usually in
uence each other.Statistical classi�ers [4, 11] known from patternrecognition require feature vectors c of �xed di-mensions and a probabilistic characterization ofclasses f
�j1 � � � Kg. The conditional densi-ties p(cj
�) and the a priori probabilities p(
�)should be known for each class 
� of objects. Foran observed feature c, the optimal decision rulewith respect to misclassi�cations is� = argmax� p(
�jc)= argmax� p(
�) p(cj
�)p(c) ; (1)i.e. we decide for the class with maximum a-posteriori probability. A classi�er which is basedon this decision rule is called Bayesian classi�er[11]. The de�nition of the required a{posterioriprobabilities is a highly non{trivial task, and it isa priori not obvious how this statistical conceptcan be applied to solve the object recognition andlocalization problem.We clarify necessary extensions of the basic a-posteriori probabilities for single feature vectorsby a simple example. Let us consider a 3{D cube,where the considered features are the cube's 3{Dvertices. An object is thus not associated witha single, but a set of features. Any 2{D view ofthis object appearing in a gray{level image is theresult of a mapping from the 3{D model into the2{D image space combined with a rotation andtranslation in the model space. This transforma-tion includes the following parts (see Figure 1):� 3{D rotation R and translation t,� self{occlusion,� projection P from the model into the imagespace, and
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Figure 1: The transformation from the modelinto the image space� segmentation errors (e.g. multiple detectedpoint features in Figure 1).This consideration shows that the number of ob-served, lower dimensional image features is notexpected to be constant for arbitrary images.The cardinality of the available feature set de-pends on the viewing directions, on the illumina-tion conditions, and on the used segmentation al-gorithms. In addition to components mentionedabove, the correspondence �� between the fea-tures in a model of class 
� and image features,and the range information is lost.3 Statistical ModelingThe statistical description of 3{D objects appear-ing in images can be divided up into di�erent sta-tistical components: The uncertainty of observ-able features, the dependency of features on theobject's pose, and the correspondence betweenmodel and image features.3.1 Statistical Modeling of FeaturesCommon features used for object recognition arepoint or line features as well as related mea-



sures like ratios or angles [2, 10]. An objectin the model space is characterized by the setc� = fc�;1; c�;2; : : : ; c�;n�g of model features. Ofcourse, di�erent features require di�erent statis-tical representations. Independent of its concretegeometrical appearance, each observable featureok underlies either a parametric distributiongiven by a continuous density p(okja�;l;R; t) ora discrete probability p(ok jR; t) 2 [0; 1]. Herein,a�;l characterizes the distribution of the corre-sponding model feature c�;l and the parametersR and t represent the degrees of freedom forthe object's pose. The density p(ok ja�;l;R; t),including model{ and pose{speci�c parameters,results from the probability density functionp(c�;lja�;l) attached to c�;l by applying a stan-dard density transform [1]. The mapping fromthe model into the image space is characterizedby R and t.The composed density which characterizes theset of observed features O = fo1;o2; : : : ;omg isgiven byp(Ojfa�;1; : : : ;a�;n�g;R; t) =mYk=1 p(okja�;lk ;R; t) ; (2)if the correspondence is known and statistical in-dependence is assumed. The concrete representa-tion of the involved probabilities depends on theused features and dependency structures.If, for example, normally distributed 3{D fea-tures are given, then a�;l includes the 3{D meanvector and the (3 � 3){covariance matrix. If anorthogonal projection from the 3{D model spaceinto the 2{D image space is assumed, an a�netransform is given byok = Rc�;l + t ; (3)where ok ; t 2 IR2, c�;l 2 IR3, and R 2 IR2�3.The observable image features are also Gaussiandistributed. The mean vector of the transformedfeature is R��;l + t and the covariance matrix isR��;lRT [1].3.1.1 Point FeaturesPoint features are quite often used for objectrecognition and localization. Statistical tests in[13, 16] show that point features in the imagespace are normally distributed. Let ok 2 IR2 be

the 2{D point feature and c�;l 2 IR3 the cor-responding also normally distributed 3{D pointfeature. With respect to these constraints, wegetp(okja�;lR; t) = N (okjR��+t;R��;lRT ) ; (4)i.e. uncertainty of features is characterized byGaussian density functions including the meanvector, the covariance matrix, and the parame-ters R; t for the feature transform. For each fea-ture, the densities di�er in the mean vectors andcovariance matrices, but they all share the pose{speci�c parameters R and t.3.1.2 Straight Line SegmentsThe statistical modeling of straight line segmentsis similar to point features. A 3{D straight linesegment c�;l is characterized by an initial and anend point, i.e. c�;l = (c�;l;1; c�;l;2) 2 IR3 � IR3.If statistical independence of these normally dis-tributed points is assumed for simplicity, the sta-tistical behavior of the straight line feature c�;l isgiven byp(c�;lja�;l) = 2Ys=1N (c�;l;sj��;l;s;��;l;s): (5)Due to the projection from the 3{D model spaceinto the 2{D image space, the depth informationand the identi�cation of initial and end pointsget lost. In (3) we have seen, how the rotation,translation, and projection a�ects the densitiesfor single point features. The lost identi�cationof initial and end points is substituted by a ran-dom process. Possible orders of point pairs areassumed to be uniformly distributed. If two pairsof points are feasible, then we havep(ok ja�;l;R; t) =12X� 2Ys=1N (ok;sjR��;l;�(s)+t;R��;l;�(s)RT );(6)where � covers all permutations. For two observ-able 2{D straight line features o1 and o2 the ra-tio r 2 IR between these straight line segments'length and the angle � 2 [0�; 360�] between themcan be computed, and can be used for recogni-tion and localization. The statistical modeling ofthese features can either be derived from (6) ap-plying a complicated density transform, or fromthe computation of discrete probabilities for �niteintervals, as suggested in [14].
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-0.4 c0�;1Figure 2: Iso{ratio (left, where log2(r) 2 [�2; 2])and iso{anlge (right) curve for two lines of equallength and with 45� between them.3.1.3 Ratios and AnglesIf (c�;1; c�;2) 2 IR3 � IR3 are the correspondingmodel lines of o1 and o2, and v 2 IR3 denotesthe viewing direction, we have the following con-straints for r and �:jc0�;1 � vj � rjc0�;2 � vj = 0 (7)and(c0�;1 � v)(c0�;2 � v)� cos �jc0�;1 � vjjc0�;2 � vj = 0; (8)where c0�;s = c�;s;1 � c�;s;2, s = 1; 2. For the nor-malized viewing direction v 2 IR3 with kvk2 = 1,iso{ratio and iso{angle curves can be de�ned. Ex-amples for these curves are shown in Figure 2,and their computation is done by an algorithmfor tracing algebraic curves which relies on ho-motopy continuation [14].In order to compute the probability for ob-serving a set O = fo1; : : : ;ong of features, thedensity function for each measured value ok inthe image is required. For a pair (log2(r); �) ofratio and angle this probability depends on theviewing direction v or on the object's pose in thescene. Instead of using parametric densities in-cluding parameters of the feature's geometry andits pose, discrete probabilities will be computedfor each viewing direction. The (log2(r); �){spacecan be quantized on a rectangular grid. For eachrectangle, the average value of the discrete prob-abilities is computed and stored in a table. Fig-ure 3 shows the tessellation of the sphere (left)and the derived 2{D probability function (right).Each region in the parameter space is limited byupper and lower bounds for ratios and angles.Because of (7) and (8) the mentioned boundary

-30.080.060.040.0200 50100150200250300 2 1 0 -2-1Figure 3: Tessellation of the viewing sphere (left)and the joint probability function (right)values de�ne polygons on the sphere, whose areaA results fromA = zXi=1 �i � (z � 2)� ; (9)where z is the number of vertices of the polygon,and �i 2 [0; 2�] is the spherical angle betweentwo adjacent angles. To obtain a probability, thearea A is divided by 4�, the area of the completesphere. Such a table can be computed for eachratio{angle{pair. Thus for each observed featurepair and a given viewing direction the discreteprobability can be computed.So far, we have seen that di�erent types offeatures result in di�erent statistical representa-tions. Both parametric, and non{parametric den-sities can be used for object recognition purposes.If the correspondence of model and image fea-tures is known, the introduced probability den-sity functions can be used for the computation ofthe probability for observing a set of features.3.2 Statistical Modeling of FeatureCorrespondencesIf no background features exist, each observablefeature ok, 1 � k � m, corresponds to a modelfeature c�;l, where � is the object's class num-ber. This matching can be denoted by a m{dimensional random vector ��, whose k{th com-ponent is the index l of the corresponding fea-ture c�;l of ok . If point features are used, forexample, ok represents a 2{D image point andc�;l denotes the corresponding 3{D model point,then the correspondence is given by ��(ok) = l,and p(��(ok) = l) is the probability that ok cor-responds to c�;l. For each correspondence ��,



which assigns a set O = fo1; : : : ;omg of ob-served features to corresponding model featuresC� = fc�;1; : : : ; c�;ng, a joint discrete probabilityp(��) = mYk=1 p(��(ok)) (10)can be computed, and each hypothesized corre-spondence can be weighted by a statistical mea-sure.3.3 Construction of Model DensitiesCombining the probability density function forthe observed features O and the correspondence�� between model and image features, we get thedensity functionp(O; ��jB�;R; t) =p(��) mYk=1 p(ok ja�;��(ok);R; t) ; (11)i.e. a probability for the appearance of O and�� for a given set of pose parameters. Here B�summarizes the discrete probabilities for corre-spondences and the parameters a�;l, 1 � l � n�.Usually, the correspondences between model andimage features are latent. In [7] the eliminationof the missing correspondence by marginalizationis suggested. This is possible due to the proba-bilistic modeling of the correspondence betweeninvolved features. Other approaches, however,prefer the ranking of match hypotheses based onprobability measures [15].Assuming that the correspondence is not partof the observation, the joint probability densityfunction for observing O is given by the marginaldensityp(OjB�;R; t) =X�� p(��) mYk=1 p(okja�;��(ok);R; t) : (12)Thus available image features are judged with-out knowing the correspondences. This is conse-quently at least democratic in that all correspon-dences are considered, and the density functionis not tied to a special ��.The formalized statistical description of ob-jects can be applied for solving the object recog-nition problem, if the available image featuresand their statistical behavior is known. A centralproblem thus is the estimation of model parame-ters or of discrete probabilities, respectively.

4 Model AcquisitionSince the statistical representation of features de-pends on the geometric structure of image prim-itives, model generation methods di�er for dif-ferent types of features, and are related to usedprojection models.4.1 Normally Distributed FeaturesIf normally distributed 3{D features are assumed,3{D mean vectors and (3� 3){covariance matri-ces as well as discrete probabilities for correspon-dences have to be estimated. The sample dataconsist of a representative set of 2{D views (seeFigure 4 for example views). For each sampleview the pose parameters are known, because acalibrated camera mounted on a robot's hand isused. Due to the missing depth and the non{observable assignment between model and imagefeatures, we have to deal with an incomplete dataestimation problem in a fairly high{dimensionalsearch space. An established method for solv-ing estimation problems based on incomplete ob-servations is the Expectation Maximization algo-rithm (EM algorithm) [3]. In [7, 8] a detailedderivation and discussion of iterative parameterestimation algorithms for normally distributedpoint and line features are discussed. These algo-rithms require no heuristics for computing corre-spondences of features in di�erent views. Modelgeneration works unsupervised with respect tothe missing correspondence. The model parame-ters are automatically computed using trainingimages and segmentation results from di�erentviews.4.2 Estimation of Ratio{Angle Proba-bilitiesThe estimation of discrete probabilities for ratioand angle features requires that we take into con-sideration each pair of edges in the model space.These 3{D edges have to be known in advance,i.e. 3{D models of involved objects are neces-sary for computing the statistical behavior of im-age features. In contrast to normally distributedimage features, the components of model densi-ties cannot be estimated from a set of 2{D views.The 3{D structure of considered objects has to beknown in advance. In practice, an aspect graphand a suitable tessellation of the viewing sphere



Figure 4: Examples for 2{D training views andthe computed point and line features.is used to generate the table of discrete proba-bilities for each pair of edges o�{line [15]. Anexample is shown in Figure 5.5 Statistical Object Recogni-tion and Localization5.1 Classi�cationThe classi�cation is generally based on theBayesian decision rule (1). The observation hereis restricted to the set of image features, i.e.points, lines, angles, or ratios. When the object'spose is known, for each object class the a pri-ori probability is given, and the marginal density(12) is available, (1) can be applied for the classdecision.Due to the statistical modeling of correspon-dences, it is also possible to rank match hypothe-ses. Hypotheses can be listed and tested duringthe recognition stage. The classi�cation is re-lated to a search in the correspondence space, andthe judgement of hypothesized correspondencesis done using p(��(ok)) for observed features, theprobability for feature correspondences.5.2 LocalizationThe computation of pose parameters from threepoints or a trihedral corner has been extensivelystudied [5, 6]. The pose parameters consist ofthree rotation angles and three components of
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Figure 5: Tessellation, aspect graph, iso{ratio/iso{angle curves, and the computed prob-ability for the marked pair of edgestranslation vectors. If the representation of ob-served features in the model is done by para-metric densities, the localization of objects corre-sponds to a parameter estimation problem basedon a smooth density function. Independently offeature correspondences, the pose, characterizedby the parameters R and t, can be determinedby the maximum likelihood estimationf bR;btg = argmaxR; t p(OjB�;R; t) (13)for a given set O of observed features. The max-imization can be done by standard optimizationtechniques [12].In contrast to the reduction of pose estimationto a continuous optimization problem, the useof ratio{angle pairs and their discrete probabil-ities enforce the solution of discrete optimizationtasks controlled by hypothesized correspondencesof model and image features. Since the rota-tion angles and the translation vector are not ex-plicitly represented as discrete probabilities, posecomputation for the weak perspective projectionmodel is divided into the following parts: thecomputation of the viewing direction, the rota-tion angle of the image about the viewing direc-tion, the scale factor, and the (two{dimensional)translation vector.With (7) and (8) it follows that each measuredangle or ratio imposes a one{dimensional con-straint on possible viewing directions. In order



Recognition [%] Run Time [sec]3{D points lines points lines
1 47 44 466 1882
2 78 82 485 2101
3 58 36 465 1933
4 89 76 471 1520average 68 59 472 1859Table 1: Recognition rates and run time for a testset of 1600 images including objects of Figure 6to determine the viewing direction at least twoconstraints are needed. Once the viewing direc-tion is known the remaining components can berecovered using standard 2{D pose estimation [2].6 Experimental ResultsThe algorithms were developed and tested on dif-ferent platforms and di�erent objects.6.1 Recognition Results using Pointand Line FeaturesThe experiments using normally distributedpoint and line features apply the statistical ap-proach to learning, localization, and classi�cationof objects in gray{level images. Figure 8 and Fig-ure 9 show some example images. These resultsprove that the algorithms work with the presenceof occlusion and uncertainty (cmp. Figure 7 forthe occlusion of a 2{D object). Table 1 summa-rizes recognition results and run times on a HP7000/735.
1 
2 
3 
4Figure 6: Polyedral 3{D objects6.2 Recognition Results using Ratioand Angle FeaturesThe model database consists of �ve polyhedral3{D objects. We extract edges from the gray{level images using the Canny edge detector and

Figure 7: Localization and occlusionFigure 8: Scene including two polyhedral objectsdetect lines. Based on these line features, ratioand angle feature sets are computed. For eachfeature set match hypotheses and their proba-bilities were derived from pre{computed look{uptables. Table 2 summarizes the run time (SunSparc 10) for the examples shown in Figure 10,11, and 12.7 Summary and ConclusionThis paper presented a probabilistic approach tosolve the 3{D object recognition problem. Thestatistical modeling of objects is based on com-posed density functions including discrete proba-bilities for feature correspondences, and discreteor continuous probability density functions formodeling the statistical behavior of image fea-tures dependent on the viewing direction. Con-sidered features were point and line features withparametric densities and scalar measures derivedfrom line features, which were characterized bydiscrete probabilities. It is shown, how di�er-Figure 9: Object scene including background fea-tures



Figure Feature Match TotalSets Hypotheses Run Time10 25 3134 68 min11 11 1516 12 min12 16 15672 26 minTable 2: Experimental results using ratio and an-gle featuresFigure 10: Classi�cation and localization resultsusing ratio, and angle featuresent types of model densities can be applied forobject recognition and pose estimation. Exper-imental results demonstrate the correctness ofthe chosen statistical framework. Future researchshould concentrate on more e�cient localizationalgorithms and extensions for the recognition ofmore complex objects in natural scenes insteadof simple polyhedral objects. Furthermore, anobjective comparison of di�erent recognition al-gorithms should not only discuss theoretical rela-tions, but should also be tested on common sam-ple data. The development of a suitable test setis planned.8 References1. T. W. Anderson. An Introduction to MultivariateStatistical Analysis. Wiley Publications in Statistics.John Wiley & Sons, Inc., New York, 1958.2. N. Ayache and H. Faugeras. HYPER: a new ap-proach for the recognition and positioning of two{dimensional objects. IEEE Transactions on PatternAnalysis and Machine Intelligence, 8(1):44{55, Jan-uary 1986.3. A.P. Dempster, N.M. Laird, and D.B. Rubin. Max-imum Likelihood from Incomplete Data via the EMFigure 11: Localization and classi�cation
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