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Knowledge Based Image Understanding byIterative OptimizationH. Niemanna;b), V. Fischera;c), D. Paulusa), J. Fischera)a)Lehrstuhl f�ur Mustererkennung (Informatik 5)Universit�at Erlangen-N�urnbergMartensstra�e 3, 91058 Erlangen, Germany;b)Forschungsgruppe WissensverarbeitungBayerisches Forschungszentrum f�ur Wissensbasierte SystemeAm Weichselgarten 7, 91058 Erlangen, Germanyc)IBM Deutschland GmbH, Institut f�ur Logik und Linguistik,Vangerowstra�e 18, 69115 Heidelberg, GermanyAbstract In this paper knowledge based image interpretation is formulated andsolved as an optimization problem which takes into account the observed image data,the available task speci�c knowledge, and the requirements of an application. Knowl-edge is represented by a semantic network consisting of concepts (nodes) and links(edges). Concepts are further de�ned by attributes, relations, and a judgment func-tion. The interface between the symbolic knowledge base and the results of image (orsignal) processing and initial segmentation is speci�ed via primitive concepts.We present a recently developed approach to optimal interpretation that is basedon the automatic conversion of the concept oriented semantic network to an attributecentered representation and the use of iterative optimization procedures, like e.g. sim-ulated annealing or genetic algorithms. We show that this is a feasible approach whichprovides `any{time' capability and allows parallel processing. It provides a well{de�nedcombination of signal and symbol oriented processing by optimizing a heuristic judg-ment function.The general ideas have been applied to various problems of image and speechunderstanding. As an example we describe the recognition of streets from TV imagesequences to demonstrate the e�ciency of iterative optimization.Key Words: semantic network, iterative optimization, knowledge based imageanalysis1 IntroductionThe general goal of automatic image interpretation is to extract from an imageor image sequence the information relevant to perform a well{de�ned task inan optimal manner. It is not necessary to extract all information contained inthe images but to provide the relevant information in a format which suites thesubsequent usage, either by man or by machine. Usually, information is requiredin some symbolic and condensed form, not as arrays or subarrays of pixels.1 This work was funded partially by the German Research Foundation (DFG) undergrant number SFB 182. Only the authors are responsible for the contents.2 The related work on speech understanding using iterative optimization was supportedby the Real World Computing Partnership (RWCP).



Interpretation of sensory inputs can only be done with respect to an internalmodel of the environment, where in principle the observations may in turn mod-ify the internal model. Hence, all interpretation is model{based or knowledge{based.In this paper we present an approach to represent a model of the task domainor the a priori knowledge about it in a semantic network and to compute an in-terpretation which is optimal with respect to a given judgment function. Fromamong the di�erent approaches to optimization we describe combinatorial op-timization techniques. We point out how knowledge based processing interfacesto data driven segmentation and preprocessing, but techniques for this are notthe topic. Finally, we demonstrate the feasibility and e�ciency of our approachby application.Related work on applications of image interpretation is covered, for example,in [1, 2], some general books on image interpretation are, for example, [3, 4], andsome books on knowledge representation and use are, for example, [5, 6].2 OverviewThe general goal of image understanding is the computation of a symbolic de-scription B of an image f or image sequence f � which{ optimally �ts to the observed data (or pixels),{ is maximally consistent with internally represented task{speci�c knowledge,{ and best suits the demands of a user as de�ned by an explicit model of thetask{domain.Hence, it is an optimization problem and should be formulated (see Section 3)and solved (see Section 4) as such.Two main phases of processing are assumed: an initial phase of mainly data{driven processing and a phase of mainly model{driven processing. However, it isnot assumed in general that these two phases are strictly sequential in the sensethat the �rst phase must be �nished before the second may start. Rather it isassumed that the timing of the phases, the data used by them, and the order ofswitching between phases is determined by a control strategy implemented by acontrol module or control algorithm.The data{driven phase of processing consists of preprocessing and initial seg-mentation. The goal of preprocessing is to improve the image quality in order toobtain better results during subsequent processing. In general it transforms animage f into another image h. The goal of initial segmentation is to decomposethe image into segmentation objects O like lines or regions and to obtain their at-tributes and relationships. We assume that no explicitly represented task{speci�cknowledge is used, but only general knowledge valid for (almost) all images, forexample, about color, geometry, or image formation.The main topic of this paper is an approach to knowledge representation inthe concepts C of a semantic network as well as its use for image understanding,and the formulation of image understanding as the computation of a best scoredinstance I�(Cg) of a goal concept Cg. 2



3 Framework for Knowledge Based ProcessingInitial Description According to the above processing model, data driven im-age processing and initial segmentation is viewed as a sequence of operations,that transforms an image f into an initial description A which in general isa network hOi of segmentation objects O. In our applications we mainly usestraight and circular lines for segmentation. The initial (symbolic) descriptionde�nes the interface to knowledge based processing.In general, a segmentation object has a type TO , for example, indicatingthat it is a straight line, or a circle and it has a name identifying the object,for example, the number of a straight line. In addition, it may have attributes,parts, structural relations among its attributes and parts, and it should have ajudgment G which in general is a vector of real numbers. An attribute A has atype TA, a value which may be a real number or a symbol from a �nite terminalalphabet, and a judgment which is a real number. Examples of attributes are thelength of a line, the angle between a line and the x-axis, or the area of a region.A part P of a segmentation object is itself a segmentation object and providesa decomposition into simpler components. For example, the `right angle' has asparts two lines. A structural relation S expresses a constraint between attributeson objects (AO), parts (AP ), and concretes (AK , see below), of a segmentationobject, for example, in a right angle the angles between each of the two linesand the x-axis are constrained. It is useful to consider fuzzy relations having anassociated real number which measures the degree of ful�lment of the relation.Brie
y, a segmentation object is a structureO = [D : TO; // name ;(A : (TA; IR [ VT ))�; // attribute ;(P : O)�; // part ;(S(AO ; AP ; AK) : IR)�; // relation ;G : IRn] // judgment : (3.1)The notation (A : : : :)� indicates that there may be an arbitrary number (in-cluding zero) of attributes in an object. The initial description of an image is anetwork of segmentation objects A = hOi :Concept For knowledge representation we employ a suitably de�ned version ofa semantic network [7] because it allows well{structured representation, e�cientutilization, di�erent types of optimization procedures, explanation tools, andwas shown to provide excellent results in various applications.Basically, a formalism for knowledge representation in an image analysis sys-tem should allow one to represent in the computer a certain conception denotingan entity in the real (physical) world, for example, a `highway', a `car', an `acci-dent on a highway', and so on. We represent a conception by a recursive structure3



C and call this internal representation a conceptC = �D : TC ; // name(Pci : C)�; // context-indep. part(Pcd : C)�; // context-dep. part(K : C)�; // concrete(V : C)�; // specialization(L : I)�; // instance(A : (TA 7! F ))�; // attribute, computed by F(S(AC ; AP ; AK) 7! F )�; // relation, computed by F(G 7! F )� // judgment, computed by F (3.2)A detailed description of a concept in this sense is given in [7] and relatedwork is found, for example, in [8, 6]. Some basic properties are illustrated inFigure 1.of objects2D-views electr. motorsparts of blade of ventil.line circularstraightjudgment Grelations Sattributes Aventilator C number 1 Iventilatorsignal fcamera-modlM -specV?conc K -spec- �����*part P-instL ?conc� � �?concmodel-scheme knowledge-base results
Figure 1. Examples of concepts linked to other concepts and modeling industrial parts.The main de�ning components of a concept are its context{independentand context{dependent parts Pci; Pcd and concretes K. The distinction betweenparts and concretes allows one to represent relations between di�erent levels ofabstraction or di�erent conceptual systems. For example, in Figure 1 the `partsof electric motors' are determined from `lines' which are in a di�erent conceptualsystem (or closer to the level of pixels); they are therefore related by a concrete{link. We omit the model scheme (Figure 1) from further discussion here andrefer to [9, 10].The distinction between context{independent and {dependent parts allowsone to handle context{dependent relations between objects and their parts. Withrespect to the usage of a knowledge base this means that a context{independentpart may be detected or infered without having the superior concept, whereas acontext{dependent part can only be infered after having the superior concept.4



In order to have compact knowledge bases and to de�ne hierarchies of con-ceptions it is possible to introduce a concept as the specialization V of someother (more general) concept.According to the above de�nition a concept C has a set of attributes (orfeatures, properties) A each one referencing a function F which can computethe value of the corresponding attribute.There may be structural relations S between the attributes AC of a conceptor of attributes AP and AK of its parts and concretes. Since in image processingnoise and processing errors are inevitable, relations usually can only be estab-lished with limited precision. Therefore, each relation references a function Fcomputing a measure of the degree of ful�lment of this relation, for example, inthe sense of a fuzzy relation.In the same class of objects there may be quite di�erent types of objects. Forexample, there are chairs with three and with four legs, and a chair may have anarmrest or not. One possibility is to de�ne separate concepts for each type, butin order to have compact knowledge bases it is convenient to introduce a more
exible de�nition of a concept. Therefore a concept is allowed to have di�erentso called sets of modalitiesHi with the implication that each individual set mayde�ne the concept. Furthermore, obligatory and optional parts are introduced.Instance and Modi�ed Concept The occurrence of a speci�c object in animage is represented by an instance I(C) of the corresponding concept C. Therelation between the concept and its instance is represented by a link L fromC to I(C). An instance is represented by a structure identical to (3.2) exceptthat references to functions are replaced by the actual values computed by thosefunctions from the image.There may be the situation that some instances have been computed andallow the restriction of attribute values of a concept C which cannot yet be in-stantiated. In this case a so called modi�ed concept Q(C) is created which allowsthe propagation of constraints both in a bottom{up and top{down manner. Forexample, the detection of one `wheel' of a `car' constrains both the location ofthe car (bottom{up) and of the other wheels (top{down). This way constraintsare propagated bottom{up and top{down.A judgment G of an instance or a modi�ed concept is a vector of numberscomputed by F , measuring the degree of con�dence in the actual occurrence ofthe instance and its expected contribution to the success of analysis.Knowledge{Based ProcessingThe available task-speci�c knowledge is repre-sented in a modelM which is a network of conceptsM = hCi: Hence, knowledgeabout objects, events, tasks, actions, and so on is represented homogeneously byconcepts related to each other by the various links.In particular we assume that the goal of image analysis is itself represented byone or more concepts which we denote as the goal concepts Cgi . The descriptionof an image then is represented by an instance I(Cg) of the goal concept. Sinceevery concept has an attached judgment G, there is also a judgment G(I(Cg))of the goal concept. Now it is natural to request the computation of an optimal5



instance I�(Cg) of a goal concept and de�ne knowledge based processing as theoptimization problemI�(Cg) = maxfI(Cg)gfG(I(Cg)jM;A)g ; (3.3)B(f ) = I�(Cg) : (3.4)The essential assumptions are that it is possible to{ compute a su�ciently reliable initial segmentation A,{ acquire the relevant task-speci�c knowledge in the modelM,{ specify judgments G which are adequate for the task domain.It has been demonstrated in several applications that this can be done, see forexample, [11, 12].Facing both the large amount of data and the limited processing time in mostimage understanding tasks, the exploitation of parallelism provides a promisingway to compute an optimal instance I�(Cg) just in time with the sensory input.Whereas parallel algorithms for preprocessing and segmentation have nearly be-come a state of the art and may be found in various textbooks [13], parallelknowledge based processing is much less investigated. While the former algo-rithms often make use of the local nature of pixel{oriented computations, andtherefore allow the use of simple data partitioning techniques, the paralleliza-tion of knowledge based processing is more di�cult, since usually it requires theidenti�cation of inferences that may be executed simultaneously.Most parallel semantic network systems employ an isomorphic mapping be-tween the processors of a parallel hardware and the nodes and links of a knowl-edge base, which turned out to be a feasible approach if both concepts andinferences are simple [14]. However, since in our formalism a concept may havean arbitrary number of attributes and structural relations, complex conceptsmay become a bottleneck in parallel instantiation. Therfore, we employ an at-tribute centered representation of a semantic network, where each computationneeded during instantiation is represented by a node of a directed acyclic graph[15, 16] that may be mapped to a multiprocessor system for purposes of parallelprocessing.The automatic construction of the graph from the concept centered de�nitiongiven by equation (3.2) is an important prerequisite to preserve the advantagesof the well{structured knowledge representation by semantic networks. In ourformalism this is possible, since the use of knowledge during instantiation onlyrelies on the syntax of the network language, and not on the content of theknowledge base or intermediate results of analysis.Since a concept usually is stored exactly once in the knowledge base, but itmay be necessary to create several instances for one concept during analysis (asan example consider the wheels of a car), transformation of the network startswith the computation of the number of instances needed for instantiation of agoal concept Cg. This is achieved by a top{down expansion of the goal concept.Then, the expanded network is re�ned by the determination of dependencies6



between subconceptual entities. These are obtained from an examination of theinterface to the procedural knowledge F , where a list of arguments is speci�edfor each procedure. For each attribute, structural relation, and judgment of theexpanded network a node vk is created, and the name of the structure is attachedto vk as well as the corresponding procedures for the computation of a value ora judgment. If a node vl is referenced via its name in the argument list of theprocedures attached to vk, a directed link elk = (vl; vk) is created, expressing thefact that the computation of vl must �nish before the computation of vk maystart. Nodes without predecessors represent attributes that provide an interfaceto the initial segmentation, and nodes without successors usually represent thejudgments of goal concepts.4 Optimal InstantiationAs a prerequisite for goal{directed processing, we assume that a heuristic judg-ment function is available, which allows the quantitative treatment of alternative,uncertain, or imprecise results, that may arise during segmentation as well asduring knowledge based processing (cf. Section 3). Results of initial segmenta-tion in our applications are either scored heuristically or forwarded to knowledgebased processing without a judgment of quality.During knowledge based processing we have to distinguish between the judg-ment of an instance I(C) of a concept C and the judgment of a state of analysis.The score of an instance in principle is always based on the quality of the matchbetween data and model or on the quality of ful�lment of fuzzy inference rules.The score of a state of analysis is always based on the current estimate of thequality of a solution provided by a goal concept, see eq. (4.4) for combinato-rial optimization. Therefore, instantiation is always directed towards optimalinstantiation of a goal concept as requested in (3.3).The attribute centered representation of a semantic network presented orig-inally was developed to speed up analysis by the parallel computation of in-stances. Besides instantiation on the network level there is a control level (e.g.a search tree) that deals with the problem of �nding an optimal interpretation,and in face of the required processing rates it seems reasonable to employ parallelprocessing on this level, too.Parallel graph search algorithms, which are treated, for example, in [17], pro-vide an obvious solution and are widely used in solving standard problems fromarti�cial intelligence, like e.g. the Traveling{Salesman{Problem. However, sincein our application state space search demands the collection of instances andmodi�ed concepts into nodes of the search graph, the control algorithm givenabove requires a large amount of communication between processors if the searchspace is explored in parallel. We therefore developed an iterative optimizationalgorithm which facilitates an e�cient realization on a parallel hardware. Inaddition it provides an approximate interpretation at every iteration and there-fore supports the fast computation of suboptimal interpretations, which may beused by other processing modules if less processing time is available (any{time7



property). For purposes of explanation, the algorithm may be divided into twostages:{ During bottom-up instantiation, values and judgments are computed foreach attribute, structural relation, link or concept of the attribute network.Initially this will lead to many competing interpretations having low valuesof judgment.{ Interpretations obtained from bottom-up instantiation are iteratively im-proved by applying a combinatorial optimization procedure. Ideally, thiswill lead to a unique interpretation having a high value of judgment.Bottom-up instantiation starts with the computation of attributes that pro-vide an interface to the initial segmentation, and �nishes with the judgment ofgoal concepts. Parallel bottom{up instantiation maps each node of the attributenetwork onto a processor and computes simultaneously those nodes, whose pre-decessors have already �nished execution. We thereby obtain instances for thegoal concepts, each provided with a judgment G(I(Cg)). From the best scoredinstances we create a vectorg = (G(I�(Cg1 ); : : : ;G(I�(Cgn)) (4.1)representing the �nal result of a single iteration step.Since results from inital segmentation are usually erroneous and due to thepresence of ambiguities in the knowledge base (e.g. sets of modalities), there isa need for an e�cient processing of competing hypotheses that are created dur-ing instantiation. Because the simultaneous treatment of competing hypotheseswould result in both a large amount of communication between processors anda combinatorial explosion of intermediate results on the higher levels of the net-work, an iterative processing is employed.The computation of instances (Figure 2) and their judgment is completelydetermined by assigning to each interface (attribute) node Ai a (possibly empty)subset fO(i)j g of segmentation objects and selecting for each concept node Ck aunique modality H(k)l (cf. Section 3). This allows us to characterize the currentstate of analysis by a vectorrc = h(Ai; fO(i)j g) j i = 1; : : : ;m ; (Ck;H(k)l ) j k = 1; : : : ; ni ; (4.2)where m is the number of interface nodes and n the number of concepts havingmore than one modality. Hence, we also may rewrite (4.1) as a function of thecurrent state rc byg(rc) = (G(I�(Cg1); : : : ;G(I�(Cgn)jrc) (4.3)and compute an optimal state of analysis by treating rc as the current state zcof a combinatorial optimization problem.Figure 3 gives a general algorithm for solving the problem of optimal instanti-8
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owchart, resulting in a judgment of goal concepts.ation (3.3{3.4) by combinatorialoptimization. The parts printedsans serif have to be adapted foroptimal instantiation.For the design of the requiredcost function �, we assume thatan error{free segmentation wouldsupport a single interpretation,and therefore results in an idealjudgment G(I�(Cgi)) = 1:0 forthe correct goal concept. On theother hand, at the same timethis segmentation would give noevidence to any other goal con-cept, i.e. G(I�(Cgj )) = 0:0. Wewould thus obtain the i{th unitvector ei as an ideal result of in-stantiation, if the i{th goal con-cept provides the desired sym-
given: state space Z = fz1; z2; : : :gde�ne a control sequence (Tk) with the fol-lowing properties:Tk > 0 ^ 8k � 0 : Tk � Tk+1 ^limk!1 Tk = 0create an initial state z0 and compute�0 := �(z0)zc := z0; �c := �0FOR computing time availablecreate a new state zn out of zccompute �n := �(zn)compute the acceptance criterion a(zn)IF a(zn) = TTHEN let zn become the current state:zc := zn, �c := �nreport the current state zc as the solutionFigure3.: Algorithm for the minimization of acost function by combinatorial optimization.bolic description.We approximate this behaviour and de�ne9



�(rc) = min1�i�nf(ei � ~g(rc))2g; ~g(rc) = g(rc)jjg(rc)jj (4.4)as a cost function, that computes the minimum distance from g(rc) to the unitvectors ei. Note that this function provides a problem independent measure ofcosts, since no assumptions on the contents of the knowledge base are made.Monte-Carlo-Methods The creation of a new state rn and the choice of anacceptance criterion are motivated by the analogy between the annealing of asolid in condensed matter physics and the optimization of a system with manyindependent variables (cf. \simulated annealing algorithm" [18]).In combinatorial optimization the temperature of a solid corresponds to thevalue Tk of a control sequence, and the cooling is achieved by a monotone de-crease of Tk. The creation of a new state is performed by applying a small randomperturbation to the current state rc. A new state rn is generated from the cur-rent state rc by �rst selecting a tuple from among (Ai; fO(i)j g) or (Ck;H(k)l ) in(4.2) with equal probability, and then exchanging the term fO(i)j g or H(k)l by apossible alternative, again with equal probability for each alternative.If the new state generated this way has lower cost than the current state, itis accepted. In addition, a new state with higher cost may also be accepted. Theacceptance of new states with higher costs is necessary as well to allow the escapefrom local minima of the cost function. However, accepting all states would pre-vent the algorithm from convergence, and therefore an acceptance criterion a(rn)is needed to decide which new state should be accepted or rejected. The generalalgorithm given in Figure 3 is specialized to di�erent optimization proceduresaccording to the di�erent criteriaa(rn) =8>>>>><>>>>>:T : q � exp(�1=Tk � (�n � �c)) simulated annealing ;T : (�n � �c) � Tk threshold acceptance ;T : �n � Tk great deluge ;T : �n � �c stochastic relaxation ;F : else : (4.5)Whereas stochastic relaxation does not allow to escape from local minima,and therefore may be appropriate for certain cost functions only, the other al-gorithms derived from equation (4.5) can guarantee convergence into a globalminimum, provided the decrease of the control parameter is su�ciently slow.Since this usually results in a large number of iterations and a large amount ofcomputing time, there is a strong interest to speed up the optimization by aparallel exploration of the search space.Genetic Algorithms Di�erent from the optimization techniques introducedin the previous section, genetic algorithms perform a parallel exploration ofthe search space by the use of a set of current states or current solutions ofthe image interpretation problem. The set of solutions is called a population,the members of a population are referred to as organisms, and the population10



used in the k{th iteration of the algorithm is called the k{th generation [19].Adopting the notation of (4.2) we denote the set of current states, that is, thecurrent population, byRc = frc;1; : : : ; rc;�; : : : ; rc;pg ; (4.6)and an organism of this population byrc;� = h(Ai; fO(i)j g)� j i = 1; : : : ;m ; (Ck;H(k)l )� j k = 1; : : : ; ni : (4.7)Costs have to be assigned to each newly created organism. In our applicationthis demands the bottom{up instantiation of the data 
owchart for each newlycreated organism; they constitute the temporary population Rt. Therefore, es-pecially in the presence of a large knowledge base, it is desirable to keep jRtjsmall to perform as many iterations as possible. Thus, we decided to create onlyone new organism in each step of iteration (jRtj = 1), and to employ a multi-point crossover operator to make use of the full size of the current populationRc, instead of a pair of organisms as provided by a single application of theoperator. Hence, genetic otpimization in our case is performed by the followingthree steps: First, a new organism is created by multipoint crossover; this selectsfrom among the tuples (Ai; fO(i)j g)� ; � = 1; : : : ; p one tuple with a probabilityproportional to the �tness of that organism and makes this tuple an element ofthe new organism in Rt; this is repeated for all tuples (Ai; fO(i)j g)� ; i = 1; : : : ;mand all tuples (Ck;H(k)l )�; k = 1; : : : ; n. Second, each tuple of the new organismis mutated by a small probability (we use pm = 5%). Third, the new populationRn is obtained from the best organisms in Rc [Rt.
Figure4. Gray{level images (top) and segmentation (bottom) from three di�erenttra�c scenes. 11



5 An ApplicationIn this section we consider the problem of recognizing streets from TV imagesequences recorded on a moving car. In the experiments described here, we usedthree image sequences, each consisting of 30 gray{level images, taken at videorate from a camera �xed in a moving car, see Figure 4 for an example from eachsequence.The goal of analysis was to obtain a description of the road and its markers,not to compute a complete interpretation in terms of cars, trucks, and traf-�c signs present in the scenes. Task{speci�c knowledge was developed in [20]and is represented inthe semantic networkformalism described inSection refA0301. An overviewof the knowledge baseis depicted in Figure 5.Encoding of the net-work into the attributecentered representationdescribed results in adata 
owchart consist-ing of 120 nodes, elevenof them representing ini-tial attributes. On top
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owchart, there is a single node for the computation of a judgment of thegoal concept (in this case: \Street").Data driven processing yields segmentation objects of regions for the roadwayas well as for groups of regions that are considered as road markers.In [16] we examined the various Monte{Carlo{methods given by the accep-tance criteria (4.5) and the di�erent versions of genetic algorithms. The speedof convergence �(n) = Pf�n��min � "g; which gives the probability to reach anearly optimal solution in n iterations was used for the evaluation of all meth-ods. For the results shown in Figure 6, the size of the population was jZcj = 16,and jZtj = 1, see Section 4.The threshold acceptance and great deluge algorithm perform worse thanstochastic relaxation and are therefore omitted in the discussion. However, it was12



observable that all determinis-tic acceptance criteria performsigni�cantly better than sim-ulated annealing, which is inaccordance to the results re-ported in [21, 22] for other op-timization problems.The computing time measuredon a 1{master/p{slave con�gu-ration of coupled workstations(HP 735) using PVM is shownin Figure 7. The �nal result(computed from segmentationresults in Figure 4) is given inFigure 8, which again showsone image out of each of thethree image sequences. The greyvalue coding of the street mark- 25050 100 150 20050 100 150 200
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igure 6.: Probability of convergence �(n) aftern iterations for the simulated annealing algorithm(SA), the stochastic relaxation algorithm (SR), andthe multi point genetic algorithm (GA).ers and of the street surface show that those regions were interpreted correctly.
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Figure 8. Result of interpretation by iterative optimization.6 Conclusion and OutlookWe de�ned knowledge based image interpretation as the problem to computean optimal instance of a goal concept. The two main processing steps are thedata{driven computation of an initial segmentation and the model{driven in-terpretation by instantiation of the goal concept. We presented an approach toknowledge representation which started form a concept based representation ina semantic network and proceeded to an attribute based representation.For further work we will consider the implementation of an active visiontask by concepts of a knowledge base of the type introduced in Section 3. Thisrequires a careful, precise, and explicit modeling of the goal of active vision. Asan example we plan to consider the closed loop of sensing and acting (camera androbot arm) in order to �nd and grasp a speci�ed object which may be invisiblefrom the current camera position.The above mentioned task requires consideration of another point for futurework, that is real time performance. The parallel implementation as well as theany{time capability of iterative optimization seem to be useful steps in thisdirection.References1. T. Matsuyama and V. Hwang. SIGMA: A Knowledge{based Aerial Image Under-standing System. Plenum Press, New York, 1990.2. I. Masaki, editor. Vision{Based Vehicle Guidance. Springer, Berlin, 1992.3. O. Faugeras. Three{Dimensional Computer Vision. Arti�cial Intelligence Series.The MIT Press, Cambridge, MA, 1993.4. H. Niemann. Pattern Analysis and Understanding. Springer Series in InformationSciences 4. Springer, Berlin, 2. edition, 1990.5. P. Krause and D. Clark. Representing Uncertain Knowledge. Intellect Books, Ox-ford, 1993.6. J.F. Sowa, editor. Principles of Semantic Networks. Morgan Kaufmann, SanMateo, Calif., 1991. 14
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