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Abstract In this paper knowledge based image interpretation is formulated and
solved as an optimization problem which takes into account the observed image data,
the available task specific knowledge, and the requirements of an application. Knowl-
edge is represented by a semantic network consisting of concepts (nodes) and links
(edges). Concepts are further defined by attributes, relations, and a judgment func-
tion. The interface between the symbolic knowledge base and the results of image (or
signal) processing and initial segmentation is specified via primitive concepts.

We present a recently developed approach to optimal interpretation that is based
on the automatic conversion of the concept oriented semantic network to an attribute
centered representation and the use of iterative optimization procedures, like e.g. sim-
ulated annealing or genetic algorithms. We show that this is a feasible approach which
provides ‘any—time’ capability and allows parallel processing. It provides a well-defined
combination of signal and symbol oriented processing by optimizing a heuristic judg-
ment function.

The general ideas have been applied to various problems of image and speech
understanding. As an example we describe the recognition of streets from TV image
sequences to demonstrate the efficiency of iterative optimization.

Key Words: semantic network, iterative optimization, knowledge based image
analysis

1 Introduction

The general goal of automatic image interpretation is to extract from an image
or image sequence the information relevant to perform a well-defined task in
an optimal manner. It is not necessary to extract all information contained in
the images but to provide the relevant information in a format which suites the
subsequent usage, either by man or by machine. Usually, information is required
in some symbolic and condensed form, not as arrays or subarrays of pixels.
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grant number SFB 182. Only the authors are responsible for the contents.
2 The related work on speech understanding using iterative optimization was supported

by the Real World Computing Partnership (RWCP).



Interpretation of sensory inputs can only be done with respect to an internal
model of the environment, where in principle the observations may in turn mod-
ify the internal model. Hence, all interpretation is model-based or knowledge—
based.

In this paper we present an approach to represent a model of the task domain
or the a priori knowledge about it in a semantic network and to compute an in-
terpretation which is optimal with respect to a given judgment function. From
among the different approaches to optimization we describe combinatorial op-
timization techniques. We point out how knowledge based processing interfaces
to data driven segmentation and preprocessing, but techniques for this are not
the topic. Finally, we demonstrate the feasibility and efficiency of our approach
by application.

Related work on applications of image interpretation is covered, for example,
in [1, 2], some general books on image interpretation are, for example, [3, 4], and
some books on knowledge representation and use are, for example, [5, 6].

2 Overview

The general goal of image understanding is the computation of a symbolic de-
scription B3 of an image f or image sequence f_ which

— optimally fits to the observed data (or pixels),

— 1s maximally consistent with internally represented task—specific knowledge,

— and best suits the demands of a user as defined by an explicit model of the
task—domain.

Hence, it is an optimization problem and should be formulated (see Section 3)
and solved (see Section 4) as such.

Two main phases of processing are assumed: an initial phase of mainly data—
driven processing and a phase of mainly model-driven processing. However, it is
not assumed in general that these two phases are strictly sequential in the sense
that the first phase must be finished before the second may start. Rather it is
assumed that the timing of the phases, the data used by them, and the order of
switching between phases is determined by a control strategy implemented by a
control module or control algorithm.

The data—driven phase of processing consists of preprocessing and nitial seg-
mentation. The goal of preprocessing is to improve the image quality in order to
obtain better results during subsequent processing. In general it transforms an
image f into another image h. The goal of initial segmentation is to decompose
the image into segmentation objects O like lines or regions and to obtain their at-
tributes and relationships. We assume that no explicitly represented task—specific
knowledge is used, but only general knowledge valid for (almost) all images, for
example, about color, geometry, or image formation.

The main topic of this paper is an approach to knowledge representation in
the concepts C' of a semantic network as well as its use for image understanding,
and the formulation of image understanding as the computation of a best scored
instance I*(C,) of a goal concept C,.



3 Framework for Knowledge Based Processing

Initial Description According to the above processing model, data driven im-
age processing and initial segmentation is viewed as a sequence of operations,
that transforms an image f into an initial description A which in general is
a network {O) of segmentation objects O. In our applications we mainly use
straight and circular lines for segmentation. The initial (symbolic) description
defines the interface to knowledge based processing.

In general, a segmentation object has a type Tp, for example, indicating
that it is a straight line, or a circle and it has a name identifying the object,
for example, the number of a straight line. In addition, 1t may have attributes,
parts, structural relations among its attributes and parts, and it should have a
judgment G which in general i1s a vector of real numbers. An attribute A has a
type T4, a value which may be a real number or a symbol from a finite terminal
alphabet, and a judgment which is a real number. Examples of attributes are the
length of a line, the angle between a line and the z-axis, or the area of a region.
A part P of a segmentation object 1s itself a segmentation object and provides
a decomposition into simpler components. For example, the ‘right angle’ has as
parts two lines. A structural relation S expresses a constraint between attributes
on objects (Ap), parts (Ap), and concretes (Ag, see below), of a segmentation
object, for example, in a right angle the angles between each of the two lines
and the z-axis are constrained. It is useful to consider fuzzy relations having an
associated real number which measures the degree of fulfilment of the relation.
Briefly, a segmentation object 1s a structure

O =[D:To, // name
(A:(Taq, RUVP))*, // attribute,
(P:0), // part, (3.1)
(S(Ao, Ap, Ak) : R)", // relation,
G :R"] // judgment .
The notation (A4 : ...)* indicates that there may be an arbitrary number (in-

cluding zero) of attributes in an object. The initial description of an image is a
network of segmentation objects A = (O) .

Concept For knowledge representation we employ a suitably defined version of
a semantic network [7] because it allows well-structured representation, efficient
utilization, different types of optimization procedures, explanation tools, and
was shown to provide excellent results in various applications.

Basically, a formalism for knowledge representation in an image analysis sys-
tem should allow one to represent in the computer a certain conception denoting
an entity in the real (physical) world, for example, a ‘highway’, a ‘car’, an ‘acci-
dent on a highway’, and so on. We represent a conception by a recursive structure



C' and call this internal representation a concept

C':(D:Tc, // name
(P = C)*, // context-indep. part
(Peq: C), // context-dep. part
(K : C)*, // concrete
(V: Oy, // specialization (3.2)
(L:I)*, // instance
(A:(Ta — )", // attribute, computed by F
(S(A¢, Ap, Ag) — F)*, // relation, computed by F
(G~ F)) // judgment, computed by I

A detailed description of a concept in this sense is given in [7] and related
work is found, for example, in [8, 6]. Some basic properties are illustrated in
Figure 1.
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Figure 1. Examples of concepts linked to other concepts and modeling industrial parts.

The main defining components of a concept are its context—independent
and context—dependent parts P.;, P.q and concretes K. The distinction between
parts and concretes allows one to represent relations between different levels of
abstraction or different conceptual systems. For example, in Figure 1 the ‘parts
of electric motors” are determined from ‘lines” which are in a different conceptual
system (or closer to the level of pixels); they are therefore related by a concrete—
link. We omit the model scheme (Figure 1) from further discussion here and
refer to [9, 10].

The distinction between context—independent and —dependent parts allows
one to handle context—dependent relations between objects and their parts. With
respect to the usage of a knowledge base this means that a context-independent
part may be detected or infered without having the superior concept, whereas a
context—dependent part can only be infered after having the superior concept.



In order to have compact knowledge bases and to define hierarchies of con-
ceptions it is possible to introduce a concept as the specialization V of some
other (more general) concept.

According to the above definition a concept C' has a set of attributes (or
features, properties) A each one referencing a function F' which can compute
the value of the corresponding attribute.

There may be structural relations S between the attributes A¢ of a concept
or of attributes Ap and Ag of its parts and concretes. Since in image processing
noise and processing errors are inevitable, relations usually can only be estab-
lished with limited precision. Therefore, each relation references a function F'
computing a measure of the degree of fulfilment of this relation, for example, in
the sense of a fuzzy relation.

In the same class of objects there may be quite different types of objects. For
example, there are chairs with three and with four legs, and a chair may have an
armrest or not. One possibility is to define separate concepts for each type, but
in order to have compact knowledge bases it is convenient to introduce a more
flexible definition of a concept. Therefore a concept is allowed to have different
so called sets of modalities H; with the implication that each individual set may
define the concept. Furthermore, obligatory and optional parts are introduced.

Instance and Modified Concept The occurrence of a specific object in an
image is represented by an instance I(C') of the corresponding concept C. The
relation between the concept and its instance is represented by a link L from
C to I(C). An instance is represented by a structure identical to (3.2) except
that references to functions are replaced by the actual values computed by those
functions from the image.

There may be the situation that some instances have been computed and
allow the restriction of attribute values of a concept C which cannot yet be in-
stantiated. In this case a so called modified concept Q(C') is created which allows
the propagation of constraints both in a bottom—up and top—down manner. For
example, the detection of one ‘wheel’ of a ‘car’ constrains both the location of
the car (bottom—up) and of the other wheels (top—down). This way constraints
are propagated bottom—up and top—down.

A judgment G of an instance or a modified concept is a vector of numbers
computed by F', measuring the degree of confidence in the actual occurrence of
the instance and its expected contribution to the success of analysis.

Knowledge—Based Processing The available task-specific knowledge is repre-
sented in a model M which is a network of concepts M = (C'}. Hence, knowledge
about objects, events, tasks, actions, and so on is represented homogeneously by
concepts related to each other by the various links.

In particular we assume that the goal of image analysis is itself represented by
one or more concepts which we denote as the goal concepts Cy,. The description
of an image then is represented by an instance I(C)) of the goal concept. Since
every concept has an attached judgment G, there is also a judgment G(I(CYy))
of the goal concept. Now it is natural to request the computation of an optimal



instance I"(Cy) of a goal concept and define knowledge based processing as the
optimization problem

I(Cy) = max (GU(C,IM.A) (3.3)
B(f) = I"(Cy) - (3.4)

The essential assumptions are that it is possible to

— compute a sufficiently reliable initial segmentation A,
— acquire the relevant task-specific knowledge in the model M,
— specify judgments G which are adequate for the task domain.

It has been demonstrated in several applications that this can be done, see for
example, [11, 12].

Facing both the large amount of data and the limited processing time in most
image understanding tasks, the exploitation of parallelism provides a promising
way to compute an optimal instance I*(C,) just in time with the sensory input.
Whereas parallel algorithms for preprocessing and segmentation have nearly be-
come a state of the art and may be found in various textbooks [13], parallel
knowledge based processing is much less investigated. While the former algo-
rithms often make use of the local nature of pixel-oriented computations, and
therefore allow the use of simple data partitioning techniques, the paralleliza-
tion of knowledge based processing is more difficult, since usually it requires the
identification of inferences that may be executed simultaneously.

Most parallel semantic network systems employ an isomorphic mapping be-
tween the processors of a parallel hardware and the nodes and links of a knowl-
edge base, which turned out to be a feasible approach if both concepts and
inferences are simple [14]. However, since in our formalism a concept may have
an arbitrary number of attributes and structural relations, complex concepts
may become a bottleneck in parallel instantiation. Therfore, we employ an at-
tribute centered representation of a semantic network, where each computation
needed during instantiation is represented by a node of a directed acyclic graph
[15, 16] that may be mapped to a multiprocessor system for purposes of parallel
processing.

The automatic construction of the graph from the concept centered definition
given by equation (3.2) is an important prerequisite to preserve the advantages
of the well-structured knowledge representation by semantic networks. In our
formalism this is possible, since the use of knowledge during instantiation only
relies on the syntax of the network language, and not on the content of the
knowledge base or intermediate results of analysis.

Since a concept usually 1s stored exactly once in the knowledge base, but it
may be necessary to create several instances for one concept during analysis (as
an example consider the wheels of a car), transformation of the network starts
with the computation of the number of instances needed for instantiation of a
goal concept Cy. This is achieved by a top—down expansion of the goal concept.
Then, the expanded network is refined by the determination of dependencies



between subconceptual entities. These are obtained from an examination of the
interface to the procedural knowledge F', where a list of arguments is specified
for each procedure. For each attribute, structural relation, and judgment of the
expanded network a node vy 1s created, and the name of the structure 1s attached
to v as well as the corresponding procedures for the computation of a value or
a judgment. If a node v; is referenced via its name in the argument list of the
procedures attached to vy, a directed link e;; = (v, vy ) is created, expressing the
fact that the computation of v; must finish before the computation of v; may
start. Nodes without predecessors represent attributes that provide an interface
to the initial segmentation, and nodes without successors usually represent the
judgments of goal concepts.

4 Optimal Instantiation

As a prerequisite for goal-directed processing, we assume that a heuristic judg-
ment function is available, which allows the quantitative treatment of alternative,
uncertain, or imprecise results, that may arise during segmentation as well as
during knowledge based processing (cf. Section 3). Results of initial segmenta-
tion in our applications are either scored heuristically or forwarded to knowledge
based processing without a judgment of quality.

During knowledge based processing we have to distinguish between the judg-
ment of an instance I(C') of a concept C' and the judgment of a state of analysis.
The score of an instance in principle is always based on the quality of the match
between data and model or on the quality of fulfilment of fuzzy inference rules.
The score of a state of analysis is always based on the current estimate of the
quality of a solution provided by a goal concept, see eq. (4.4) for combinato-
rial optimization. Therefore, instantiation is always directed towards optimal
instantiation of a goal concept as requested in (3.3).

The attribute centered representation of a semantic network presented orig-
inally was developed to speed up analysis by the parallel computation of in-
stances. Besides instantiation on the network level there is a control level (e.g.
a search tree) that deals with the problem of finding an optimal interpretation,
and in face of the required processing rates it seems reasonable to employ parallel
processing on this level, too.

Parallel graph search algorithms, which are treated, for example, in [17], pro-
vide an obvious solution and are widely used in solving standard problems from
artificial intelligence, like e.g. the Traveling—Salesman—Problem. However, since
in our application state space search demands the collection of instances and
modified concepts into nodes of the search graph, the control algorithm given
above requires a large amount of communication between processors if the search
space 1s explored in parallel. We therefore developed an iterative optimization
algorithm which facilitates an efficient realization on a parallel hardware. In
addition it provides an approximate interpretation at every iteration and there-
fore supports the fast computation of suboptimal interpretations, which may be
used by other processing modules if less processing time is available (any-time



property). For purposes of explanation, the algorithm may be divided into two
stages:

— During bottom-up instantiation, values and judgments are computed for
each attribute, structural relation, link or concept of the attribute network.
Initially this will lead to many competing interpretations having low values
of judgment.

— Interpretations obtained from bottom-up instantiation are iteratively im-
proved by applying a combinatorial optimization procedure. Ideally, this
will lead to a unique interpretation having a high value of judgment.

Bottom-up instantiation starts with the computation of attributes that pro-
vide an interface to the initial segmentation, and finishes with the judgment of
goal concepts. Parallel bottom—up instantiation maps each node of the attribute
network onto a processor and computes simultaneously those nodes, whose pre-
decessors have already finished execution. We thereby obtain instances for the
goal concepts, each provided with a judgment G(I(C,)). From the best scored
instances we create a vector

9= (GI"(Cy), ..., GI"(Cy,)) (4.1)

representing the final result of a single iteration step.

Since results from inital segmentation are usually erroneous and due to the
presence of ambiguities in the knowledge base (e.g. sets of modalities), there is
a need for an efficient processing of competing hypotheses that are created dur-
ing instantiation. Because the simultaneous treatment of competing hypotheses
would result in both a large amount of communication between processors and
a combinatorial explosion of intermediate results on the higher levels of the net-
work, an iterative processing is employed.

The computation of instances (Figure 2) and their judgment is completely
determined by assigning to each interface (attribute) node A; a (possibly empty)

subset {O]@} of segmentation objects and selecting for each concept node C% a

unique modality Hl(k) (cf. Section 3). This allows us to characterize the current
state of analysis by a vector

re= (A {0 li= 1, om; (Cr BHY) [k =1,...,n| | (4.2)

where m is the number of interface nodes and n the number of concepts having
more than one modality. Hence, we also may rewrite (4.1) as a function of the
current state r. by

g(re) = (G(I(Cy, ), -, G (Cy, )]re) (4.3)

and compute an optimal state of analysis by treating . as the current state z,
of a combinatorial optimization problem.

Figure 3 gives a general algorithm for solving the problem of optimal instanti-
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Figure 2. The principle of bottom—up instantiation. Hypotheses resulting from actual
matches between initial attributes and segmentation objects are propagated through
the data flowchart, resulting in a judgment of goal concepts.

ation (3.3-3.4) by combinatorial
optimization. The parts printed
sans serif have to be adapted for
optimal instantiation.

For the design of the required
cost function ¢, we assume that
an error—free segmentation would
support a single interpretation,
and therefore results in an ideal
judgment G(I*(Cy,)) = 1.0 for
the correct goal concept. On the
other hand, at the same time
this segmentation would give no
evidence to any other goal con-
cept, i.e. G(I*(Cy,)) = 0.0. We
would thus obtain the i—th unit
vector e; as an 1deal result of in-
stantiation, if the i—th goal con-
cept provides the desired sym-
bolic description.

given: state space Z = {z1, 2z2,...}

define a control sequence (T}) with the fol-
lowing properties:

T, > 0AVYE > 0
limk_,oo Tk =0

Te > Trgr A

create an initial state zp; and compute

¢o = ¢(20)

Ze 1= 20; e = o

FOR computing time available

create a new state z, out of z,
compute ¢, := ¢(zn)

compute the acceptance criterion a(zy)

IF a(zp) =T
THEN | let z, become the current state:
Zo = Zn, Go = Op

report the current state z. as the solution

Figure 3.:
cost function by combinatorial optimization.

Algorithm for the minimization of a

We approximate this behaviour and define
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I A . g(re)
o(re) = min {(e; —g(re))"}, g(r.) = m (4.4)
as a cost function, that computes the minimum distance from g(r.) to the unit

vectors e;. Note that this function provides a problem independent measure of
costs, since no assumptions on the contents of the knowledge base are made.

Monte-Carlo-Methods The creation of a new state », and the choice of an
acceptance criterion are motivated by the analogy between the annealing of a
solid in condensed matter physics and the optimization of a system with many
independent variables (cf. “simulated annealing algorithm” [18]).

In combinatorial optimization the temperature of a solid corresponds to the
value T} of a control sequence, and the cooling is achieved by a monotone de-
crease of T. The creation of a new state is performed by applying a small random
perturbation to the current state r.. A new state r, is generated from the cur-
rent state . by first selecting a tuple from among (4,, {O](»Z)}) or (Cy, Hl(k)) in
(4.2) with equal probability, and then exchanging the term {O](»Z)} or Hl(k) by a
possible alternative, again with equal probability for each alternative.

If the new state generated this way has lower cost than the current state, it
1s accepted. In addition, a new state with higher cost may also be accepted. The
acceptance of new states with higher costs is necessary as well to allow the escape
from local minima of the cost function. However, accepting all states would pre-
vent the algorithm from convergence, and therefore an acceptance criterion a(r,,)
is needed to decide which new state should be accepted or rejected. The general
algorithm given in Figure 3 is specialized to different optimization procedures
according to the different criteria

T:q<exp(—1/Ty - (¢n — ¢.)) simulated annealing

T:(¢n — ¢c) < Ty threshold acceptance |

a(rp) =4 T : ¢y < T great deluge , (4.5)
T:¢n < ¢. stochastic relaxation ,
Fo:else .

Whereas stochastic relaxation does not allow to escape from local minima,
and therefore may be appropriate for certain cost functions only, the other al-
gorithms derived from equation (4.5) can guarantee convergence into a global
minimum, provided the decrease of the control parameter is sufficiently slow.
Since this usually results in a large number of iterations and a large amount of
computing time, there is a strong interest to speed up the optimization by a
parallel exploration of the search space.

Genetic Algorithms Different from the optimization techniques introduced
in the previous section, genetic algorithms perform a parallel exploration of
the search space by the use of a set of current states or current solutions of
the image interpretation problem. The set of solutions is called a population,
the members of a population are referred to as organisms, and the population

10



used in the k-th iteration of the algorithm is called the k—th generation [19].
Adopting the notation of (4.2) we denote the set of current states, that is, the
current population, by

R.=A{rca,....Pcpu, .-, Tept (4.6)
and an organism of this population by
g . k
o = (A OV li= 1, oms (Co, BP) [k =1,...,n] . (47)

Costs have to be assigned to each newly created organism. In our application
this demands the bottom—up instantiation of the data flowchart for each newly
created organism; they constitute the temporary population R;. Therefore, es-
pecially in the presence of a large knowledge base, it is desirable to keep |Ry|
small to perform as many iterations as possible. Thus, we decided to create only
one new organism in each step of iteration (|R;| = 1), and to employ a multi-
point crossover operator to make use of the full size of the current population
R, instead of a pair of organisms as provided by a single application of the
operator. Hence, genetic otpimization in our case is performed by the following
three steps: First, a new organism is created by multipoint crossover; this selects
from among the tuples (A;, {O](»Z)})M , ;o= 1,...,pone tuple with a probability
proportional to the fitness of that organism and makes this tuple an element of
the new organism in Ry; this is repeated for all tuples (A4;, {O](»Z)})M yi=1,...,m

and all tuples (Cj, Hl(k))u, k=1,...,n. Second, each tuple of the new organism
is mutated by a small probability (we use p,, = 5%). Third, the new population
R, is obtained from the best organisms in R, U R;.

N

Figure 4. Gray-level images (top) and segmentation (bottom) from three different
traffic scenes.
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5 An Application

In this section we consider the problem of recognizing streets from TV image
sequences recorded on a moving car. In the experiments described here, we used
three image sequences, each consisting of 30 gray-level images, taken at video
rate from a camera fixed in a moving car, see Figure 4 for an example from each
sequence.

The goal of analysis was to obtain a description of the road and its markers,
not to compute a complete interpretation in terms of cars, trucks, and traf-
fic signs present in the scenes. Task—specific knowledge was developed in [20]
and is represented in
the semantic network
formalism described in
Section refA0301. An overview
of the knowledge base
is depicted in Figure 5.
Encoding of the net-
work into the attribute |
centered representation
described results in a

Le_Median‘ ‘Ri_Median‘ ‘ Surface ‘

. It
data flowchart consist-

ing of 120 nodes, eleven --------- > concretelink  ————>  partlink
of them representing ini_Figure 5.t Overall structure of the knowledge base for road

tial attributes. On top detection.
of the flowchart, there is a single node for the computation of a judgment of the
goal concept (in this case: “Street”).

Data driven processing yields segmentation objects of regions for the roadway
as well as for groups of regions that are considered as road markers.

In [16] we examined the various Monte-Carlo-methods given by the accep-
tance criteria (4.5) and the different versions of genetic algorithms. The speed
of convergence v(n) = P{¢p — dmin < £}, which gives the probability to reach a
nearly optimal solution in n iterations was used for the evaluation of all meth-
ods. For the results shown in Figure 6, the size of the population was |Z.| = 16,
and |Z¢] = 1, see Section 4.

The threshold acceptance and great deluge algorithm perform worse than
stochastic relaxation and are therefore omitted in the discussion. However, 1t was

12



observable that all determinis-

tic acceptance criteria perform A o
significantly better than sim- e L=
ulated annealing, which is in - -
accordance to the results re- / S

ported in [21, 22] for other op- 06 / ke

timization problems. / .
The computing time measured 0.4 /f ’s : [
on a l-master/p—slave configu- / /// e

ration of coupled workstations 0.2 ) ,
(HP 735) using PVM is shown IR ) o
in Figure 7. The final result

(computed from segmentation
results in Figure 4) is given in
Figure 8, which again shows
one image out of each of the
three image sequences. The grey
value coding of the street mark-
ers and of the street surface show that those regions were interpreted correctly.

50 100 150 200 250

no. of iterations n

Figure 6.: Probability of convergence v(n) after
n iterations for the simulated annealing algorithm
(SA), the stochastic relaxation algorithm (SR), and
the multi point genetic algorithm (GA).

n 250 1,[5] 2
GA  —— GA ——
SA ---- . SA ----
200 SR NS SR — —
. : 15 o
150 SN
\'\;_~~\ 10 S, ....\.\‘.T*«~§.~.‘.~
100 : ST )
~ : RN
~ ~
~ 5 T
1 2 3 4 5 1 2 3 4 5
no. of slaves p no. of slaves p

Figure 7. Number n of iterations (left) and computer time T}, (right) on a master/slave
configuration of workstations.

In [23] the approach presented here for image understanding has also been
successfully applied to speech analysis; this shows that the approach is useful for
knowledge based pattern analysis in general.
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Figure 8. Result of interpretation by iterative optimization.

6 Conclusion and Outlook

We defined knowledge based image interpretation as the problem to compute
an optimal instance of a goal concept. The two main processing steps are the
data—driven computation of an initial segmentation and the model-driven in-
terpretation by instantiation of the goal concept. We presented an approach to
knowledge representation which started form a concept based representation in
a semantic network and proceeded to an attribute based representation.

For further work we will consider the implementation of an active vision
task by concepts of a knowledge base of the type introduced in Section 3. This
requires a careful, precise, and explicit modeling of the goal of active vision. As
an example we plan to consider the closed loop of sensing and acting (camera and
robot arm) in order to find and grasp a specified object which may be invisible
from the current camera position.

The above mentioned task requires consideration of another point for future
work, that is real time performance. The parallel implementation as well as the
any—time capability of iterative optimization seem to be useful steps in this
direction.

References

1. T. Matsuyama and V. Hwang. SIGMA: A Knowledge—based Aerial Image Under-
standing System. Plenum Press, New York, 1990.

2. 1. Masaki, editor. Vision—Based Vehicle Guidance. Springer, Berlin, 1992.

3. O. Faugeras. Three—Dimensional Computer Vision. Artificial Intelligence Series.
The MIT Press, Cambridge, MA, 1993.

4. H. Niemann. Pattern Analysis and Understanding. Springer Series in Information
Sciences 4. Springer, Berlin, 2. edition, 1990.

5. P. Krause and D. Clark. Representing Uncertain Knowledge. Intellect Books, Ox-
ford, 1993.

6. J.F. Sowa, editor. Principles of Semantic Networks. Morgan Kaufmann, San
Mateo, Calif., 1991.

14



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

H. Niemann, G. Sagerer, S. Schréder, and F. Kummert. ERNEST: A semantic
network system for pattern understanding. IFEF Trans. on Pattern Analysis and
Machine Intelligence, 9:883-905, 1990.

. A. Kobsa. The SB-ONE knowledge representation workbench. SFB 314 (XTRA),

Memo Nr. 31, Univ. des Saarlandes, FB 10, Saarbriicken, F. R. of Germany, 1989.

. D. Paulus, A. Winzen, and H. Niemann. Knowlege based object recognition and

model generation. In Proc. Furopto 93, Computer Vision for Industry, pages 382—
393, Miinchen, 1994. SPIE Proc. No. 1989-47.

A. Winzen. Automatische Erzeugung dreidimensionaler Modelle fiir Bildanaly-
sesysteme. Dissertation, Technische Fakultit, Universitdt Erlangen—Niirnberg, Er-
langen, (1994).

H. Niemann, H. Bunke, I. Hofmann, G. Sagerer, F. Wolf, and H. Feistel. A knowl-
edge based system for analysis of gated blood pool studies. TEFE Trans. Pattern
Analysis and Machine Intelligence, 7:246-259, 1985.

H. Niemann, H. Briinig, R. Salzbrunn, and S. Schréder. A knowledge-based vision
system for industrial applications. Machine Vision and Applications, 3:201-229,
1990.

H. Burkhardt, Y. Neuvo, and J. Simon, editors. From Pizels to Features II. Par-
allelism in Image Processing. North—Holland, Amsterdam, 1991.

L. Shastri. Semantic Networks: An Evidential Formalization and its Connectionist
Realization. Research Notes in Artificial Intelligence. Pitman and Morgan Kauf-
mann Publishers, Inc., London and San Mateo, Calif., 1988.

V. Fischer and H. Niemann. Parallelism in a semantic network for image under-
standing. In A. Bode and M. Dal Cin, editors, Parallel Computer Architectures.
Theory, Hardware, Software, Applications, volume 732 of Lecture Notes in Com-
puter Science, pages 203—-218. Springer-Verlag, Berlin, 1993.

V. Fischer. Parallelverarbeitung in einem semantischen Netzwerk fiir die wissens-
basierte Musteranalyse. Dissertation, Technische Fakultdt, Universitiat Erlangen—
Niirnberg, Erlangen, 1995.

B.W. Wah, G. Li, and C. Yu. Multiprocessing of combinatorial search problems.
In [24], pages 103-145. 1990.

N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equation
of state calculations for fast computing machines. Journal of Chemical Physics,
21(6):1087-1092, 1953.

L. Booker, D. Goldberg, and J. Holland. Classifier systems and genetic algorithms.
Artificial Intelligence, 40(1-3):235-282, 1989.

S. Steuer. Erstellung eines ersten Modells in ERNESTzur Identifikation der Strafie
und der Position des Kamerafahrzeugs im statischen Bild. Technical Report
3.2.B1 Projekt MOVIE, Bayerisches Forschungszentrum fiir Wissensbasierte Sys-
teme (FORWISS) und Bayerische Motorenwerke AG (BMW AG), Miinchen, 1991.
G. Dueck and T. Scheuer. Threshold accepting: A general purpose optimization
algorithm appearing superior to simulated annealing. Journal of Computational
Physics, 90(1):161-175, 1990.

G. Dueck. New optimization heuristics: The great deluge algorithm and the record-
to-record-travel. Journal of Computational Physics, 104(1):86-92, 1993.

V. Fischer, J. Fischer, and H. Niemann. An algorithm for any-time speech under-
standing. In German Slovenian Workshop on Image and Speech Understanding,
to appear, Ljubljana, 1996.

V. Kumar, P. Gopalakrishnan, and L. Kumar, editors. Parallel Algorithms for
Machine Intelligence and Vision. Springer-Verlag, New York, 1990.

15



Here comes the llnc info!

This article was processed using the INTpX macro package with LLNCS style

16



