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Approaches to Depth Estimation from ActiveCamera ControlD. Paulus and G. SchmidtLehrstuhl f�ur Mustererkennung (Informatik 5)Universit�at Erlangen{N�urnbergMartensstr. 3, 91058 Erlangen (Germany)fpaulus,gzschmidg@informatik.uni-erlangen.deAbstractIn this paper we report on theoretical results and practical experiments for depthrecovery from static scenes using active camera devices. Range estimation from linearand rotational camera motion and zoom purposive variation are discussed. Qualita-tive as well as quantitative depth estimation techniques are applied. Feature trackingin color images is used to estimate distances. Since focus, zoom, aperture, and lensdistortion are not independent, and no calibration is desired here, the major goal issimple qualitative depth estimation. In the experiments we use a cost surveillancecamera Canon VC{C1 for which we show that depth can be estimated from zoomvariation in a limited range.1 IntroductionIn the last decade, computer vision research concentrated mainly on the analysis of staticimages or recorded image sequences. Each image was analyzed as good as possible generat-ing a symbolic description; this is quoted as the so called \Marr paradigm" [15]. The newidea of \active vision" [2, 3, 4, 22], the demand for real time systems, and the availabilityof computer controlled camera devices motivate computer vision with active methods andactive devices.The recovery of 3D information from 2D projections is a central goal of many computervision systems. Obviously, biological systems can solve this task by cooperative use of eyemovement, head moves, vergence (for stereoscopic images), and possibly focus information.Technically, active modi�cation of camera parameters can also be used to reach this goal.In this paper we report on two devices which are used for active depth recovery. Wedistinguish between quantitative methods and methods which check tendencies in the com-puted range data and yield qualitative results. The major goal here is to estimate relativedistances of objects in terms of \close", \far", and relations like \in front of" and \behind".1This work was funded partially by the German Research Foundation (DFG) under grant number SFB182. Only the authors are responsible for the contents.1



In Sect. 2 we survey related work and present previous results on 3D information fromlinear camera motion. In Sect. 3 we look at the geometry of active pan/tilt camera heads.Sect. 4 introduces the models for the active camera devices used in this system. In Sect. 5we describe the idea how to compute depth from zoom variation. We show results andexperiments in Sect. 6. A summary is given in Sect. 7 and further work is outlined in theconcluding section.2 Linear MotionDepth recovery from monocular image sequences has been reported by several authors[5, 6, 19]. Depth from a moving camera can be computed by tracking features, if thecameras position, settings, and direction are known for each picture [5]. If the camera ismoving linearly and the optical axis is perpendicular to the moving direction, the featuresare moving linearly, too. The camera is mounted to a robot's hand and the robot moveson a linear axis; this setup is part of a larger system [9]. Figure 1 shows an image capturedwith this system. Lines can easily be detected, so the depth can be computed directly fromthe slopes of the features' trajectory [5]. In [19], a maximum error in depth lower than 1%could be achieved using this method.�rst imageof sequencelast imagescanline 155

Figure 1: Two images of a sequence (top); scanline #155 for all images of the sequencecombined to an image (below)Figure 2(a) shows an experimental scene. The 3D positions of these points are shownin Figure 2(b). Rather than quantitative results, qualitative methods can also be usedhere. From Figure 1 below, straight line detection can be used to infer relative positions;2



higher inclination characterize objects closer to the camera, line intersections relate toocclusions in the scene. Such methods are particulary useful for an uncalibrated setup.For arbitrary angles between motion direction and optical axis the trajectories will behyperbolas. Intersections still relate to occulsions.
(a) Experimental scene (b) 3D from linear motionFigure 2: Depth from linear motionAxial motion stereo is another case of a moving camera with known motion parameters.Range can be recovered from such camera motion [11]. Slightly di�erent geometries canbe observed, if the camera is static but the focal length of the lens varies (e.g. in a zoomlens, [14]). In [8, 13], an uncalibrated setup was used to compute dense depth maps fromzoom. We will see more about this subject in Sect. 5.3 Trajectories from Pan and TiltAnother idea for depth recovery from monocular image sequences requires a stationarycamera which can zoom, pan, and tilt, but is stationary otherwise. Two widely useddevices for this purpose are the Canon VC{C1 camera and the TRC head which is built forcomputer vision research purposes. Figure 3(a) shows the geometric relations of a rotationwith radius r around some point outside the optical axis in 3D. The angle between therotation and optcial axes is �. For �xed focal length f we compute the trajectory x(�) ofa point with distance d to the rotation center.Assuming a rotation axis parallel to the image plane, we can simplify the rotation to2D (Figure 3(b)). The basic relation isx = f � tan(�� arcsin(d sin �=qr2 + d2 � 2rd cos �)If the rotation axis is on the optical axis (r = 0), the distance d vanishes from theequation; i.e., in order to compute depth from such trajectories, a translational displace-ment is required in the image coordinates. Even for rotations around some other point,the image plane displacement is relatively small for real devices. A plot of this function is3
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(b) 2D RotationFigure 3: Geometry for rotation (pan/tilt)shown in Figure 3(c); obviously, a change in distance d has little e�ect on the shape of thefunction. The actual values for r are approx. 3cm for the Canon and 10cm for the TRChead pan axis; the angle � is approximately 90o for the Canon camera, and varies due tothe vergence axis on the TRC head.To conclude, for depth recovery one has to use other visual motion, such as zoom or acombination of zoom and camera motion.4 Zoom Camera ModelsThe camera models used often for �xed lenses are the pinhole camera and the thin lensmodel [16]. These descriptions are merely models, i.e., they idealize real lenses. For exactmeasurements the lenses have to be calibrated, for example with Tsai's method [23] forthe pinhole model.The basic equations are r = fR=Z for the pinhole model, and 1=f = 1=s + 1=s0 forthe thin lens model. To model a zoom lens the �rst idea is to take one of the mentionedmodels and change only the focal length when zooming. The question is now, how thefocal length changes with zooming.A real lens is not perfectly manufactured. The optical axis and the mechanical axisdo not coincide. So the intersection of the optical axis and the image plane moves if thelens is moved along the mechanical axis. Real lenses also have a distortion which is oftenassumed to be radial. The area of the lens which is used for di�erent zoom settings, di�ers.4



The calculated distortion then relates to di�erent parts of di�erent size of the lens; so it isobvious that the distortion changes with zoom settings, too.A zoom lens consists of several single lenses. These lenses need not be moved in thesame way by changing lens adjustments. They can be just moved or rotated. They arealso changing their direction when camera adjustments are changed monotonely. Theparameters have to be recovered by calibration. In [24] a method to calibrate zoom lensesis described.The �rst idea to get a zoom model is to calibrate the lens for each focal and zoomsetting. Aperture may also inuence the model parameters, for example radial distortion.So thousands of calibrations would have to be done. In case of the TRC head, this resultsin 4 �104 (zoom) � 4 �104 (focus settings) = 16 �108 calibrations. For the Canon camera this�gure is slightly smaller, since the focus motor has an open loop controller and can thusonly be positioned with moderate accuracy to 150 positions using the algorithm describedin [1]; in addition, the auto{iris makes exact calibrations impossible.The second idea is based on the assumption that the parameters change smoothly formost settings [24]. Just a few calibrations may be enough and the rest can be interpolatedwith a small error. This idea is su�cient for qualitative depth perception, if the parameterschange monotone.Some problems still remain. When calibrating focus, the calibration pattern should besharply displayed for an accurate measurement. This causes di�erent distances to the lens.We use a linearly moving skid which can be moved by 1/10mm steps. Another problemis the size of the calibration pattern for calibrating at di�erent zoom settings. The CanonVC{C1 cameras maximummagni�cation at maximal focal length is eight times higher thanat wide{angle zoom setting. The cameras of the TRC have a maximum magni�cation of10. One small and one large calibration pattern has to be used. To automate calibration,a large pattern can be combined with a small one if they have di�erent features which canbe distinguished at tele and wide zoom setting. We use a calibration pattern with �lledcircles of di�erent colors. The calibrations software then can recognize which pattern hasto be applied for a special zoom setting.5 Depth from ZoomIn [12] we examined how to compute depth from two di�erent zoom settings f1 and f2.Assuming a pinhole model (see solid lines in Figure 4) we getrifi = RZ � fi ; i = 1; 2 (1)Z = f1f2 r1 � r2r1f2 � r2f1 (2)However, an error in localization of corresponding features of one pixel can result inan error of depth approximately as large as the depth itself [12]. This e�ect is shownwith dotted lines in Figure 4. To get acceptable results from only two zoom settings, thelocalization has to be very precise.More reliable information about depth can be obtained if more images at di�erentzoom settings are used. Tracking a feature while zooming delivers for each zoom setting5



r1 f1 f2 RZ
r2 zminFigure 4: Depth from two zoom settings with the pinhole model [12]a distance r of the feature to the image center. From this information the parameters Zand R can be estimated by minimizing an error criterion. Tracking features ri at knownpositions fi, we conclude from (1): R = rifiZ � ri: (3)With a simple linear regression, the parameters Z and R can be determined. The ques-tion, which features are well suited for tracking, is discussed in [21]. We select points in thecolor images which di�er in variances of the four quadrants in a rectangular neighborhood.It can be shown that the zoom trajectory of a stationary point in 3D will be a straightline through the optical center, assuming an ideal zoom lens [17]; this simpli�es tracking.This property is used to predict the next position after zooming. We use elliptical searchareas for point tracking based on correlation (see below, Figure 8(right)). In this sense, nocorrespondence problem has to be solved, as required for stereo analysis.Accurate determination of the origin of the coordinate system (optical center) is crucialfor this method. Qualitative methods have to avoid this dependency; the tendencies ofchanges are analyzed and used to infer terms such as \closer" or \far".6 Experiments and ResultsWe now describe solutions for a surveillance camera (Canon VC{C1). In principle, theideas can also be used for the much more accurate TRC stereo head [7] (see Sect. 8).Referring to Sect. 4 our �rst experiment was to get information about the behavior ofthe image center. In Figure 5 the movement of the image center while zooming is shown.The focus of expansion for zoom was taken as image center as described in [24]. Sincethis position not only varies with zoom but also with other camera parameter settings,quantitative results for depth recovery from zoom are unfeasible.Figure 6(a) shows a measure for the focus for di�erent zoom positions. The sum of theedge strength in the central part of the window is computed with auto{focus and without.6
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0 20 40 60 80 100 120 140Zoom(b) Focus for di�erent zoom positionsFigure 6: Measurements for the Canon VC{C1For small distance, range estimation based on the hyperbola (eq. 3) by regression yieldsreasonable results (Figure 7 right) from which relative distance (far, close) can be con-cluded. Points are selected in the �rst image on a regular grid; these points are trackedduring zoom. If the correlation based search fails to �nd a maximum, the point is discarded.For Figure 7, the distance between object and lens was approx. 50 cm.7



For larger distances, other methods have to be applied. In Figure 8(left) we show twoobjects with distances of approximately 1.5m and 2.5m from the lens. The selected pointhas the same distance to the optical axis in world coordinates. Figure 8(right) shows thecorresponding elliptical search areas for tracking. The x{coordinates of the tracked pointsare shown in Figure 8(center). The slope of distant points (upper two lines) are smallerthan that of the closer point (lower line). Depth estimation can here be done qualitativelybased on the comparison of these lines.
Pixels250 300 350 400 450 500 1502002503003504004505004648545052mmPixelsFigure 7: Object, interesting points (regular grid), estimated distances'2morePoints'50055060065095 100 105 110 115 120Figure 8: Distance estimation based on trajectory slopeFor more complex scenes, the results were not satifactory using the Canon VC{C1.Regression for the hyperbolas yields inaccurate results, since this method relies on thedistance to the optical center | which is just moving too much during zoom.7 ConclusionWe described how distance estimation can be based on zoom variation of an active cameradevice. Practical experience shows that this method is only of limited value, if the cameraand lens are no high quality product. In case of the Canon VC{C1 the method fails, ingeneral.Whereas linear motion of a camera can be used for accurate depth recovery, we showedthat pan and tilt motion do not contribute to such computations, even if the rotationcenter is not on the optical axis.The system described here is part of a larger project for object recognition and tracking[9]. The Canon camera is used here successfully for object tracking without explicit 3D8



reconstruction. In combination with the calibration results shown above (e.g. in Figure 6),this camera is extremely useful for computer vision, although it misses the accuarcy fordepth estimation [10]. All implementations in these projects are done in C++ and utilizeobject{oriented programming techniques [18]. More details about the particular imple-mentation described in this contribution can be found in [20].8 Further WorkThe lenses on the TRC stereo head are of much higher quality. We hope to get morereliable results on this device using the zoom techniques described above. As we showedin principle, depth can be computed from a point trajectory along a zoom image sequence.If, however, the point to be tracked is close to the optical axis, the trajectory will be onlyfew pixels long in the projection to the image plane. This e�ect can be shown in eq. 2where the di�erence of r1 and r2 delivers approximately zero for the whole zoom range.In this case, a camera move is required, moving the point to the border of the imageplane. A subsequent zoom will then move the point on a straight line towards the opticalcenter. Since even for unknown rotation axes the translational part of the trajectory can beignored (cmp. Figure 3 (c)) prediction of the point's poistion is fairly simple for purposivepan and tilt changes.AcknowledgementThe authors wish to express their thanks to Professor Stane Kova�ci�c who read [12], thenpointed to the work of Willson [24], and who also did the �rst experiments for point trackingwith the Canon zoom lens.References[1] U. Ahlrichs. Sprachgesteuerte Fovealisierung und Vergenz Fovealization and VergenceControl via Natural Language. Diploma thesis, IMMD 5 (Mustererkennung), Univer-sit�at Erlangen{N�urnberg, Erlangen, 1996.[2] R. Bajcsy. Active perception. Proceedings of the IEEE, 76(8):996{1005, 1988.[3] R. Bajcsy and M. Campos. Active and exploratory perception. Computer Vision,Graphics and Image Processing, 56(1):31{40, 1992.[4] A. Blake and A. Yuille, editors. Active Vision. MIT Press, Cambridge, Mass., 1992.[5] R. C. Bolles, H. H. Baker, and D. H. Marimont. Epipolar-plane image analysis: Anapproach to determining struc ture from motion. Int. Journal of Computer Vision,1:7{55, 1987.[6] B.F. Buxton and H. Buxton. Monocular depth perception from optical ow by spacetime signal pro cessing. In Proceedings of the Royal Society of London, volume 218 ofB, pages 27{47, 1983.[7] K. Daniilidis, M. Hansen, C. Krauss, and G. Sommer. Auf dem Weg zum k�unstlichenaktiven Sehen: Modellfreie Bewegungsverfolgung durch Kameranachf�uhrung. In9
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