
0OBJECT{ORIENTED PROGRAMMINGFOR IMAGE ANALYSISDietrich W. R. Paulus and Heinrich NiemannUniversit�at Erlangen{N�urnbergLehrstuhl f�ur Mustererkennung (Informatik 5)Martensstra�e 3, D{91058 Erlangen, Germanyemail: fpaulus,niemanng@informatik.uni-erlangen.deThis is a reformatted version of the preprint as cited in the self{reference [47]. The format of thebibilography has also been changed.

OBJECT{ORIENTED PROGRAMMING FORIMAGE ANALYSISDietrich W. R. Paulus and Heinrich NiemannUniversit�at Erlangen{N�urnbergLehrstuhl f�ur Mustererkennung (Informatik 5)Martensstra�e 3, D{91058 Erlangen, Germanyemail: fpaulus,niemanng@informatik.uni-erlangen.deAbstractIn this survey we discuss the implications ofobject{oriented programming on image process-ing, image analysis, and real time active vision.We give an overview on the important litera-ture which relates to object{oriented program-ming and imaging.A general object{oriented framework coveringall levels from image capturing over segmenta-tion, model generation up to object recognitionis presented and related to other well known sys-tems like Khoros, KB Vision, IUE, and PIKS. Inparticular, we describe real time features and 3Dprocessing. We illustrate the main ideas of thissystem by solutions to real world image process-ing problems.1 IntroductionThe programming language C++ [63] had an over-whelming success in the last few years in all areasof computer science. Although the C++{languageis only partially suited for object{oriented pro-gramming and although it has its disadvantages[60], it presently seems to be the best choice tocombine e�ciency with object{oriented design inreal world applications, especially those operatingunder real time conditions. E�ciency and main-tainability are of course crucial for most imageanalysis programs.A key mechanism of object{oriented program-

ming is polymorphism. In this article we give ex-amples of how polymorphism can simplify imageprocessing programs. After a short introductionof the general terminology of object{oriented pro-gramming in Sect. 2, we describe the architectureof image analysis systems (Sect. 3) and show thee�ects on image processing and analysis (Sect. 4).Early image processing systems were mostlywritten in Fortran (e.g. SPIDER [66]). Onedecade was dominated by the use of C (e.g. [15]).The discussion of object{oriented programmingfor image processing started when C++ becameknown. This programming language promised toprovide the e�ciency required for image process-ing, together with object{oriented programming,and the possible code reuse by the upward com-patibility to C. This leads to various joint e�ortsfor a common image understanding environment.We discuss the present state of this research inSect. 4 and relate it to other systems and stan-dards.In general, image analysis has to use knowledgeabout the task domain. This knowledge is repre-sented in semantic networks in a straight forwardway. We describe an object{oriented implementa-tion of a knowledge based image analysis systemin Sect. 5.Several examples and applications in Sect. 6prove the feasibility, e�ciency, and reusability ofobject{oriented programs in image analysis. In1

Reforamtted preprint of [47] 2Sect. 7 we summarize the resource requirementsof the applications.2 Object{OrientationIn this section we brie
y introduce the importantideas and terms of object{oriented software de-velopment.2.1 Programming LanguagesObject{oriented programming has been known tocomputer scientists since 25 years. The ideas orig-inated in the ancestors Simula [3] and Smalltalk[24]. During this period of time, the programminglanguage C had its breakthrough in the world.In the late eighties, the C language was ex-tended with object{oriented ideas. The languageObjective{C [11] encapsulated Smalltalk featuresin the C language. The language C++ [63] mainlyused the ideas of Simula; a public domain classhierarchy called NIHCL [25] incorporates someSmalltalk ideas into C++. C++ and Objective{C are supersets of C; i.e. every C program is aC++/Objective{C program as well. Many valu-able image processing routines nowadays writtenin C can be reused without modi�cation. Pos-sibly because of the cheap or free availability ofC++{compilers | even on personal computers |this language had enormous success.Reuse of class libraries like NIHCL serves fortwo purposes. Common programming problems| like the implementation of linked lists or sets| have already been solved in these systems andcan be used without further e�ort. Exchange ofsoftware using such class libraries with other in-stitutes is simpli�ed since the classes share thesame structure and interfaces.2.2 AdvantagesObject{oriented programming is used to reducedi�culties of conventional software development.In particular, software reuse is highly desired dueto the high costs of programming. Modularity isa central concept which helps maintaining large

systems. Data abstraction provides clean inter-faces which are essential when several program-mers share code in a team.These goals can be reached in conventional pro-gramming with certain e�ort. In object{orientedprogramming, they are intrinsic to the program-ming paradigm; it would require certain e�ort notto ful�ll these principles.One goal of software engineering is to pro-vide components with a long lifetime, even whenchanges are required. Object{oriented design cannot guarantee this, but it simpli�es updates andevolution.The programming language C++ in particu-lar has the advantage that it combines e�cientconventional constructs with object{oriented fea-tures. Existing routines in C which sacri�ce cleanstructure to gain speed | which unfortunatelyis necessary in some rare cases | can be encap-sulated in classes or objects which provide safeinterfaces.Software reuse is crucial in large systems;well documented packages should be usable evenacross applications. If every programmer is al-lowed to re{program existing code, soon severalpieces of code will be scattered around in the sys-tem which serve the same purpose | with mini-mal di�erences which soon nobody will rememberexactly. The system becomes hard to maintain,then.OOP (object{oriented programming)simpli�escode reuse by inheritance and documentation bythe hierarchical structure of classes. In additionto the technical advantage of software reuse, itmay as well be of scienti�c interest (Sect. 6.2).Generally, methods in object{oriented pro-gramming have fewer arguments than corre-sponding function calls in traditional program-ming, since parts of the required information maybe already bound to the object (for example, aFFT object may have its internal tables for thethe acutal image size, and no such tables will haveto be allocated for the function call and passed toit as arguments). This again facilitates software

Reforamtted preprint of [47] 3
DescriptionImages Feed backGenerationModel ModelsSegmentationObjectsSegmentation AnalysisCamera(s) Fig. 1: Data
ow in an image analysis systemmaintenance and reuse, especially if a class andits interface has to be exchanged. Fewer modi�-cations are then required in the code, comparedto conventional programs.3 Image UnderstandingIn this section we describe the general softwarearchitecture of image understanding (IU) systemsand apply object{oriented principles.3.1 Data FlowThe problem of image analysis is to �nd the bestdescription of the input image data which is ap-propriate to the current problem. Sometimes thismeans that the most precise description has tobe found, in other cases a less exact result whichcan computed quicker will be su�cient. This taskmay be divided into several sub{problems. Afteran initial preprocessing stage, images are usuallysegmented into meaningful parts. Various seg-mentation algorithms create so called segmenta-tion objects [52].Segmentation objects are matched againstmodels in a knowledge base which contains expec-tations of the possible scenes in the problem do-main; this knowledge may be generated automat-ically from samples in a training phase [62, 70].The various data types involved in image seg-mentation, like images, lines, regions, etc., may

serve for data abstraction of the problem. Inobject{oriented programming, these data typesare naturally represented in classes. Segmenta-tion may be seen as a data
ow problem relat-ing these various representations. An overview ofthe main components is shown in Fig. 1; data iscaptured and digitized from a camera and trans-formed to a description. Image processing tasksare shown in oval boxes; data is depicted as rec-tangles; in the object{oriented design phase, bothwill naturally be grouped to class hierarchies.The problem of �nding an optimal match andthe best segmentation can be seen as an opti-mization problem and is formulated as such in[43]. Optimization may search for the best pos-sible match [71] as well as include e�ciency con-siderations which are crucial in real time imageprocessing. This process may require a data feedback from high{level processing to data drivensegmentation, or even to the image capturing de-vices (dotted line in Fig. 1). This data
ow is alsocommon to active vision systems, where the op-tical parameters are adjusted by the controllingcomputer in order to get the best possible imagefor the actual analysis purpose [14].3.2 General StructureKnowledge based image analysis extends the data
ow shown in Fig. 1. The general modular struc-

Reforamtted preprint of [47] 4ControlSignal DescriptionExplanation Knowledge Procedures LearningData BaseFig. 2: General structure of image analysis systemsture is shown in Fig. 2; no separation betweentasks and data has been made here. Each mod-ule has separate responsibilities. The knowledgebase is contained in a separate module. A modulefor procedures provides all required operations formanagement of the knowledge base and for imageanalysis. A general control module selects proce-dures based on the information in the knowledgebase and on the actual image data. Learning andexplanation are useful but not required for someapplications.Knowledge about the problem domain ismostly represented as models for physical objects,tasks, cameras, lighting etc. Object models arematched against segmentation data (Fig. 1). Thesearch algorithm (e. g. the A� algorithm) for solv-ing this optimization problem is independent ofthe image processing algorithms (module proce-dures); it is part of the control module. Modelgeneration (Fig. 1) is the task of the learning mod-ule. The explanation module may provide textualdescriptions of the actions carried out as well asvisualize the various stages of processing.A model of the scene is used as knowledge forimage analysis. The scene may be decomposedinto object{models which can be represented us-ing their structural properties and relations (e.g.in a semantic network), or as statistical objectmodels ([30], Sect. 6.2). These models must bematched against segmentation data during analy-sis.The system architectures in Fig. 1 and Fig. 2

imply various interactions between modules. In-formation has to be exchanged by means of wellde�ned interfaces. Modules and data structureswith well de�ned interfaces are naturally imple-mented as classes in OOP.The segmentation object is a central idea forthe data representation independent of the algo-rithms used for image segmentation, and can beused as an interface between data{driven segmen-tation and knowledge{based analysis. Models canbe described in a similar formalism [42].3.3 Real TimeImage sequences were studied for motion detec-tion. One actual goal of image analysis is toprocess images as they are delivered from thecamera, i. e. in video rate and real time. Aftera �xed period of time, all iconic information willbe lost due to the limited memory capability ofmachines (as well as humans); only symbolic in-formation may be kept longer.In OOA (object{oriented analysis),the problemwill be decomposed; one component will be theimage sequence. In OOD (object{oriented de-sign),general sequence classes and image classeswill be combined to new classes. In OOP, theinternal management of a ring bu�er will be im-plemented which holds the images in memory.Real time processes typically have to work fora long period of time. Computing resources, e.g.storage in the computer, are limited. Thus, realtime processes have to guarantee constant re-

Reforamtted preprint of [47] 5source demands. In addition, quick and reliableresponse times have to be con�rmed by the soft-ware. These demands are imposed on the indi-vidual components of the software. For example,the image ring bu�er will have to specify its max-imum switching delay time. Operators on imageshave to release all resources which are no longerneeded or referenced. If symbolic information isto be kept longer, safe interfaces have to exist fora partial or full release of this information, i.e.there has to be an explicit means for forgettingsymbolic information.3.4 Devices and ActorsThe output of the system in Fig. 2 is a descriptionof the input image data. In active vision systems,the output may additionally or alternatively con-tain control commands for the sensor device (e.g.a change in the aperture of the lens) or for the ac-tor (e.g. a robot or a moving vehicle). The systemdesign in Fig. 2 is therefore suitable for conven-tional image analysis as well as for active vision.Interaction with graphical and pointing devicesis necessary for the explanation module. Interac-tion with physically moving tools requires a con-trol loop which can be closed in real time.Naturally, these actions and devices are mod-elled as classes and objects in OOA and OOD.Their well de�ned interface facilitates data ex-change between programs and devices.3.5 External RepresentationData exchange between di�erent processes oftenuses the facilities provided by the operating sys-tems, i. e. shared memory, �les, and pipes. Whensuch processes run on di�erent hardware, the�le format has to be machine{independent. Inan object{oriented environment this is stronglyconnected to the problem of persistent objects,i.e. objects which remain after termination of aprocess.Normally, image �les are fairly big; binary stor-age is mostly required when they have to be saved

on permanent media or have to be transmittedon slow communication channels. Several ma-chine independent image �le formats have beenproposed [5, 4, 8] or established, like tiff [55].XDR [64] provides machine independent binarystorage for arbitrary data types.The JPEG [67] and MPEG [20] data encod-ing schemes presently play an important role inthe areas of graphics and multi media processing.They are less important for image analysis, sincethis kind of data compression discards high fre-quency information which is regarded as essentialfor image segmentation. Only lossless data com-pression schemes can thus be used for image stor-age. Such compression is available for example intiff.4 SystemsWe now discuss the in
uences of object{orientedprogramming to a selection of existing image pro-cessing and analysis systems.4.1 Display and EditSeveral Unix applications exist for image display,manipulation, conversion, etc. Most of them arein the public domain or share ware. To namesome of them: xv, image magic, animate, pbm-plus, etc.1Graphics editors can be used to create imagesfrom high{level descriptions. The program X�gis commonly used in Unix. These programs arewritten in C and use X11. Object{oriented appli-cations can also be found. The Interviews system[40] is written in C++ and provides display andeditors.Image editors for manipulation of sub{imagesare presently missing. They are however availableas commercial PC products.These tools can read, convert, and write almostany image format on disk.1xv by John Bradley, Image Magic and animate, byJohn Cristy, the portable bitmap utilities (pbm) by JefPoskanzer; check your nearest ftp site for the latestsources.

Reforamtted preprint of [47] 64.2 IKS and PIKSThe idea of a common tool box for image process-ing came up when image processing was estab-lished as a discipline with a set of basic routines.SPIDER [66] was a commercial step in this direc-tion. Soon after graphics was standardized in the\graphical kernel system" GKS system [17], peo-ple started working on an image processing coun-terpart, the \iconic kernel system" IKS [39] whichlater lead to the PIKS \programmer's imagingkernel system" [6, 8].Several reasons beyond the scope of this articledelayed the launch of such a system. Several in-stitutes collaborated in this idea [5, 9, 21, 56].During this development, object{oriented ideaswere discussed [7, 23], but they were mostly dis-carded in the �nal standard by DIN, ANSI, andISO [36]. The PIKS system provides a commonimaging model and an application programmersinterface for image processing. A set of severalhundreds of operators is de�ned which operate onmulti{dimensional multi-band images. All func-tions which are commonly found in commercialsystems are included. An appropriate encapsula-tion in classes will be required for object{orientedprogramming. Since this is not part of the stan-dard, it will add new diversity to the softwareinterchanges, contradicting the e�orts of a stan-dard.Along with the standard came a new imageinterchange format [4, 8]. Using this speci�ca-tion, images can be exchanged across applicationboarders, like from printing technology to robot-ics, and vice versa. Because of the overhead re-quired by the generality of the format, the formatis suited for data exchange, not for local shortterm storage.4.3 HORUSThe HORUS system [16] is an image understand-ing environment with interactive graphics run-ning on various platforms. Interactive image ma-nipulation in non{rectangular areas of interest

is possible. A basic C++ interface exists; thelower level of the system is implemented in C.Higher{levels can use Prolog, Lisp, or Smalltalk.Object{oriented programming is available via theSmalltalk interface which encapsulates underly-ing C{functions.The library for image processing consists of ap-proximately 460 operators for 2D image process-ing covering all areas from preprocessing, segmen-tation, morphology, feature extraction, classi�ca-tion up to 2D model generation. A knowledgebase for image analysis is provided and repre-sented as a semantic network.4.4 KhorosThe Khoros system [58] is an environment for in-teractive development of image processing algo-rithms. The system includes a neat visual pro-gramming environment. The algorithms can alsobe run without interactive graphics. The systemprovides a large library of imaging functions (over500 functions), some of them used in 212D and 3Dimage processing. Knowledge based processing isnot part of this package.Khoros is suited for Unix workstations. Meansize of the 291 binaries in the distribution (Re-lease 1.0) is 0.55 megabyte under HP{UX 9.01using shared X11 libraries. Khoros is in the pub-lic domain and is presently written in C. Version2 has ANSI C header �les and can be used withC++, although it is still written in C.Khoros is working on real world applications.It does not contain hardware dependent interfaceslike cameras or display devices.The Khoros algorithms are very general andmostly operate on several spectral channels aswell as on monochrome images. This generalityleads to a considerable run{time overhead makingreal time performance almost impossible.4.5 KB VisionThe KB Vision (KBV) system [68] is a commer-cial product loosely based on the VISIONS sys-

Reforamtted preprint of [47] 7tem [26, 27]. It covers all areas of knowledgebased image analysis from signal processing upto image understanding. VISIONS uses semanticnetworks for knowledge representation [59]. Ini-tial symbolic information is accessible to the userin KBV as a \token set" for which powerful man-agement tools exist.KBV includes a windowed environment for allkinds of display and interaction. Many functionsare provided in the library. As with Khoros, thegenerality of processing decreases speed. In par-ticular, access of a single pixel is very slow com-pared to pointer operations in C.4.6 IU EnvironmentA group of leading experts in image analysis jointtheir e�orts for a common image understandingenvironment [41, 28]. A system is planned as acommon basis for image processing and knowl-edge based analysis. Applications may be writ-ten in C++ or LISP. The system covers all areasof imaging with many applications; due to themany contributors, a variety of ideas has to beunited into a common hierarchy of classes. Thedesign goals are: object{oriented programmingwith graphical interaction, extensibility and pro-gram exchange and a common performance eval-uation platform for image processing. Real timeprocessing is explicitly excluded from these goals.This is reasonable because the generality of theclass hierarchy might slow down processing.In the present draft, no classes are providedfor devices such as cameras. The C++ partwhich needs a general object{oriented environ-ment (Sect. 2.1) presently included classes forsets, stacks, lists, etc., i. e. existing systems forthis purpose (e. g. NIHCL [25]) are not reused.The system is currently under construction. The�rst estimate of over 100 classes [41] will probablybe exceeded considerably.

4.7 View StationA software architecture planned as a common ba-sis for program exchange between companies, re-search institutes, and universities is presented in[37, 61]. This system extends the ideas of SPI-DER [66] and o�ers more than 500 algorithms forimage processing. It includes a visual program-ming environment, windowed graphics and a newimage storage scheme. Special memory{mappedimage hardware can be encapsulated. Imagingdevices are thus accessible by the operating sys-tem interface. Object{oriented programming isused here to gain a hardware independent soft-ware structure.The system was developed by a company whichmanufactures work stations. However, the aimof this system is to provide a portable platformon contemporary Unix workstations with trans-parent access to fast dedicated image processinghardware. For the company's machine, specialhardware acceleration is encapsulated in classes.The system is written in C++ and requires aUnix workstation with graphics display. It in-cludes an interpreted high{level language for im-age analysis. A programming interface allows ac-cess, use, and extension of existing C++{classes.Real time processing is possible using the dedi-cated hardware.4.8 AnimalsA fully object{oriented approach was chosen forthe Animals system [46], which is built along thedata
ow in Fig. 1. We describe the system inSect. 5. Image processing data is represented ina hierarchy of picture processing objects which ispresented in Sect. 5.1. Algorithms are also rep-resented as classes and structured hierarchically(Sect. 5.2). A knowledge base uses the semanticnet formalism and is implemented as a hierarchyof classes as well (Sect. 5.3).Devices for image processing, such as camerasor displays, are encapsulated in classes (cmp.[7, 18, 23]). No fancy graphical environment ex-

Reforamtted preprint of [47] 8ists. The system is oriented towards e�cientunsupervised batch processing and active vision.Image classes may be compiled with safe accessmechanisms; for real time applications they canexhibit access mechanism identical to two dimen-sional dynamic arrays in C, alternatively. Thesystem also includes a robotic part combined witha closed sensor{actor loop. We present applica-tions in Sect. 6. Visualization of images is donewith X11 tools, the results of segmentation can beconverted to various graphics formats for displaypurposes (cmp. Sect. 4.1).4.9 ComparisonThe di�erent features of the systems introducedin the previous sections are summarized in Tab. 1.Reuse of existing code is documented for Khoros(line \reuse" in Tab. 1) which uses LINPACKfunctions. The View station extends the SPIDERlibrary which was used by many programs andin this sense helps code reuse. Animals uses the\Numerical Recipes" [57].HORUS Khoros KBV IUE Viewstation Animalsclasses no no no yes yes yesreuse � yes � � yes yesgraphics yes yes yes yes yes noreal time yes no no no yes yesknowledge yes no yes yes yes yesdevices � no no no yes yeslanguage C C C C++ C++ C++format � vi� � � I/F xofprice > 0 0 > 0 0 0 0Tab. 1: Summary of features (� means unknown)Neither IUE nor the View station build theirclass hierarchies on top of an existing object{oriented system for C++, i. e., they have to pro-vide their proprietary tools for object{oriented

programming in C++, like sets, collections, lists,etc. Animals reuses NIHCL for this purpose(Sect. 2.1).Khoros is in the public domain; a news groupis used as a bulletin board for problems and so-lutions. The KBV and HORUS systems are soldcommercially. The support of the IUE will haveto be discussed in the future; it is planned to putcontributions to it into the public domain. TheIKS resp. its successors are documented as (inter-national) standards; changes or updates have tofollow the regulations for this subject. The ViewStation system is free software. The Animals sys-tem is available as is, i. e. without service.The other rows of Tab. 1 will be mentioned inthe following sections.5 An Image Analysis Sys-temWe now describeAn image analysis system (Ani-mals, Sect.4.8) in more detail. The system is writ-ten in C++; it is integrated into a larger system forpattern analysis (signals, speech, as well as im-ages) called PUMA (\Programmier Umgebungf�ur die Musteranalyse", programming environ-ment for image analysis).5.1 Data RepresentationVarious data representation schemes have beendeveloped for data in image processing. Some ofthem may be treated as algebras with more or lesscomplete sets of operations (e. g. chain codes orquad trees). Other representations are used be-cause of their storage e�ciency (e. g. run lengthcodes), others because of their runtime e�ciency.Such ideas were combined into a Hierarchy ofPictureProcessingObjectS (HIPPOS, written as�̀���o& [46]).A central problem visible in Fig. 1 and 2 is thedata exchange of segmentation results, which arean initial symbolic description of the image. Thesolution in �̀���o& is a hierarchy of classes, whichis shown in Fig. 3 in the graphical notation of

Reforamtted preprint of [47] 9TransformationsGeoObjObject IO, : : :IdentificationObject HipposObjDisplayReliability�̀���o&Representation Parts, RelationsAdd, QueryStart, EndCoordinates Contour, Area
AtomObjAtomPoint AtomLine AtomRegion SegObjGet, ReplaceNIHCL

Fig. 3: A section of a hierarchy of geometric objects for segmentation (in total approximately 100classes)[10]: class names are the top entries in the boxes;the center �eld contains important attributes, andthe lower �eld lists a selection of relevant meth-ods; both may be empty; with dots we markthat there exist methods or attributes which arenot mentioned in the text. Specialization (inheri-tance) links are marked with a semi{circle roundtowards the general class; single boxes mark ab-stract classes, double ovals are concrete classes.All segmentation results can be stored in anobject of class SegObj [50, 46, 52], no matterwhether the data is computed from line{basedor region{based segmentation, color{, range{, orgray level images, etc. This general tool is used inmany algorithms. Several subtrees group repre-sentations for points, lines, regions, surfaces, andvolumes. A segmentation object is a geometricobject (GeoObj). It consists of a set of parts whichare in turn geometric objects. Atomic objects aregeometric objects as well and end the recursion.The abstract base class HipposObj connects to

the NIHCL object and serves as a common rootfor all image processing classes. It contains ajudgement attribute which is used for the com-parison of competing segmentation results by theanalysis control (Sect. 3.2).Every atomic object has an associated repre-sentation, such as a chain code for an atomic line.These representations are organized in a separatehierarchy (Fig. 4). Classes for 2D are separatedfrom surface representations and 3D objects. If2D objects were considered special cases of thecorresponding 3D case, e.g. if a 2D point werea 3D point with z � 0, all 2D objects wouldcarry the overhead for storage and 3D computa-tion with them. On the other hand, if 3D objectswere derived from 2D objects, this would contra-dict the intuitive meaning of inheritance | whichis specialization. Having objects with arbitrarydimension would as well slow down computationand increase storage requirements. The same ar-guments hold for the time dimension. Details can

Reforamtted preprint of [47] 10
Momentsx, y MomentsPointRep2d LineRep2d RegionRep2dStart, End: : : : : :

DimensionRepresentation
: : :

HipposObjDisplayReliability Rep2D Rep3D: : :Bounding-Box
Fig. 4: Hierarchy of geometric objects for segmentationbe found in [46].The representation tree is fairly large to holdmost commonly used data structures for imagesegmentation, such as chain codes, polygons, orquad trees; only some abstract base classes whichbundle common interfaces are shown in Fig. 4.They give an example, the derivation scheme forthe chain code class is Chain ! BasicLineRep! LineRep2d. Since atomic objects mostly dele-gate their actions to the associated representationobjects, the methods in Fig. 3 and Fig. 4 are sim-ilar. Segmentation objects can be used in realtime image processing; methods are provided forreleasing parts or all of the information, as de-scribed in Sect. 3.3.As the applications (Sect. 6) show, this hasproven adequate for 2D, 212D and 3D image analy-sis. Another sub{tree exists for image classes, likegray level images, stereo images, range images,color images, etc. The whole �̀���o&{hierarchycurrently consists of approximately 100 classes.Additionally, classes for homogeneous coordinatesare used for matching in knowledge based analy-sis.

5.2 Operator HierarchyMany operations in image processing can bestructured hierarchically in a straight forwardmanner. Some edge detection operators can bespecialized to edge mask operators; one of themis the Sobel operator. Filters can be linear ornon{linear; rank order operations are one type ofnon{linear operators; the median is one specialcase of this type.This hierarchy can be implemented in a hier-archy of classes for operations in a straight for-ward way (cmp. [7, 18, 23]). Objects are the ac-tual algorithms with speci�c parameter sets [29]which are also objects. This is particularly use-ful, when operations have internal tables that in-crease their e�ciency. As an example consider adiscrete Fourier transform which uses tables forsine and cosine values; the size and contents ofthese tables varies however upon the frame sizeto be transformed. Several Fourier{transform ob-jects may thus be used in one program for trans-formations of images, e. g. in a resolution hier-archy. In contrast to conventional solutions, thisrequires neither code duplication nor complicated

Reforamtted preprint of [47] 11management of functions with local storage.Fig. 5 shows a simple hierarchy for �lter oper-ators. The characteristics may be high{, band{,or low{pass and can be enquired by the methodfor operator description. A linear �lter can bedescribed by its convolution kernel. No speci�cinformation is provided in the abstract class fornon{linear �lters which is only used to group thederived classes, such as a k{nearest neighbor �lteror a rank order operation.Dynamic enquiry about available operators inthe system is also facilitated by the operator hi-erarchy. Parameter blocks can be shared betweendi�erent operators as parameter objects. Func-tion call C++ syntax for these operators is usedin Animals which facilitates migration of existingconventional programs to operator objects.The sequence of operators introduces a re�ne-ment of the data
ow in Fig. 1. Intensity or rangeimages are transformed to feature domain images,sets of lines, corners, vertices, and �nally to seg-mentation objects [52].The major advantages of operator{classes aretwofold. Algorithms can be programmed in anabstract level referencing only the general classof operations to be performed; extensions of thesystem by a new derived special operator will notrequire changes in the abstract algorithm. Dy-namic information about the operator, which isactually used, is available. For example, a pro-gram may just reference a �lter object; duringrun time it will be decided which concrete �ltershould be used. Using virtual functions in C++,the run time overhead is negligible.When the message \apply" is sent to an oper-ator object together with image objects as argu-ments, new images are created as a result. Otheroperator objects exist for segmentation. Thetransitions in Fig. 1 can thus be programmed us-ing image objects, segmentation objects, and op-erator objects.For experiments, the operators (Sect. 5.2) areencapsulated in processes which exchange persis-tent objects. Persistent �̀���o&{objects (in fact,

FilterapplyCharacteristic Non-LinearLinearConv. kernel: : :

Object
: : :: : :

IP-OPParametersDescription
Fig. 5: Operator hierarchy for image processingalso the NIHCL objects) are created using meth-ods for an XDR representation (Sect. 3.5) whichcan also be used for process communication withremote procedure calls (RPC). We call this for-mat an external object format (xof, Tab. 1). Toomany image formats already exist; without needno new scheme should be de�ned. In our case,the combination of object{oriented programmingand image processing clearly required such a de�-nition. Images and other objects | like lines, re-gions, segmentation objects | are represented us-ing the same format. This again | as in the caseof operator classes | facilitates programming andcode reuse. For example, a display module canread an arbitrary object from a �le and display itwith the object's method, no matter whether itis a line or an image; new objects will be knownwithout change in the program source. The sameideas lead to a proprietary format for the view

Reforamtted preprint of [47] 12station (Sect. 4.7).For applications, the operators can be linkedtogether to one process; then, no external com-munication is required.5.3 Knowledge Based AnalysisIt is commonly agreed that image analysis has torely on knowledge about the particular task do-main. Semantic nets are a general tool for knowl-edge representation used in several image analy-sis systems, e. g. [16, 44, 59]. A semantic netformally is a labelled graph; nodes are concepts,edges relate concepts to each other. The ERNESTsystem [44] is a knowledge based system using se-mantic nets which was applied in several imageanalysis applications. Six types of edges are usedin ERNEST: concrete, specialization, part, refer-ential, model, instance. Details can be found in[44].An object{oriented implementation of semanticnets using the ideas of ERNEST has been realized[71, 74]. The control algorithm (Fig. 2) may nowbe either sequential or parallel [19]. The basicidea is to provide abstract super{classes for con-cepts, instances, and modi�ed concepts (conceptsconstrained by the current state of the analysis).User de�ned concepts are translated to classesfrom a formal language [48], which are derivedfrom those abstract classes. Analysis states arede�ned as classes to provide an abstract interfacefor the control module. Analysis can be de�nedas the search for an optimal state sequence. Thecontrol relies on judgement classes which asso-ciate a distance measure from the goal with eachstate during the analysis process.5.4 Model GenerationComputer models for objects are also used in in-dustrial production. CAD descriptions of intu-itively simple parts may still have complicatedstructure. It may be a time consuming task tocreate such models.

Fig. 6: Intermediate 3D line model of a polyhedralobjectModels for knowledge based image analysisshare the same problem. The goal thus has tobe to create the models automatically. This isthe task for the model generation step (Fig. 1)which results in a hierarchy of classes for models[49, 72]. The result of an automatic generation ofa polyhedral model is shown in Fig. 6.Imagine a system for the recognition of simple3D geometric objects. Models for all kinds of suchobjects will be needed, like a cube, a pyramid,a cylinder, etc. [73] These descriptions can usesurfaces, vertices, lines, and relations. This com-mon structure is described in the model scheme({classes) which has to be provided by the userin the formal language (Sect. 5.3) describing a se-mantic net. The actual model is generated froma sample of images, where the relative positionaltransformation of the camera from one image tothe next is roughly known [49, 72]. This can beaccomplished by an active change of the cameraposition mounted on a robot [12]. The line{modelin Fig. 6 is computed from 3D lines [69, 73]; stereoimages [38, 51] or range images are segmented forthis purpose [29], both represented with the sameprogramming tools as segmentation objects. The3D lines are integrated into one model; a �nalmodel for polyhedral objects can be computed, ifplanar surfaces are approximated. An extension

Reforamtted preprint of [47] 13to polygons is described in [72].Since models are generated from segmentationdata, automatic model generation insures thatmodels consist of descriptions which can be e�ec-tively computed and matched against segmentedimages. This approach shows how structuralproperties of an object can be learned and rep-resented explicitly. Another approach is to modelthese properties statistically ([30], Sect. 6.2). Var-ious modules of the object{oriented system inter-act and exchange information for model genera-tion. To mention some of them camera classes,semantic network classes, and segmentation ob-jects are used.5.5 Active VisionNew constraints are imposed on the softwarestructure of image analysis systems by the newactive vision paradigm which is summarized in[65]. Since many active vision techniques requirea feed back from analysis to low level process-ing (Fig. 1), they have to operate in real time.Changes in camera parameter settings | like achange in the aperture of the lens or focus | area common active vision technique. Also, posi-tional changes of the optical system are desiredwhich are accomplished if the camera is mountedon a robot [12].The implications for an object{oriented soft-ware structure are straight forward. Since realtime processing is required, objects have to ex-hibit clearly de�ned requests for resources, likememory, time, or devices. Objects have to re-lease all resources which are not used elsewhereupon object destruction. The principles andtools of object{oriented programming facilitate itto obey to these strategic regulations. Devicessuch as cameras or robots are needed as classes.This provides mostly hardware independent ac-cess. Machine independent software, of course,increases software reusability which is crucial forlarge software systems on rapidly changing hard-ware platforms. If such a device is to be replaced,the software interface should remain unchanged;

this is simpli�ed by object{oriented programming(Sect. 2.2).The separation of algorithmic code for imageprocessing and analysis from the code which in-terfaces to the operating system and to the dedi-cated devices helps maintenance of the programsby the modular structure.6 ApplicationsWe now demonstrate the
exibility of Animals(Sect. 5). Experiments for object recognition,tracking, and image analysis are also shown.In traditional programming, new problems aresolved with a combination of new and old func-tions. In Animals, new classes and functions arecombined with existing ones.6.1 Object TrackingAn experiment carried out under real time con-straints is described in [12, 13, 14]. A movingtoy train is to be followed by a camera mountedon a robot (overview in Fig. 7). Active visiontechniques are applied to reach this goal on twostandard Unix workstations in parallel.
Fig. 7: Robot (one arm in the front) and movingobject (toy train in the back)A two stage object tracking module operatesin a closed loop of robot control and image pro-cessing. In the �rst stage, the moving object isdetected in an overview image. The second stage

Reforamtted preprint of [47] 14tracks the object in a region of interest which isgenerated by an active change of the camera de-vice object. The system changes the camera posi-tion continuously, such that the moving object isalways in the center of the image. The interfaceto the robot is available as a robot{object.Selective processing on sub{image ({objects)speeds up the computation. Snakes are used fortracking and implemented as classes. Fig. 8 showsa snake computed in the down{sampled sub{image captured from the robot's camera. Cur-rent research incorporates object features such asedges and straight lines into the computation ofthe snake, resp. the minimization of the energyfunction for the snake.
Fig. 8: Snake around the moving objectThis application shows that real time con-straints can coexist with general object{orientedsoftware tools and a modular system in which sep-arate tasks are distributed to separate processes.Currently, the speed of the system is limited bythe frame grabbing hardware, not by the imageprocessing software.Active changes of the camera device are pro-grammed on an abstract level. The same inter-face is used for several di�erent cameras and inputlines.6.2 Statistical Object Recogni-tionStatistical methods for object recognition are pre-sented in [30, 32, 31]. In [32] we show the ad-vantages and limitations of Hidden Markov Mod-

els (HMM) for 2D image analysis. The limita-tions are mainly due to the prerequisite of HMM'swhich requires a linear sequence of input features.This order has to be arti�cially superimposed toa�ne invariant form features. A class hierarchyfor HMM's was integrated into PUMA (speechas well as image processing). The well knownalgorithms for HMM's like the Baum{Welch orViterbi{algorithm can be programmed in the baseclass and are available for all special kinds ofHMM's. Again, code reuse is simpli�ed. Onthe other hand, existing matrix classes had to beextended to include the mathematical operationsneeded during the training phase. These opera-tions are now available to all users of PUMA. TheHMM classes can be used in speech applicationsas well as image analysis. Code reuse is providedfor di�erent groups of programmers. Remarkably,this goes hand in hand with personal communi-cation and exchange of scienti�c ideas, not onlyprogram code!
Fig. 9: Input image (some animals (!))An input image for this image processing ap-plication is shown in Fig. 9. Segmentation resultsconsisting of polygons which are used for the de-tection of form features, are shown in Fig. 10.In [31], the mathematical details of 3D statisti-cal object recognition are explained; �rst resultsare presented in [30]. In this approach, statisticalobject models are represented as mixture density

Reforamtted preprint of [47] 15
Fig. 11: Statistical object recognition (2D): image, segmentation objects of 2D points, and localizedobject
Fig. 12: Statistical object recognition (3D): 2D image, segmentation objects of 2D points, andlocalized 3D object

.

.Fig. 10: Polygon segmentation resultfunctions which are parameterized regarding thepose. Both, learning and localization of objectsis formalized as a maximum{likelihood problem.Results for 2D can be seen in Fig. 11. The cen-ter image shows a segmentation object consisting
of vertices which are special cases of segmentationobjects consisting of a point and a set of intersect-ing lines. 3D statistical object models are gener-ated from di�erent aspects of an object capturedwith a calibrated camera on a robot ([2]). Inputand results of 3D object recognition are shown inFig. 12.Similar to the operator hierarchy, optimizationis programmed as a hierarchy of classes. Strate-gies for object recognition reference the abstractinterface in the base class and can be simplyexchanged | even dynamically during runtime.Extensibility of the system is facilitated as well.Computation time depends on the complexity ofthe scene and on the number of features. In the2D case they vary from 10 seconds up to 180 sec-onds, in the 3D case they are around 90 seconds.

Reforamtted preprint of [47] 167 E�ciencyThe applications in Sect. 6 together with severalother programs are now used to judge the use ofobject{oriented programming for image analysis.7.1 Code SizeObject{oriented programming does generally notreduce the lines of code compared to conventionalimplementations. The number of functions isclearly reduced and replaced by classes and meth-ods. The number of methods tends to be largerthan functions in conventional solutions. Sincethe method de�nitions are bundled by classes,they are mostly better documented.In traditional systems, programmers de�neonly those functions which are actually needed.Class designers tend to provide a complete inter-face; often they can be forced to do so by abstractbase classes which require the rede�nition of cer-tain methods. This tendency increases the num-ber of code lines but clearly enhances reusabil-ity by a broader range of possible applications.To give an example from �̀���o&, the method forrotating geometric objects is declared in the ab-stract base class and passed to all derived classesby inheritance; this method was required onlyin few applications, resp. classes; all the otherclasses just inherit the interface and can de�nethe method, if needed.The design goal of modularity is almost guar-anteed by the use of classes. The average numberof methods in 98 important �̀���o& classes is 8.1;only those methods which are not required by NI-HCL are counted. The number of code lines permethod does not exceed the length of a page.A comparison of the conventional implemen-tation of ERNEST and the new object{orientedimplementation outlined in Sect. 5.4 shows a re-duction of about 50% for the new system [70].7.2 Memory RequirementsObject{oriented programming in C++ clearly in-creases the size of the running programs. The

use of
exible tools like NIHCL will always resultin the problem that code will be included in theexecutable program which will not be needed inthe particular application. Due to the principalundecidability of the problem whether a functionwill be actually called in a program, the linkerwill have to include some virtual functions whichwill not be actually called in the execution of theapplication. For experimental system, dynamiclink libraries (shared libraries) partially circum-vent this problem. For real applications, the usermay of course manually select only those func-tions and libraries for the linker which will actu-ally be used. On the other hand, the increase ofthe executable's size is relatively small comparedto the absolute size, especially if graphics routinesare used.Typical program size for a single operator inAnimals is 420 KByte (e.g. a Sobel operator)when static libraries for NIHCL are used. Whenseveral operators are combined into one program,or when additional objects are required, the sizeincreases only little. For example, a programusing the camera object and applying either aSobel operator or another edge detector and aline tracking algorithm on the captured imagehas around 600 KByte. For comparison, dynamiclinkage of a simple program with X11 results in aminimum of 600 KByte for a program.7.3 Run TimesAs mentioned in Sect. 6.1, Animals can be usedin real time applications [12]. This is one of theultimate goals of image analysis in today's sys-tems. Time consuming low{level operations canrun with zero overhead after some precaution onthe matrix classes.E�ciency is one of the design goals for the op-erator hierarchy (Sect. 5.2). No measurable dif-ference in run time behavior could be observed inthe comparison of operator objects and functioncalls.Actual limitations in real time processing re-sult from limitations of the hardware, not from

Reforamtted preprint of [47] 17the software. It is still di�cult to get a color im-age of reasonable size (5122) into main memoryin video rate (25 Hz), and simultaneously have alow load on the CPU. This would enable activevision techniques to process images selectively.7.4 Software Life CycleAll source code in Animals is under revision con-trol. Using the versioned �les, the following esti-mations were possible, using chain code classes asan example. The class Chain for chain code rep-resentation of lines was initially speci�ed in 1988;a student's theses was �nished on this topic in1989 [45]. By that time, this class was alreadybeing used by several applications. The softwarewas almost unchanged until 1992, when a com-plete redesign of the internals was done in orderto maximize run time e�ciency. Existing soft-ware which only uses the class did not have tobe changed, except for few (mechanical) substitu-tions. In 1993, the �̀���o&{hierarchy was restruc-tured and the OOPS software was substituted byits successor NIHCL [25]. Around 120 classes hadto be adapted to the new package; the work re-quired was about 0.4 man years for the completechange. This example demonstrates how essentialparts of a software system are still usable after 6years; this is unusual in a continuously changingand expanding system with several dozens of im-plementors. This is mostly due to object{orientedprogramming.The history of Animals also revealed howstrategic decisions for object{oriented softwaredesign can in
uence software maintenance con-siderably. In 1989, we decided to extend OOPSwith machine independent binary storage facili-ties which are essential for image processing in adistributed environment. We did so by a modi�-cation of the OOPS source code. These changeswere of course lost when the NIHCL update ar-rived. For NIHCL, we also provided machine in-dependent binary storage; now we used inheri-tance from existing NIHCL classes. We had tosacri�ce a little runtime e�ciency but no changes

of the distributed source code were required, i.e.,a further update will no longer require changes ofthe own interfaces.8 Conclusion and OutlookObject{oriented programming is now an estab-lished tool for image processing and analysis. Itis no longer a research item of its own as it was in[46] or [22]. The number of C++ applications forimage processing is large. An increasing numberof tools for object{oriented programming will beavailable as class libraries. These can be reusedin image processing when new classes are derivedfrom image processing classes and tool classes bymultiple inheritance.We presented a system for image analysis whichmakes extensive use of object{oriented program-ming. The general framework is provided in anenvironment for pattern analysis (PUMA) whichis useful for image and speech analysis and con-tains the object{oriented implementation of a se-mantic network. Data for image processing isrepresented in �̀���o& classes. An image analysissystem (Animals) uses operator classes to com-pute data represented in �̀���o&. We showed thatthis framework can be successfully applied to realworld problems, including 3D and real time pro-cessing.AcknowledgementsThe authors wish to express their thanks to themembers of the image processing group of thechair and of the \Forschungszentrum f�ur Wissens-basierte Systeme, Erlangen" for their ideas andsoftware contributions to the system.SUN & HP are trademarks of SUN microsys-tems resp. Hewlett Packard.References[1] R. B. Arps and W. K. Pratt, editors. ImageProcessing and Interchange: Implementationand Systems, San Jose, CA, 1992. SPIE,SPIE Proceedings 1659.

Reforamtted preprint of [47] 18[2] R. Be�s. Kalibrierung einer beweglichen,monokularen Kamera zur Tiefengewinnungaus Bildfolgen. In W. G. Kropatsch andH. Bischof, editors, Tagungsband Muster-erkennung 1994, volume 5 of InformatikXpress, pages 524 { 531, Berlin, 1994.Springer.[3] G.M. Birtwistle, O. Dahl, B. Myrhang, andK. Nygaard. Simula Begin. Auerbach Publ.Inc., Philadelphia, PA, 1983.[4] Ch. Blum. Design principles and applica-tions of ISO/IEC's image interchange facility(IIF). In ImageCom Conferenc, pages 160{165, Bordeaux, 1993.[5] Ch. Blum and G. R. Hofmann. ISO/IEC'simage interchange facility (IIF). In Arps andPratt [1], pages 117{129.[6] T. Butler and P. Krolak. An overview of theProgrammer's Imaging Kernel System (PIK)proposed standard. Computers and Graph-ics, 15(4):465{472, 1991.[7] I. C. Carlsen and D. Haaks. IKSPFH |concept and implementation of an object{oriented framework for image processing.Computers and Graphics, 15(4):473{482,1991.[8] A. F. Clark. An international standard forimage processing and interchange. PAMITechnical Committee Newsletter, 14:5{6,1991.[9] A. F. Clark. Image processing and inter-change | the imaging model. In Arps andPratt [1], pages 106{116.[10] P. Coad and E. Yourdon. Object-orientedanalysis. Prentice Hall, Englewood Cli�s,NJ, 2nd edition, 1991.[11] B.J. Cox. Object oriented Programming /An Evolutionary Approach. Addison-Wesley,Reading, MA, 1986.[12] J. Denzler, R. Be� J. Hornegger, H. Nie-mann, and D. Paulus. Learning, tracking andrecognition of 3D objects. In V. Graefe, ed-itor, International Conference on IntelligentRobots and Systems { Advanced Robotic Sys-

tems and Real World, volume 1, pages 89{96,1994.[13] J. Denzler and H. Niemann. A two-stage realtime object tracking system. In Pave�si�c et al.[54].[14] J. Denzler and D. W. R Paulus. Activemotion detection and object tracking. InICIP 94 [33], pages 635{639.[15] M.R. Dobie and P.H. Lewis. Data structuresfor image processing in C. Pattern Recogni-tion Letters, 12:457{466, 1991.[16] W. Eckstein, G. Lohmann, U. Meyer{Gruhl,R. Riemer, L. Altamirano Robler, andJ. Wunderwald. Beuntzerfreundliche Bil-danalyse mit HORUS: Architektur undKonzepte. In S. J. P�oppl and H. Handels,editors, Mustererkennung 1993, pages 332|339, Berlin, 1993. Springer.[17] G. Enderle, K. Kansy, and G. Pfa�. Com-puter Graphics Programming, GKS: TheGraphic Standard. Springer, Berlin, 1984.[18] H. Faasch. Konzeption und Implementationeiner objektorientierten Experimentierumge-bung f�ur die Bildfolgenauswertung in ADA.PhD thesis, Hamburg, 1987.[19] V. Fischer. Parallelverarbeitung in einemsemantischen Netzwerk f�ur die wissens-basierte Musteranalyse. Technical report,Dissertation, Technische Fakult�at, Univer-sit�at Erlangen{N�urnberg, Erlangen, 1995.[20] D. Le Gall. MPEG: A video compressionstandard for multimedia applications. Com-munications of the Association for Comput-ing Machinery, 34(4):47{58, April 1991.[21] P. Gemmar and G. Hofele. Empfehlungf�ur ein Ikonisches Kernsystem IKS. FIMInformationsverarbeitung und Mustererken-nung), Karlsruhe, 1989. with contributionsof: L. Dreschler-Fischer, H. Faasch, D. Haaksund D. Paulus, .[22] P. Gemmar and G. Hofele. An object ori-ented approach for an iconic kernel systemIKS. In ICPR 90 [34], pages 85{90.[23] P. Gemmar and G. Hofele. Design of an

Reforamtted preprint of [47] 19iconic kernel system. Computers and Graph-ics, 15(4):483{493, 1991.[24] A. Goldberg and D. Robson. Smalltalk-80: The Language and its Implementation.Addison-Wesley, Reading, MA, 1983.[25] K. E. Gorlen, S. Orlow, and P. S. Plexico.Data Abstraction and Object{Oriented Pro-gramming in C++. John Wiley and Sons,Chichester, 1990.[26] A. R. Hanson and E. M. Riseman, editors.Computer Vision Systems. Academic Press,New York, 1978.[27] A. R. Hanson and E. M. Riseman. VISIONS:A computer system for interpreting scenes.[26], pages 303{333.[28] R. M. Haralick and V. Ramesh. Image un-derstanding environment. In Arps and Pratt[1], pages 159{167.[29] M. Harbeck. Objektorientierte linienbasierteSegmentierung . Dissertation, IMMD 5(Mustererkennung), Universit�at Erlangen{N�urnberg, Erlangen, 1996.[30] J. Hornegger and H. Niemann. A Bayesianapproach to learn and classify 3{D objectsfrom intensity images. In Proceedings ofthe 12th International Conference on Pat-tern Recognition (ICPR), pages 557{559,Jerusalem, October 1994. IEEE ComputerSociety Press.[31] J. Hornegger and H. Niemann. The missinginformation principle in computer vision. InPave�si�c et al. [54], pages 113{126.[32] J. Hornegger, H. Niemann, D. W. R. Paulus,and G. Schlottke. Object recognition usinghidden Markov models. In E. S. Gelsema andL. N. Kanal, editors, Pattern Recognition inPractice IV: Multiple Paradigms, Compara-tive Studies and Hybrid Systems, volume 16of Machine Intelligence and Pattern Recog-nition, pages 37{44, Amsterdam, June 1994.Elsevier.[33] Proceedings of the International Conferenceon Image Processing (ICIP), Austin, TX,USA, November 1994. IEEE Computer So-

ciety Press.[34] Proceedings of the 10th International Con-ference on Pattern Recognition (ICPR), vol-ume 2, Atlantic City, 1990. IEEE ComputerSociety Press.[35] S. Impedovo, editor. Progress in ImageAnalysis and Processing III, Proceedings 7thInternational Conference on Image Analysisand Processing, Bari, Italy, 1994. World Sci-enti�c.[36] International standard 12087, image process-ing and interchange. Technical report, Inter-national Standards Organization, Genf, CH,to appear 1994.[37] T. Kawai, H. Okazaki, K. Tanaka, andH. Tamura. VIEW{station software and itsgraphical user interface. In Arps and Pratt[1], pages 311{323.[38] P. Koller. Computation of range imagesfrom color{stereo{images by 'simulated an-nealing'. In Pave�si�c et al. [53], pages 119{130.[39] P. Levi. Ikonisches Kernsystem. Robotersys-teme, 1:172{178, 1985.[40] M. A. Linton, J. M. Vlissides, and R. P.Calder. Composing user interfaces with In-terViews. IEEE Computer, pages 8{22, 1989.[41] J. Mundy, T. Binford, T. Boult, A. Han-son, R. Veveridge, R. Haralick, V. Ramesh,C. Kohl, D. Lawton, D. Morgan, K Price,and T. Strat. The image understanding en-vironments program. In Proc. of the DARPAImage Understanding Workshop, pages 185{214, Hawaii, Jan. 1992.[42] H. Niemann. Pattern Analysis and Under-standing. Springer, Heidelberg, 1990.[43] H. Niemann. Interpretation of image se-quences. In W. Zamojski and D. Caban,editors, Proceedings of the 5th school com-puter vision and graphics, pages 57{72. Univ.Wroc law, Wroc law, 1994.[44] H. Niemann, G. Sagerer, S. Schr�oder, andF. Kummert. Ernest: A semantic networksystem for pattern understanding. IEEE

Reforamtted preprint of [47] 20Transactions on Pattern Analysis and Ma-chine Intelligence (PAMI), 9:883{905, 1990.[45] M. Oestreich. Linien als Objekte f�ur dieBildverarbeitung. Student's thesis, IMMD5 (Mustererkennung), Universit�at Erlangen{N�urnberg, Erlangen, 1988.[46] D. Paulus. Objektorientierte und wissens-basierte Bildverarbeitung \Object{orientedand knowledge based image processing.Vieweg, Braunschweig, 1992.[47] D. Paulus and H. Niemann. Object{oriented programming for image analysis. InJ. Menon, editor, Current Topics of PatternRecognition Research, volume 1 of ResearchTrends, pages 185{204. India, 1994.[48] D. Paulus, A. Winzen, F. Gallwitz, andH. Niemann. Object{oriented knowledgerepresentation for image analysis. In Pave�si�cet al. [54], pages 37{54.[49] D. Paulus, A. Winzen, and H. Niemann.Knowlege based object recognition andmodel generation. In Donald W. Braggins,editor, Proceedings Europto 93, ComputerVision for Industry, M�unchen, pages 382{393, Bellingham, WA, 1993. SPIE, SPIE.Proceedings 1659.[50] D. W. R. Paulus. Object oriented image seg-mentation. In Proc. of the 4th Int. Conf. onImage Processing and its Applications, pages482{485, Maastrich, Holland, 1992.[51] D. W. R. Paulus. Object{oriented stereoanalysis. In Pave�si�c et al. [53], pages 131{150.[52] D. W. R. Paulus and H. Niemann. Iconic{symbolic interfaces. In Arps and Pratt [1],pages 204{214.[53] N. Pave�si�c, H. Niemann, and D. Paulus, ed-itors. Proceedings of the German{SlowenianWorkshop on Image Processing and Stereo{Analysis. Arbeitsberichte des IMMD derUniversit�at Erlangen{N�urnberg, Band 26/1,Erlangen, 1993.[54] N. Pave�si�c, H. Niemann, D. Paulus, andS. Kova�ci�c, editors. 3{D Scene Acquisi-

tion, Modeling and Understanding, Proceed-ings of the Second German{Slovenian Work-shop, Ljubljana, Slovenia, June 1994. IEEESlovenia Section.[55] C. A. Poynoton. An overview of TIFF 5.0.In Arps and Pratt [1], pages 150{158.[56] W. K. Pratt. Overview of the ISO/ICE pro-grammer's imaging kernel system applica-tion program interface. In Arps and Pratt[1], pages 117{129.[57] W. H. Press, B. P. Flannery, S. A. Teukolsky,and W. T. Vetterling. Numerical Recipes inC { The Art of Scienti�c Computing. Cam-bridge University Press, New York, 1990.[58] J. R. Rasure and M. Young. Open environ-ment for image processing and software de-velopment. In Arps and Pratt [1], pages 300{310.[59] E.M. Riseman and A.R. Hanson. Amethodolgy for the development of gen-eral knowledge{based vision systems. InC. Torras, editor, Computer Vision, The-ory and Industrial Applications, pages 293{336. Springer, Berlin, Heidelberg, New York,1992.[60] Markku Sakkinen. On the darker side ofC++. In Object-Oriented Programming Sys-tems, Languages and Applications, pages162{176. ACM Press, 1988. Conference Pro-ceedings OOPSLA.[61] H. Sato, H. Okazaki, T. Kawai, H. Ya-mamoto, and H. Tamura. The view-station environment: Tools and architecturefor a platform-independent image-processingworkstation. In ICPR 90 [34], pages 576{583.[62] S. Schr�oder. Integration einer Wissenser-werbkomponente in eine Systemumgebungf�ur die Musteranalyse. Reihe 10: Infor-matik / Kommunikationstechnik. VDI Ver-lag, D�usseldorf, 1990.[63] B. Stroustrup. The C++ Programming Lan-guage. Addison-Wesley, Reading, Mass., 2ndedition, 1991.[64] Sun OS 4 Manuals, Network Programming,

Reforamtted preprint of [47] 21Part 2, Mountain View, CA. RPC eXter-nal Data Representation Standard: ProtocolSpeci�cation, Revision B, 1986.[65] M.J. Swain and M. Stricker. Promising di-rections in active vision. Technical ReportCS 91-27, University of Chicago, 1991.[66] H. Tamura et al. Design and implementationof spider - a transportable image processingsoftware package. Computer Vision, Graph-ics and Image Processing, 23:273{294, 1983.[67] G. Wallace. Overview of the JPEG(ISO/CCITT) still image compression stan-dard. In Electronic Image Science andTechnology, pages 97{108. SPIE Proceedings1244, Santa Clara, CA, Feb. 1990.[68] T. D. Williams and R. R. Kohler. Environ-ment for image understanding development.In Arps and Pratt [1], pages 341{349.[69] A. Winzen. E�cient methods for hypoth-esis veri�cation paradigms. In Proceedingsof the 11th International Conference on Pat-tern Recognition (ICPR), pages 558{561,The Hague, Netherlands, August 1992. IEEEComputer Society Press.[70] A. Winzen. Automatische Erzeugung drei-dimensionaler Modelle f�ur Bildanalysesys-teme. Technical report, Dissertation, IMMD5 (Mustererkennung), Universit�at Erlangen{N�urnberg, Erlangen, 1994.[71] A. Winzen. Matching of 3D{lines for auto-matic model{generation. In Impedovo [35],pages 607{614.[72] A. Winzen and H. Niemann. Matchingand fusing 3d{polygonal approximations formodel{generation. In ICIP 94 [33], pages228{232.[73] A. Winzen and H. Niemann. Automaticmodel{generation for image analysis. InW. Strasser and F. Wahl, editors, Graphics& Robotics. Springer, Berlin, to appear 1994.[74] A. Winzen, D. Paulus, H. Niemann, andV. Fischer. Semantische Netze f�ur die Bild-analyse: Objektorientierte Realisierung mitparalleler Kontrolle. In H. Wedekind, editor,

Verteilte Systeme, pages 371{386. BI Wis-senschaftsverlag, Mannheim, 1994.

