OBJECT-ORIENTED PROGRAMMING
FOR IMAGE ANALYSIS

Dietrich W. R. Paulus and Heinrich Niemann
Universitat Erlangen—Niirnberg
Lehrstuhl fiir Mustererkennung (Informatik 5)
Martensstrafie 3, D-91058 Erlangen, Germany

email: {paulus,niemann}@informatik.uni-erlangen.de

This is a reformatted version of the preprint as cited in the self-reference [47]. The format of the

bibilography has also been changed.

OBJECT-ORIENTED PROGRAMMING FOR
IMAGE ANALYSIS

Dietrich W. R. Paulus and Heinrich Niemann

Universitat Erlangen—Niirnberg

Lehrstuhl fir Mustererkennung (Informatik 5)
Martensstrafie 3, D-91058 Erlangen, Germany

email:

Abstract

In this survey we discuss the implications of
object—oriented programming on image process-
ing, image analysis, and real time active vision.
We give an overview on the important litera-
ture which relates to object—oriented program-
ming and imaging.

A general object—oriented framework covering
all levels from image capturing over segmenta-
tion, model generation up to object recognition
is presented and related to other well known sys-
tems like Khoros, KB Vision, I[UE, and PIKS. In
particular, we describe real time features and 3D
processing. We illustrate the main ideas of this
system by solutions to real world image process-

ing problems.

1 Introduction

The programming language C++ [63] had an over-
whelming success in the last few years in all areas
of computer science. Although the C++-language
is only partially suited for object—oriented pro-
gramming and although it has its disadvantages
[60], it presently seems to be the best choice to
combine efficiency with object—oriented design in
real world applications, especially those operating
under real time conditions. Efficiency and main-
tainability are of course crucial for most image
analysis programs.

A key mechanism of object—oriented program-

{paulus,niemann}@informatik.uni-erlangen.de

ming is polymorphism. In this article we give ex-
amples of how polymorphism can simplify image
processing programs. After a short introduction
of the general terminology of object—oriented pro-
gramming in Sect. 2, we describe the architecture
of image analysis systems (Sect. 3) and show the
effects on image processing and analysis (Sect. 4).

Early image processing systems were mostly
written in Fortran (e.g. SPIDER [66]). One
decade was dominated by the use of C (e.g. [15]).
The discussion of object—oriented programming
for image processing started when C++ became
known. This programming language promised to
provide the efficiency required for image process-
ing, together with object—oriented programming,
and the possible code reuse by the upward com-
patibility to C. This leads to various joint efforts
for a common image understanding environment.
We discuss the present state of this research in
Sect. 4 and relate it to other systems and stan-
dards.

In general, image analysis has to use knowledge
about the task domain. This knowledge is repre-
sented in semantic networks in a straight forward
way. We describe an object—oriented implementa-
tion of a knowledge based image analysis system
in Sect. 5.

Several examples and applications in Sect. 6
prove the feasibility, efficiency, and reusability of

object—oriented programs in image analysis. In

Reforamtted preprint of [47]

Sect. 7 we summarize the resource requirements

of the applications.

2 Object—Orientation

In this section we briefly introduce the important
ideas and terms of object-oriented software de-

velopment.

2.1 Programming Languages

Object—oriented programming has been known to
computer scientists since 25 years. The ideas orig-
inated in the ancestors Simula [3] and Smalltalk
[24]. During this period of time, the programming
language C had its breakthrough in the world.

In the late eighties, the C language was ex-
tended with object—oriented ideas. The language
Objective—C [11] encapsulated Smalltalk features
in the C language. The language C++ [63] mainly
used the ideas of Simula; a public domain class
hierarchy called NIHCL [25] incorporates some
Smalltalk ideas into C++. C++ and Objective—
C are supersets of C; i.e. every C program is a
C++/0bjective-C program as well. Many valu-
able image processing routines nowadays written
in C can be reused without modification. Pos-
sibly because of the cheap or free availability of
C++—compilers — even on personal computers —
this language had enormous success.

Reuse of class libraries like NIHCL serves for
two purposes. Common programming problems
— like the implementation of linked lists or sets
— have already been solved in these systems and
can be used without further effort. Exchange of
software using such class libraries with other in-
stitutes is simplified since the classes share the

same structure and interfaces.

2.2 Advantages

Object—oriented programming is used to reduce
difficulties of conventional software development.
In particular, software reuse is highly desired due
to the high costs of programming. Modularity is

a central concept which helps maintaining large

systems. Data abstraction provides clean inter-
faces which are essential when several program-
mers share code in a team.

These goals can be reached in conventional pro-
gramming with certain effort. In object—oriented
programming, they are intrinsic to the program-
ming paradigm; it would require certain effort not
to fulfill these principles.

One goal of software engineering is to pro-
vide components with a long lifetime, even when
changes are required. Object—oriented design can
not guarantee this, but it simplifies updates and
evolution.

The programming language C++ in particu-
lar has the advantage that it combines efficient
conventional constructs with object—oriented fea-
tures. Existing routines in C which sacrifice clean
structure to gain speed — which unfortunately
is necessary in some rare cases — can be encap-
sulated in classes or objects which provide safe
interfaces.

Software reuse is crucial in large systems;
well documented packages should be usable even
across applications. If every programmer is al-
lowed to re-program existing code, soon several
pieces of code will be scattered around in the sys-
tem which serve the same purpose — with mini-
mal differences which soon nobody will remember
exactly. The system becomes hard to maintain,
then.

OOP (object-oriented programming)simplifies
code reuse by inheritance and documentation by
In addition

to the technical advantage of software reuse, it

the hierarchical structure of classes.

may as well be of scientific interest (Sect. 6.2).
Generally, methods in object—oriented pro-
gramming have fewer arguments than corre-
sponding function calls in traditional program-
ming, since parts of the required information may
be already bound to the object (for example, a
FFT object may have its internal tables for the
the acutal image size, and no such tables will have
to be allocated for the function call and passed to

it as arguments). This again facilitates software

Reforamtted preprint of [47]

Model
(Generatio

Images

Segmentation
Objects

A

Fig. 1: Data flow in an image analysis system

maintenance and reuse, especially if a class and
its interface has to be exchanged. Fewer modifi-
cations are then required in the code, compared

to conventional programs.

3 Image Understanding

In this section we describe the general software
architecture of image understanding (IU) systems

and apply object—oriented principles.

3.1 Data Flow

The problem of image analysis is to find the best
description of the input image data which is ap-
propriate to the current problem. Sometimes this
means that the most precise description has to
be found, in other cases a less exact result which
can computed quicker will be sufficient. This task
may be divided into several sub—problems. After
an initial preprocessing stage, images are usually
segmented into meaningful parts. Various seg-
mentation algorithms create so called segmenta-
tion objects [52].

Segmentation objects are matched against
models in a knowledge base which contains expec-
tations of the possible scenes in the problem do-
main; this knowledge may be generated automat-
ically from samples in a training phase [62, 70].

The various data types involved in image seg-

mentation, like images, lines, regions, etc., may

3
Models
@ Description
........................... Feed back
serve for data abstraction of the problem. In

object—oriented programming, these data types
are naturally represented in classes. Segmenta-
tion may be seen as a data flow problem relat-
ing these various representations. An overview of
the main components is shown in Fig. 1; data is
captured and digitized from a camera and trans-
formed to a description. Image processing tasks
are shown in oval boxes; data is depicted as rec-
tangles; in the object—oriented design phase, both
will naturally be grouped to class hierarchies.
The problem of finding an optimal match and
the best segmentation can be seen as an opti-
mization problem and is formulated as such in
[43]. Optimization may search for the best pos-
sible match [71] as well as include efficiency con-
siderations which are crucial in real time image
processing. This process may require a data feed
back from high—level processing to data driven
segmentation, or even to the image capturing de-
vices (dotted line in Fig. 1). This data flow is also
common to active vision systems, where the op-
tical parameters are adjusted by the controlling
computer in order to get the best possible image

for the actual analysis purpose [14].

3.2 General Structure

Knowledge based image analysis extends the data

flow shown in Fig. 1. The general modular struc-

Reforamtted preprint of [47]

Control
i Explanation . | Knowledge Procedures i Learning
Signal @ Description
Data Base

Fig. 2: General structure of image analysis systems

ture is shown in Fig. 2; no separation between
tasks and data has been made here. Each mod-
ule has separate responsibilities. The knowledge
base is contained in a separate module. A module
for procedures provides all required operations for
management of the knowledge base and for image
analysis. A general control module selects proce-
dures based on the information in the knowledge
base and on the actual image data. Learning and
explanation are useful but not required for some
applications.

Knowledge about the problem domain is
mostly represented as models for physical objects,
tasks, cameras, lighting etc. Object models are
matched against segmentation data (Fig. 1). The
search algorithm (e. g. the A* algorithm) for solv-
ing this optimization problem is independent of
the image processing algorithms (module proce-
dures); it is part of the control module. Model
generation (Fig. 1) is the task of the learning mod-
ule. The explanation module may provide textual
descriptions of the actions carried out as well as
visualize the various stages of processing.

A model of the scene is used as knowledge for
image analysis. The scene may be decomposed
into object-models which can be represented us-
ing their structural properties and relations (e.g.
in a semantic network), or as statistical object
models ([30], Sect. 6.2). These models must be
matched against segmentation data during analy-
sis.

The system architectures in Fig. 1 and Fig. 2

imply various interactions between modules. In-
formation has to be exchanged by means of well
defined interfaces. Modules and data structures
with well defined interfaces are naturally imple-
mented as classes in OOP.

The segmentation object is a central idea for
the data representation independent of the algo-
rithms used for image segmentation, and can be
used as an interface between data—driven segmen-
tation and knowledge—based analysis. Models can

be described in a similar formalism [42].

3.3 Real Time

Image sequences were studied for motion detec-
tion. One actual goal of image analysis is to
process images as they are delivered from the
camera, 1. e. in video rate and real time. After
a fixed period of time, all iconic information will
be lost due to the limited memory capability of
machines (as well as humans); only symbolic in-
formation may be kept longer.

In OOA (object—oriented analysis),the problem
will be decomposed; one component will be the
In OOD (object—oriented de-
sign),general sequence classes and image classes

In OOP, the

internal management of a ring buffer will be im-

image sequence.
will be combined to new classes.

plemented which holds the images in memory.
Real time processes typically have to work for

a long period of time. Computing resources, e.g.

storage in the computer, are limited. Thus, real

time processes have to guarantee constant re-

Reforamtted preprint of [47]

source demands. In addition, quick and reliable
response times have to be confirmed by the soft-
ware. These demands are imposed on the indi-
vidual components of the software. For example,
the image ring buffer will have to specify its max-
imum switching delay time. Operators on images
have to release all resources which are no longer
needed or referenced. If symbolic information is
to be kept longer, safe interfaces have to exist for
a partial or full release of this information, i.e.
there has to be an explicit means for forgetting

symbolic information.

3.4 Devices and Actors

The output of the system in Fig. 2 is a description
of the input image data. In active vision systems,
the output may additionally or alternatively con-
tain control commands for the sensor device (e.g.
a change in the aperture of the lens) or for the ac-
tor (e.g. a robot or a moving vehicle). The system
design in Fig. 2 is therefore suitable for conven-
tional image analysis as well as for active vision.
Interaction with graphical and pointing devices
is necessary for the explanation module. Interac-
tion with physically moving tools requires a con-
trol loop which can be closed in real time.
Naturally, these actions and devices are mod-
elled as classes and objects in OOA and OOD.
Their well defined interface facilitates data ex-

change between programs and devices.

3.5 External Representation

Data exchange between different processes often
uses the facilities provided by the operating sys-
tems, 1. e. shared memory, files, and pipes. When
such processes run on different hardware, the
file format has to be machine-independent. In
an object—oriented environment this is strongly
connected to the problem of persistent objects,
i.e. objects which remain after termination of a
process.

Normally, image files are fairly big; binary stor-

age is mostly required when they have to be saved

on permanent media or have to be transmitted
on slow communication channels. Several ma-
chine independent image file formats have been
proposed [5, 4, 8] or established, like tiff [55].
XDR [64] provides machine independent binary
storage for arbitrary data types.

The JPEG [67] and MPEG [20] data encod-
ing schemes presently play an important role in
the areas of graphics and multi media processing.
They are less important for image analysis, since
this kind of data compression discards high fre-
quency information which is regarded as essential
for image segmentation. Only lossless data com-
pression schemes can thus be used for image stor-
age. Such compression is available for example in
tiff.

4 Systems

We now discuss the influences of object—oriented
programming to a selection of existing image pro-

cessing and analysis systems.

4.1 Display and Edit

Several Unix applications exist for image display,
manipulation, conversion, etc. Most of them are
in the public domain or share ware. To name
some of them: xv, image magic, animate, pbm-
plus, etc.!

Graphics editors can be used to create images
from high—level descriptions. The program Xfig
is commonly used in Unix. These programs are
written in C and use X11. Object—oriented appli-
cations can also be found. The Interviews system
[40] is written in C++ and provides display and
editors.

Image editors for manipulation of sub—images
are presently missing. They are however available
as commercial PC products.

These tools can read, convert, and write almost

any image format on disk.

!xv by John Bradley, Image Magic and animate, by
John Cristy, the portable bitmap utilities (pbm) by Jef
Poskanzer; check your nearest ftp site for the latest

sources.

Reforamtted preprint of [47]

4.2 1IKS and PIKS

The idea of a common tool box for image process-
ing came up when image processing was estab-
lished as a discipline with a set of basic routines.
SPIDER [66] was a commercial step in this direc-
tion. Soon after graphics was standardized in the
“graphical kernel system” GKS system [17], peo-
ple started working on an image processing coun-
terpart, the “iconic kernel system” IKS [39] which
later lead to the PIKS “programmer’s imaging
kernel system” [6, 8].

Several reasons beyond the scope of this article
delayed the launch of such a system. Several in-
stitutes collaborated in this idea [5, 9, 21, 56].
During this development, object—oriented ideas
were discussed [7, 23], but they were mostly dis-
carded in the final standard by DIN, ANSI, and
ISO [36].

imaging model and an application programmers

The PIKS system provides a common

interface for image processing. A set of several
hundreds of operators is defined which operate on
multi—-dimensional multi-band images. All func-
tions which are commonly found in commercial
systems are included. An appropriate encapsula-
tion in classes will be required for object—oriented
programming. Since this is not part of the stan-
dard, it will add new diversity to the software
interchanges, contradicting the efforts of a stan-
dard.

Along with the standard came a new image
interchange format [4, 8]. Using this specifica-
tion, images can be exchanged across application
boarders, like from printing technology to robot-
ics, and vice versa. Because of the overhead re-
quired by the generality of the format, the format
is suited for data exchange, not for local short

term storage.

4.3 HORUS

The HORUS system [16] is an image understand-
ing environment with interactive graphics run-
ning on various platforms. Interactive image ma-

nipulation in non-rectangular areas of interest

A basic C++ interface exists; the

lower level of the system is implemented in C.

is possible.

Higher—levels can use Prolog, Lisp, or Smalltalk.
Object—oriented programming is available via the
Smalltalk interface which encapsulates underly-
ing C—functions.

The library for image processing consists of ap-
proximately 460 operators for 2D image process-
ing covering all areas from preprocessing, segmen-
tation, morphology, feature extraction, classifica-

A knowledge

base for image analysis is provided and repre-

tion up to 2D model generation.

sented as a semantic network.

4.4 Khoros

The Khoros system [58] is an environment for in-
teractive development of image processing algo-
rithms. The system includes a neat visual pro-
gramming environment. The algorithms can also
be run without interactive graphics. The system
provides a large library of imaging functions (over
500 functions), some of them used in Z%D and 3D
image processing. Knowledge based processing is
not part of this package.

Khoros is suited for Unix workstations. Mean
size of the 291 binaries in the distribution (Re-
lease 1.0) is 0.55 megabyte under HP-UX 9.01
using shared X11 libraries. Khoros is in the pub-
lic domain and is presently written in C. Version
2 has ANSI C header files and can be used with
C++, although it is still written in C.

Khoros is working on real world applications.
It does not contain hardware dependent interfaces
like cameras or display devices.

The Khoros algorithms are very general and
mostly operate on several spectral channels as
well as on monochrome images. This generality
leads to a considerable run—time overhead making

real time performance almost impossible.

4.5 KB Vision

The KB Vision (KBV) system [68] is a commer-
cial product loosely based on the VISIONS sys-

Reforamtted preprint of [47]

tem [26, 27].

based image analysis from signal processing up

It covers all areas of knowledge

to image understanding. VISIONS uses semantic
networks for knowledge representation [39]. Ini-
tial symbolic information is accessible to the user
in KBV as a “token set” for which powerful man-
agement tools exist.

KBYV includes a windowed environment for all
kinds of display and interaction. Many functions
are provided in the library. As with Khoros, the
generality of processing decreases speed. In par-
ticular, access of a single pixel is very slow com-

pared to pointer operations in C.

4.6 IU Environment

A group of leading experts in image analysis joint
their efforts for a common image understanding
environment [41, 28]. A system is planned as a
common basis for image processing and knowl-
edge based analysis. Applications may be writ-
ten in C++ or LISP. The system covers all areas
of imaging with many applications; due to the
many contributors, a variety of ideas has to be
united into a common hierarchy of classes. The
design goals are: object—oriented programming
with graphical interaction, extensibility and pro-
gram exchange and a common performance eval-
uation platform for image processing. Real time
processing is explicitly excluded from these goals.
This is reasonable because the generality of the
class hierarchy might slow down processing.

In the present draft, no classes are provided
The C++ part

which needs a general object—oriented environ-

for devices such as cameras.

ment (Sect. 2.1) presently included classes for
sets, stacks, lists, etc., 1. e. existing systems for
this purpose (e. g. NIHCL [25]) are not reused.
The system is currently under construction. The
first estimate of over 100 classes [41] will probably

be exceeded considerably.

4.7 View Station

A software architecture planned as a common ba-
sis for program exchange between companies, re-
search institutes, and universities is presented in
[37, 61]. This system extends the ideas of SPI-
DER [66] and offers more than 500 algorithms for
image processing. It includes a visual program-
ming environment, windowed graphics and a new
image storage scheme. Special memory—mapped
image hardware can be encapsulated. Imaging
devices are thus accessible by the operating sys-
tem interface. Object—oriented programming is
used here to gain a hardware independent soft-
ware structure.

The system was developed by a company which
manufactures work stations. However, the aim
of this system is to provide a portable platform
on contemporary Unix workstations with trans-
parent access to fast dedicated image processing
hardware. For the company’s machine, special
hardware acceleration is encapsulated in classes.

The system is written in C++ and requires a
It in-

cludes an interpreted high—level language for im-

Unix workstation with graphics display.

age analysis. A programming interface allows ac-
cess, use, and extension of existing C++—classes.
Real time processing is possible using the dedi-

cated hardware.

4.8 Animals

A fully object-oriented approach was chosen for
the Animals system [46], which is built along the
data flow in Fig. 1. We describe the system in
Sect. 5. Image processing data is represented in
a hierarchy of picture processing objects which is
presented in Sect. 5.1. Algorithms are also rep-
resented as classes and structured hierarchically
(Sect. 5.2). A knowledge base uses the semantic
net formalism and is implemented as a hierarchy
of classes as well (Sect. 5.3).

Devices for image processing, such as cameras
or displays, are encapsulated in classes (cmp.

[7, 18, 23]). No fancy graphical environment ex-

Reforamtted preprint of [47]

ists. The system is oriented towards efficient
unsupervised batch processing and active vision.
Image classes may be compiled with safe access
mechanisms; for real time applications they can
exhibit access mechanism identical to two dimen-
sional dynamic arrays in C, alternatively. The
system also includes a robotic part combined with
a closed sensor—actor loop. We present applica-
tions in Sect. 6. Visualization of images is done
with X11 tools, the results of segmentation can be
converted to various graphics formats for display

purposes (cmp. Sect. 4.1).

4.9 Comparison

The different features of the systems introduced
in the previous sections are summarized in Tab. 1.
Reuse of existing code is documented for Khoros
(line “reuse” in Tab. 1) which uses LINPACK
functions. The View station extends the SPIDER
library which was used by many programs and
in this sense helps code reuse. Animals uses the
“Numerical Recipes” [57].

programming in C++, like sets, collections, lists,
etc. Animals reuses NIHCL for this purpose
(Sect. 2.1).

Khoros is in the public domain; a news group
is used as a bulletin board for problems and so-
lutions. The KBV and HORUS systems are sold
commercially. The support of the IUE will have
to be discussed in the future; it is planned to put
contributions to it into the public domain. The
IKS resp. its successors are documented as (inter-
national) standards; changes or updates have to
follow the regulations for this subject. The View
Station system is free software. The Animals sys-
tem is available as is, 1. e. without service.

The other rows of Tab. 1 will be mentioned in

the following sections.

5 An Image Analysis Sys-

tem

We now describe An image analysis system (Ani-
mals, Sect.4.8) in more detail. The system is writ-
ten in C++; it is integrated into a larger system for
pattern analysis (signals, speech, as well as im-
ges) called PUMA (“Programmier Umgebung

é flir die Musteranalyse”, programming environ-

% ® g = 1hent for image analysis).

= 5 = | o = | B

= |2 |E|E |2 |24 :

.1 Data Representation

classes no |no |no |yes |yes |yes
relse " ves | * " ves | ves Various data representation schemes have been
graphics ves |ves |ves |ves |ves |mno developed for data in image processing. Some of
real time | yes |no |no |no |ves |yes them may be treated as algebras with more or less
knowledge | ves | no ves | yes |ves | yes gomplete sets of operations (e. g. chain codes or
devices " no no | no |yes |yes quad trees). Other representations are used be-
language | C C C C++ | C++ | C++ qause of their storage efficiency (e. g. run length
format " Viff | " I/F | xof godes), others because of their runtime efficiency.
price >0 |0 >0 |0 0 0o Juch ideas were combined into a Hierarchy of

Tab. 1: Summary of features (* means unknown)

Neither IUE nor the View station build their
class hierarchies on top of an existing object—
oriented system for C++, i. e., they have to pro-

vide their proprietary tools for object—oriented

icture Processing ObjectS (HIPPOS, written as
inros [46]).

A central problem visible in Fig. 1 and 2 is the
data exchange of segmentation results, which are
an initial symbolic description of the image. The
solution in Zwmog is a hierarchy of classes, which

is shown in Fig. 3 in the graphical notation of

Reforamtted preprint of [47]

(Object) (HipposObj) (Geo0Obj)
.] Reliability
Identification
\Object IO, ... J \Display) Transformations
NIHCL {rrog
(AtomObj) (SegObj)
Representation Parts, Relations
_Get, Replace J \ Add, Query)
((AtomPoint) (AtomLine) (AtomRegion)
_Coordinates) _Start, End) _Contour, Areca /

Fig. 3: A section of a hierarchy of geometric objects for segmentation (in total approximately 100

classes)

[10]: class names are the top entries in the boxes;
the center field contains important attributes, and
the lower field lists a selection of relevant meth-
ods; both may be empty; with dots we mark
that there exist methods or attributes which are
not mentioned in the text. Specialization (inheri-
tance) links are marked with a semi—circle round
towards the general class; single boxes mark ab-
stract classes, double ovals are concrete classes.
All segmentation results can be stored in an
object of class SegObj [50, 46, 52|, no matter
whether the data is computed from line-based
or region—based segmentation, color—, range—, or
gray level images, etc. This general tool is used in
many algorithms. Several subtrees group repre-
sentations for points, lines, regions, surfaces, and
volumes. A segmentation object is a geometric
object (GeoObj). It consists of a set of parts which
are in turn geometric objects. Atomic objects are
geometric objects as well and end the recursion.

The abstract base class HipposObj connects to

the NIHCL object and serves as a common root
for all image processing classes. It contains a
judgement attribute which is used for the com-
parison of competing segmentation results by the
analysis control (Sect. 3.2).

Every atomic object has an associated repre-
sentation, such as a chain code for an atomic line.
These representations are organized in a separate
hierarchy (Fig. 4). Classes for 2D are separated
from surface representations and 3D objects. If
2D objects were considered special cases of the
corresponding 3D case, e.g. if a 2D point were
0, all 2D objects would
carry the overhead for storage and 3D computa-
tion with them. On the other hand, if 3D objects

were derived from 2D objects, this would contra-

a 3D point with z =

dict the intuitive meaning of inheritance — which
is specialization. Having objects with arbitrary
dimension would as well slow down computation
and increase storage requirements. The same ar-

guments hold for the time dimension. Details can

Reforamtted preprint of [47]

10

(HipposObj) fRepresentation\
Reliability Q
\ Display W, \ Dimension W,
(Rep2D) (" Rep3D)
\ Bounding-Box J k y
(PointRep2d) (LineRep2d) (RegionRep2d)
Start, End
_ X, V) _Moments) _Moments)

Fig. 4: Hierarchy of geometric objects for segmentation

be found in [46].

The representation tree is fairly large to hold
most commonly used data structures for image
segmentation, such as chain codes, polygons, or
quad trees; only some abstract base classes which
bundle common interfaces are shown in Fig. 4.
They give an example, the derivation scheme for
the chain code class is Chain — BasicLineRep
— LineRep2d. Since atomic objects mostly dele-
gate their actions to the associated representation
objects, the methods in Fig. 3 and Fig. 4 are sim-
ilar. Segmentation objects can be used in real
time image processing; methods are provided for
releasing parts or all of the information, as de-
scribed in Sect. 3.3.

As the applications (Sect. 6) show, this has
proven adequate for 2D, Z%D and 3D image analy-
sis. Another sub—tree exists for image classes, like
gray level images, stereo images, range images,
color images, etc. The whole irroc—hierarchy
currently consists of approximately 100 classes.
Additionally, classes for homogeneous coordinates
are used for matching in knowledge based analy-

s1s.

5.2 Operator Hierarchy

Many operations in image processing can be
structured hierarchically in a straight forward
manner. Some edge detection operators can be
specialized to edge mask operators; one of them
is the Sobel operator. Filters can be linear or
non-linear; rank order operations are one type of
non-linear operators; the median is one special
case of this type.

This hierarchy can be implemented in a hier-
archy of classes for operations in a straight for-
ward way (cmp. [7, 18, 23]). Objects are the ac-
tual algorithms with specific parameter sets [29]
which are also objects. This is particularly use-
ful, when operations have internal tables that in-
crease their efficiency. As an example consider a
discrete Fourier transform which uses tables for
sine and cosine values; the size and contents of
these tables varies however upon the frame size
to be transformed. Several Fourier—transform ob-
jects may thus be used in one program for trans-
formations of images, e. g. in a resolution hier-
archy. In contrast to conventional solutions, this

requires neither code duplication nor complicated

Reforamtted preprint of [47]

management of functions with local storage.

Fig. 5 shows a simple hierarchy for filter oper-
ators. The characteristics may be high—, band-,
or low—pass and can be enquired by the method
for operator description. A linear filter can be
described by its convolution kernel. No specific
information is provided in the abstract class for
non-linear filters which is only used to group the
derived classes, such as a k—nearest neighbor filter
or a rank order operation.

Dynamic enquiry about available operators in
the system is also facilitated by the operator hi-
erarchy. Parameter blocks can be shared between
different operators as parameter objects. Func-
tion call C++ syntax for these operators is used
in Animals which facilitates migration of existing
conventional programs to operator objects.

The sequence of operators introduces a refine-
ment of the data flow in Fig. 1. Intensity or range
images are transformed to feature domain images,
sets of lines, corners, vertices, and finally to seg-
mentation objects [52].

The major advantages of operator—classes are
twofold. Algorithms can be programmed in an
abstract level referencing only the general class
of operations to be performed; extensions of the
system by a new derived special operator will not
require changes in the abstract algorithm. Dy-
namic information about the operator, which is
actually used, is available. For example, a pro-
gram may just reference a filter object; during
run time it will be decided which concrete filter
should be used. Using virtual functions in C++,
the run time overhead is negligible.

When the message “apply” is sent to an oper-
ator object together with image objects as argu-
ments, new images are created as a result. Other

The

transitions in Fig. 1 can thus be programmed us-

operator objects exist for segmentation.

ing image objects, segmentation objects, and op-
erator objects.

For experiments, the operators (Sect. 5.2) are
encapsulated in processes which exchange persis-

tent objects. Persistent iwmroc-objects (in fact,

11

f Object \
(IP-OP)

Parameters
kDescription J
f Filter \

Characteristic
_2Pply)

f Linear \ f Non-Linear \
Conv. kernel

Fig. 5: Operator hierarchy for image processing

also the NIHCL objects) are created using meth-
ods for an XDR representation (Sect. 3.5) which
can also be used for process communication with
remote procedure calls (RPC). We call this for-
mat an external object format (xof, Tab. 1). Too
many image formats already exist; without need
no new scheme should be defined. In our case,
the combination of object—oriented programming
and 1mage processing clearly required such a defi-
nition. Images and other objects — like lines, re-
gions, segmentation objects — are represented us-
ing the same format. This again — as in the case
of operator classes — facilitates programming and
code reuse. For example, a display module can
read an arbitrary object from a file and display it
with the object’s method, no matter whether it
is a line or an image; new objects will be known
without change in the program source. The same

ideas lead to a proprietary format for the view

Reforamtted preprint of [47]

station (Sect. 4.7).
For applications, the operators can be linked
together to one process; then, no external com-

munication is required.

5.3 Knowledge Based Analysis

It is commonly agreed that image analysis has to
rely on knowledge about the particular task do-
main. Semantic nets are a general tool for knowl-
edge representation used in several image analy-
sis systems, e. g. [16, 44, 59]. A semantic net
formally is a labelled graph; nodes are concepts,
edges relate concepts to each other. The ERNEST
system [44] is a knowledge based system using se-
mantic nets which was applied in several image
analysis applications. Six types of edges are used
in ERNEST: concrete, specialization, part, refer-
ential, model, instance. Details can be found in
[44].

An object-oriented implementation of semantic
nets using the ideas of ERNEST has been realized
[71, 74]. The control algorithm (Fig. 2) may now
be either sequential or parallel [19]. The basic
idea is to provide abstract super—classes for con-
cepts, instances, and modified concepts (concepts
constrained by the current state of the analysis).
User defined concepts are translated to classes
from a formal language [48], which are derived
from those abstract classes. Analysis states are
defined as classes to provide an abstract interface
for the control module. Analysis can be defined
as the search for an optimal state sequence. The
control relies on judgement classes which asso-
ciate a distance measure from the goal with each

state during the analysis process.

5.4 Model Generation

Computer models for objects are also used in in-
CAD descriptions of intu-

itively simple parts may still have complicated

dustrial production.

structure. It may be a time consuming task to

create such models.

12

Fig. 6: Intermediate 3D line model of a polyhedral
object

Models for knowledge based image analysis
share the same problem. The goal thus has to
This is
the task for the model generation step (Fig. 1)

be to create the models automatically.

which results in a hierarchy of classes for models
[49, 72]. The result of an automatic generation of
a polyhedral model is shown in Fig. 6.

Imagine a system for the recognition of simple
3D geometric objects. Models for all kinds of such
objects will be needed, like a cube, a pyramid,
a cylinder, etc. [73] These descriptions can use
surfaces, vertices, lines, and relations. This com-
mon structure is described in the model scheme
(—classes) which has to be provided by the user
in the formal language (Sect. 5.3) describing a se-
mantic net. The actual model is generated from
a sample of images, where the relative positional
transformation of the camera from one image to
the next is roughly known [49, 72]. This can be
accomplished by an active change of the camera
position mounted on a robot [12]. The line-model
in Fig. 6 is computed from 3D lines [69, 73]; stereo
images [38, 51] or range images are segmented for
this purpose [29], both represented with the same
programming tools as segmentation objects. The
3D lines are integrated into one model; a final
model for polyhedral objects can be computed, if

planar surfaces are approximated. An extension

Reforamtted preprint of [47]

to polygons is described in [72].

Since models are generated from segmentation
data, automatic model generation insures that
models consist of descriptions which can be effec-
tively computed and matched against segmented
images. This approach shows how structural
properties of an object can be learned and rep-
resented explicitly. Another approach is to model
these properties statistically ([30], Sect. 6.2). Var-
ious modules of the object—oriented system inter-
act and exchange information for model genera-
tion. To mention some of them camera classes,
semantic network classes, and segmentation ob-

jects are used.

5.5 Active Vision

New constraints are imposed on the software
structure of image analysis systems by the new
active vision paradigm which is summarized in
[65]. Since many active vision techniques require
a feed back from analysis to low level process-
ing (Fig. 1), they have to operate in real time.
Changes in camera parameter settings — like a
change in the aperture of the lens or focus — are
a common active vision technique. Also, posi-
tional changes of the optical system are desired
which are accomplished if the camera is mounted
on a robot [12].

The implications for an object—oriented soft-
ware structure are straight forward. Since real
time processing is required, objects have to ex-
hibit clearly defined requests for resources, like
memory, time, or devices. Objects have to re-
lease all resources which are not used elsewhere
upon object destruction. The principles and
tools of object—oriented programming facilitate it
to obey to these strategic regulations. Devices
such as cameras or robots are needed as classes.
This provides mostly hardware independent ac-
cess. Machine independent software, of course,
increases software reusability which is crucial for
large software systems on rapidly changing hard-
ware platforms. If such a device is to be replaced,

the software interface should remain unchanged;

13

this is simplified by object—oriented programming
(Sect. 2.2).

The separation of algorithmic code for image
processing and analysis from the code which in-
terfaces to the operating system and to the dedi-
cated devices helps maintenance of the programs

by the modular structure.

6 Applications

We now demonstrate the flexibility of Animals
(Sect. 5).

tracking, and image analysis are also shown.

Experiments for object recognition,

In traditional programming, new problems are
solved with a combination of new and old func-
tions. In Animals, new classes and functions are

combined with existing ones.

6.1 Object Tracking

An experiment carried out under real time con-
straints is described in [12, 13, 14]. A moving
toy train is to be followed by a camera mounted
on a robot (overview in Fig. 7). Active vision
techniques are applied to reach this goal on two

standard Unix workstations in parallel.

Fig. 7: Robot (one arm in the front) and moving
object (toy train in the back)

A two stage object tracking module operates
in a closed loop of robot control and image pro-
cessing. In the first stage, the moving object is

detected in an overview image. The second stage

Reforamtted preprint of [47]

tracks the object in a region of interest which is
generated by an active change of the camera de-
vice object. The system changes the camera posi-
tion continuously, such that the moving object is
always in the center of the image. The interface
to the robot is available as a robot—object.
Selective processing on sub—image (—objects)
speeds up the computation. Snakes are used for
tracking and implemented as classes. Fig. 8 shows
a snake computed in the down-sampled sub-
image captured from the robot’s camera. Cur-
rent research incorporates object features such as
edges and straight lines into the computation of
the snake, resp. the minimization of the energy

function for the snake.

Fig. 8: Snake around the moving object

This application shows that real time con-
straints can coexist with general object—oriented
software tools and a modular system in which sep-
arate tasks are distributed to separate processes.
Currently, the speed of the system is limited by
the frame grabbing hardware, not by the image
processing software.

Active changes of the camera device are pro-
grammed on an abstract level. The same inter-
face is used for several different cameras and input

lines.

6.2 Statistical
tion

Object Recogni-

Statistical methods for object recognition are pre-
sented in [30, 32, 31]. In [32] we show the ad-
vantages and limitations of Hidden Markov Mod-

14

els (HMM) for 2D image analysis. The limita-
tions are mainly due to the prerequisite of HMM’s
which requires a linear sequence of input features.
This order has to be artificially superimposed to
affine invariant form features. A class hierarchy
for HMM’s was integrated into PUMA (speech
as well as image processing). The well known
algorithms for HMM’s like the Baum—Welch or
Viterbi—algorithm can be programmed in the base
class and are available for all special kinds of
HMM’s.

the other hand, existing matrix classes had to be

Again, code reuse is simplified. On

extended to include the mathematical operations
needed during the training phase. These opera-
tions are now available to all users of PUMA. The
HMM classes can be used in speech applications
as well as image analysis. Code reuse is provided
for different groups of programmers. Remarkably,
this goes hand in hand with personal communi-
cation and exchange of scientific ideas, not only

program code!

Fig. 9: Input image (some animals (1))

An input image for this image processing ap-
plication is shown in Fig. 9. Segmentation results
consisting of polygons which are used for the de-
tection of form features, are shown in Fig. 10.

In [31], the mathematical details of 3D statisti-
cal object recognition are explained; first results
are presented in [30]. In this approach, statistical

object models are represented as mixture density

Reforamtted preprint of [47]

15

nt

Fig. 11: Statistical object recognition (2D): image, segmentation objects of 2D points, and localized

object

Fig. 12: Statistical object recognition (3D): 2D image, segmentation objects of 2D points, and

localized 3D object

Fig. 10: Polygon segmentation result

functions which are parameterized regarding the
pose. Both, learning and localization of objects
is formalized as a maximum-likelihood problem.
Results for 2D can be seen in Fig. 11. The cen-

ter image shows a segmentation object consisting

of vertices which are special cases of segmentation
objects consisting of a point and a set of intersect-
ing lines. 3D statistical object models are gener-
ated from different aspects of an object captured
with a calibrated camera on a robot ([2]). Input
and results of 3D object recognition are shown in
Fig. 12.

Similar to the operator hierarchy, optimization
is programmed as a hierarchy of classes. Strate-
gies for object recognition reference the abstract
interface in the base class and can be simply
exchanged — even dynamically during runtime.
Extensibility of the system is facilitated as well.
Computation time depends on the complexity of
the scene and on the number of features. In the
2D case they vary from 10 seconds up to 180 sec-

onds, in the 3D case they are around 90 seconds.

Reforamtted preprint of [47]

7 Efficiency

The applications in Sect. 6 together with several
other programs are now used to judge the use of

object—oriented programming for image analysis.

7.1 Code Size

Object—oriented programming does generally not
reduce the lines of code compared to conventional
implementations. The number of functions is
clearly reduced and replaced by classes and meth-

ods.

than functions in conventional solutions.

The number of methods tends to be larger
Since
the method definitions are bundled by classes,
they are mostly better documented.

In traditional systems, programmers define
only those functions which are actually needed.
Class designers tend to provide a complete inter-
face; often they can be forced to do so by abstract
base classes which require the redefinition of cer-
tain methods. This tendency increases the num-
ber of code lines but clearly enhances reusabil-
ity by a broader range of possible applications.
To give an example from ixros, the method for
rotating geometric objects is declared in the ab-
stract base class and passed to all derived classes
by inheritance; this method was required only
in few applications, resp. classes; all the other
classes just inherit the interface and can define
the method, if needed.

The design goal of modularity is almost guar-
anteed by the use of classes. The average number
of methods in 98 important 7rros classes is 8.1;
only those methods which are not required by NI-
HCL are counted. The number of code lines per
method does not exceed the length of a page.

A comparison of the conventional implemen-
tation of ERNEST and the new object—oriented
implementation outlined in Sect. 5.4 shows a re-
duction of about 50% for the new system [70].

7.2 Memory Requirements

Object—oriented programming in C++ clearly in-

The

creases the size of the running programs.

16

use of flexible tools like NIHCL will always result
in the problem that code will be included in the
executable program which will not be needed in
the particular application. Due to the principal
undecidability of the problem whether a function
will be actually called in a program, the linker
will have to include some virtual functions which
will not be actually called in the execution of the
application. For experimental system, dynamic
link libraries (shared libraries) partially circum-
vent this problem. For real applications, the user
may of course manually select only those func-
tions and libraries for the linker which will actu-
ally be used. On the other hand, the increase of
the executable’s size is relatively small compared
to the absolute size, especially if graphics routines
are used.

Typical program size for a single operator in
Animals is 420 KByte (e.g. a Sobel operator)
when static libraries for NIHCL are used. When
several operators are combined into one program,
or when additional objects are required, the size
increases only little. For example, a program
using the camera object and applying either a
Sobel operator or another edge detector and a
line tracking algorithm on the captured image
has around 600 KByte. For comparison, dynamic
linkage of a simple program with X11 results in a

minimum of 600 KByte for a program.

7.3 Run Times

As mentioned in Sect. 6.1, Animals can be used
in real time applications [12]. This is one of the
ultimate goals of image analysis in today’s sys-
tems. Time consuming low—level operations can
run with zero overhead after some precaution on
the matrix classes.

Efficiency is one of the design goals for the op-
erator hierarchy (Sect. 5.2). No measurable dif-
ference in run time behavior could be observed in
the comparison of operator objects and function
calls.

Actual limitations in real time processing re-

sult from limitations of the hardware, not from

Reforamtted preprint of [47]

the software. It is still difficult to get a color im-
age of reasonable size (512%) into main memory
in video rate (25 Hz), and simultaneously have a
low load on the CPU. This would enable active

vision techniques to process images selectively.

7.4 Software Life Cycle

All source code in Animals is under revision con-
trol. Using the versioned files, the following esti-
mations were possible, using chain code classes as
an example. The class Chain for chain code rep-
resentation of lines was initially specified in 1988:;
a student’s theses was finished on this topic in
1989 [45]. By that time, this class was already
being used by several applications. The software
was almost unchanged until 1992, when a com-
plete redesign of the internals was done in order
to maximize run time efficiency. Existing soft-
ware which only uses the class did not have to
be changed, except for few (mechanical) substitu-
tions. In 1993, the irmos—hierarchy was restruc-
tured and the OOPS software was substituted by
its successor NIHCL [25]. Around 120 classes had
to be adapted to the new package; the work re-
quired was about 0.4 man years for the complete
change. This example demonstrates how essential
parts of a software system are still usable after 6
years; this is unusual in a continuously changing
and expanding system with several dozens of im-
plementors. This is mostly due to object—oriented
programming.

The history of Animals also revealed how
strategic decisions for object—oriented software
design can influence software maintenance con-
siderably. In 1989, we decided to extend OOPS
with machine independent binary storage facili-
ties which are essential for image processing in a
distributed environment. We did so by a modifi-
cation of the OOPS source code. These changes
were of course lost when the NIHCL update ar-
rived. For NIHCL, we also provided machine in-
dependent binary storage; now we used inheri-
tance from existing NIHCL classes. We had to

sacrifice a little runtime efficiency but no changes

17

of the distributed source code were required, i.e.,
a further update will no longer require changes of

the own interfaces.

& Conclusion and Outlook

Object—oriented programming is now an estab-
lished tool for image processing and analysis. It
is no longer a research item of its own as it was in
[46] or [22]. The number of C++ applications for
image processing is large. An increasing number
of tools for object—oriented programming will be
available as class libraries. These can be reused
in image processing when new classes are derived
from image processing classes and tool classes by
multiple inheritance.

We presented a system for image analysis which
makes extensive use of object—oriented program-
ming. The general framework is provided in an
environment for pattern analysis (PUMA) which
is useful for image and speech analysis and con-
tains the object—oriented implementation of a se-
mantic network. Data for image processing is
represented in 7rros classes. An image analysis
system (Animals) uses operator classes to com-
pute data represented in inros. We showed that
this framework can be successfully applied to real
world problems, including 3D and real time pro-

cessing.

Acknowledgements
The authors wish to express their thanks to the

members of the image processing group of the
chair and of the “Forschungszentrum fiir Wissens-
basierte Systeme, Erlangen” for their ideas and
software contributions to the system.

SUN & HP are trademarks of SUN microsys-
tems resp. Hewlett Packard.

References
[1] R. B. Arps and W. K. Pratt, editors. Image

Processing and Interchange: Implementation
and Systems, San Jose, CA, 1992. SPIE,
SPIE Proceedings 1659.

Reforamtted preprint of [47]

2]

[10]

[11]

[12]

R. Bes.
monokularen Kamera zur Tiefengewinnung
aus Bildfolgen. In W. G. Kropatsch and
H. Bischof, editors,
erkennung 1994, volume 5 of Informatik
pages 524 — 531, 1994.

Kalibrierung einer beweglichen,

Tagungsband Muster-
Xpress, Berlin,
Springer.

G.M. Birtwistle, O. Dahl, B. Myrhang, and
K. Nygaard. Simula Begin. Auerbach Publ.
Inc., Philadelphia, PA, 1983.

Ch. Blum. Design principles and applica-
tions of ISO/IEC’s image interchange facility
(ITF). In ImageCom Conferenc, pages 160-
165, Bordeaux, 1993.

Ch. Blum and G. R. Hofmann. ISO/IEC’s
image interchange facility (IIF). In Arps and
Pratt [1], pages 117-129.

T. Butler and P. Krolak. An overview of the
Programmer’s Imaging Kernel System (PIK)
proposed standard. Computers and Graph-
ics, 15(4):465-472, 1991.

[. C. Carlsen and D. Haaks. IKSPFH
concept and implementation of an object—
oriented framework for image processing.

Computers and Graphics, 15(4):473-482,

1991.
A. F. Clark. An international standard for
image processing and interchange. PAMI
Technical Committee Newsletter, 14:5-6,
1991.
A. F. Clark. Image processing and inter-

change — the imaging model. In Arps and
Pratt [1], pages 106-116.

P. Coad and E. Yourdon. Object-oriented
analysis. Prentice Hall, Englewood Cliffs,
NJ, 274 edition, 1991.

B.J. Cox.
An Evolutionary Approach. Addison-Wesley,
Reading, MA, 1986.

J. Denzler, R. Befl J. Hornegger, H. Nie-

mann, and D. Paulus. Learning, tracking and

Object oriented Programming /

recognition of 3D objects. In V. Graetfe, ed-
itor, International Conference on Intelligent
Robots and Systems — Advanced Robotic Sys-

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

18

tems and Real World, volume 1, pages 89-96,
1994.

J. Denzler and H. Niemann. A two-stage real
time object tracking system. In Pavesi¢ et al.
[54].

J. Denzler and D. W. R Paulus. Active
motion detection and object tracking.
ICIP 94 [33], pages 635-639.

M.R. Dobie and P.H. Lewis. Data structures
for image processing in C. Pattern Recogni-
tion Letters, 12:457-466, 1991.

W. Eckstein, G. Lohmann, U. Meyer—Gruhl,
R. Riemer, L. Altamirano Robler,
J. Wunderwald. Beuntzerfreundliche Bil-
danalyse mit HORUS: Architektur und
Konzepte. In S. J. Péppl and H. Handels,
editors, Mustererkennung 1993, pages 332—
339, Berlin, 1993. Springer.

G. Enderle, K. Kansy, and G. Pfaff. Com-
puter Graphics Programming, GKS: The
Graphic Standard. Springer, Berlin, 1984.

H. Faasch. Konzeption und Implementation

In

and

einer objektorientierten Experimentierumge-
bung fiir die Bildfolgenauswertung in ADA.
PhD thesis, Hamburg, 1987.

V. Fischer.

semantischen

Parallelverarbeitung in einem
Netzwerk fiir die wissens-
basierte Musteranalyse. Technical report,
Dissertation, Technische Fakultidt, Univer-
sitdt Erlangen—Nirnberg, Erlangen, 1995.

D. Le Gall.

standard for multimedia applications. Com-

MPEG: A video compression

munications of the Assoctation for Comput-
ing Machinery, 34(4):47-58, April 1991.

P. Gemmar and G. Hofele. Empfehlung
fir ein Ikonisches Kernsystem [KS. FIM
Informationsverarbeitung und Mustererken-
nung), Karlsruhe, 1989. with contributions
of: L. Dreschler-Fischer, H. Faasch, D. Haaks
und D. Paulus, .

P. Gemmar and G. Hofele. An object ori-
ented approach for an iconic kernel system
IKS. In ICPR 90 [34], pages 85-90.

P. Gemmar and G. Hofele.

Design of an

Reforamtted preprint of [47]

[24]

[25]

[27]

28]

[29]

31]

32]

33]

iconic kernel system. Computers and Graph-
ics, 15(4):483-493, 1991.

A. Goldberg and D. Robson. Smalltalk-
80: The Language and its Implementation.
Addison-Wesley, Reading, MA, 1983.

K. E. Gorlen, S. Orlow, and P. S. Plexico.
Data Abstraction and Object—Oriented Pro-
gramming in C++. John Wiley and Sons,
Chichester, 1990.

A. R. Hanson and E. M. Riseman, editors.
Computer Vision Systems. Academic Press,
New York, 1978.

A. R. Hanson and E. M. Riseman. VISIONS:
A computer system for interpreting scenes.
[26], pages 303-333.

R. M. Haralick and V. Ramesh. Image un-
derstanding environment. In Arps and Pratt
[1], pages 159-167.

M. Harbeck. Objektorientierte linienbasierte
IMMD 5

(Mustererkennung), Universitdt Erlangen—

Segmentierung . Dissertation,
Niirnberg, Erlangen, 1996.

J. Hornegger and H. Niemann. A Bayesian
approach to learn and classity 3-D objects
from intensity images. In Proceedings of
the 12 International Conference on Pat-
tern Recognition (ICPR), pages 557-559,
Jerusalem, October 1994. IEEE Computer
Society Press.

J. Hornegger and H. Niemann. The missing
information principle in computer vision. In
Pavesi¢ et al. [54], pages 113-126.

J. Hornegger, H. Niemann, D. W. R. Paulus,
and G. Schlottke. Object recognition using
hidden Markov models. In E. S. Gelsema and
L. N. Kanal, editors, Pattern Recognition in
Practice IV: Multiple Paradigms, Compara-
tive Studies and Hybrid Systems, volume 16
of Machine Intelligence and Pattern Recog-
nition, pages 37-44, Amsterdam, June 1994.
Elsevier.

Proceedings of the International Conference
on Image Processing (ICIP), Austin, TX,
USA, November 1994. IEEE Computer So-

[34]

[35]

37]

38]

[44]

19

ciety Press.
Proceedings of the 10 International Con-
ference on Pattern Recognition (ICPR), vol-
ume 2, Atlantic City, 1990. IEEE Computer
Society Press.

S. Impedovo, editor. Progress in Image
Analysis and Processing 111, Proceedings 7"
International Conference on Image Analysis
and Processing, Bari, Italy, 1994. World Sci-
entific.

International standard 12087, image process-
ing and interchange. Technical report, Inter-
national Standards Organization, Genf, CH,
to appear 1994.

T. Kawai, H. Okazaki, K. Tanaka, and
H. Tamura. VIEW-station software and its
graphical user interface. In Arps and Pratt
[1], pages 311-323.

P. Koller.

from color—stereo—images by ’simulated an-

Computation of range images

nealing’. In Pavesic¢ et al. [53], pages 119-
130.

P. Levi. Tkonisches Kernsystem. Robotersys-
teme, 1:172-178, 1985.

M. A. Linton, J. M. Vlissides, and R. P.
Calder. Composing user interfaces with In-
terViews. IEEE Computer, pages 8-22, 1989.
J. Mundy, T. Binford, T. Boult, A. Han-
son, R. Veveridge, R. Haralick, V. Ramesh,
C. Kohl, D. Lawton, D. Morgan, K Price,
and T. Strat. The image understanding en-
vironments program. In Proc. of the DARPA
Image Understanding Workshop, pages 185—
214, Hawaii, Jan. 1992.

H. Niemann. Pattern Analysis and Under-
standing. Springer, Heidelberg, 1990.
Interpretation of image se-
In W. Zamojski and D. Caban,

editors, Proceedings of the 5" school com-

H. Niemann.

quences.

puter vision and graphics, pages 57-72. Univ.
Wroclaw, Wroctaw, 1994.

H. Niemann, G. Sagerer, S. Schroder, and
Ernest: A semantic network

IEEE

F. Kummert.

system for pattern understanding.

Reforamtted preprint of [47]

[45]

[48]

[49]

[50]

[51]

[52]

[54]

Transactions on Pattern Analysis and Ma-
chine Intelligence (PAMI), 9:883-905, 1990.
M. Oestreich. Linien als Objekte fiir die
Bildverarbeitung. Student’s thesis, IMMD
5 (Mustererkennung), Universitit Erlangen—
Niirnberg, Erlangen, 1988.

D. Paulus.
basierte Bildverarbeitung
based
Vieweg, Braunschweig, 1992.

D. Paulus Object—

oriented programming for image analysis. In

Objektorientierte und wissens-
“Object-oriented
tmage

and knowledge Processing.

and H. Niemann.

J. Menon, editor, Current Topics of Pattern
Recognition Research, volume 1 of Research
Trends, pages 185-204. India, 1994.

D. Paulus, A. Winzen, F. Gallwitz, and
H. Niemann. Object—oriented knowledge
representation for image analysis. In Pavesic
et al. [h4], pages 37-54.

D. Paulus, A. Winzen, and H. Niemann.
Knowlege based object recognition and
model generation. In Donald W. Braggins,
editor, Proceedings Europto 93, Computer
Vision for Industry, Minchen, pages 382—
393, Bellingham, WA, 1993. SPIE, SPIE.
Proceedings 1659.

D. W. R. Paulus. Object oriented image seg-
mentation. In Proc. of the 4 Int. Conf. on
Image Processing and its Applications, pages
482-485, Maastrich, Holland, 1992.

D. W. R. Paulus.
analysis. In Pavesi¢ et al. [53], pages 131-
150.

D. W. R. Paulus and H. Niemann. Iconic—
symbolic interfaces. In Arps and Pratt [1],
pages 204-214.

N. Pavesi¢, H. Niemann, and D. Paulus, ed-

Object—oriented stereo

itors. Proceedings of the German—Slowenian
Workshop on Image Processing and Stereo—
Analysis. Arbeitsberichte des IMMD der
Universitat Erlangen—-Niirnberg, Band 26/1,
Erlangen, 1993.

N. Pavesi¢, H. Niemann, D. Paulus, and

3-D Scene Acquisi-

S. Kovaci¢, editors.

[58]

[59]

[60]

[61]

[63]

[64]

20

tion, Modeling and Understanding, Proceed-
ings of the Second German—Slovenian Work-
shop, Ljubljana, Slovenia, June 1994. IEEE
Slovenia Section.

C. A. Poynoton. An overview of TIFF 5.0.
In Arps and Pratt [1], pages 150-158.

W. K. Pratt. Overview of the ISO/ICE pro-
grammer’s imaging kernel system applica-
tion program interface. In Arps and Pratt
[1], pages 117-129.

W. H. Press, B. P. Flannery, S. A. Teukolsky,
and W. T. Vetterling. Numerical Recipes in
C — The Art of Scientific Computing. Cam-
bridge University Press, New York, 1990.

J. R. Rasure and M. Young. Open environ-
ment for image processing and software de-
velopment. In Arps and Pratt [1], pages 300
310.

E.M. Riseman and A.R. Hanson. A
methodolgy for the development of gen-
eral knowledge—based vision systems. In
C. Torras, editor, Computer Vision, The-
ory and Industrial Applications, pages 293—
336. Springer, Berlin, Heidelberg, New York,
1992.

Markku Sakkinen. On the darker side of
C++. In Object-Oriented Programming Sys-
tems, Languages and Applications, pages
162-176. ACM Press, 1988. Conference Pro-
ceedings OOPSLA.

H. Sato, H. Okazaki, T. Kawai, H. Ya-
mamoto, and H. Tamura. The view-
station environment: Tools and architecture
for a platform-independent image-processing
workstation. In ICPR 90 [34], pages 576-583.
S. Schroder.
werbkomponente in eine Systemumgebung
fir die Musteranalyse. Reihe 10: Infor-
matik / Kommunikationstechnik. VDI Ver-
lag, Diisseldort, 1990.

B. Stroustrup. The C++ Programming Lan-
guage. Addison-Wesley, Reading, Mass., 2"
edition, 1991.

Sun OS5 4 Manuals, Network Programming,

Integration einer Wissenser-

Reforamtted preprint of [47]

[68]

[69]

[70]

[74]

Part 2, Mountain View, CA. RPC eXter-
nal Data Representation Standard: Protocol
Specification, Revision B, 1986.

M.J. Swain and M. Stricker. Promising di-
rections in active vision. Technical Report
CS 91-27, University of Chicago, 1991.

H. Tamura et al. Design and implementation
of spider - a transportable image processing
software package. Computer Vision, Graph-
ics and Image Processing, 23:273-294, 1983.
G. Wallace. Overview of the JPEG
(ISO/CCITT) still image compression stan-
dard. In FElectronic Image Science and
Technology, pages 97-108. SPIE Proceedings
1244, Santa Clara, CA, Feb. 1990.

T. D. Williams and R. R. Kohler. Environ-
ment for image understanding development.
In Arps and Pratt [1], pages 341-349.

A. Winzen. Efficient methods for hypoth-
esis verification paradigms. In Proceedings
of the 11** International Conference on Pal-
tern Recognition (ICPR), pages 558-561,
The Hague, Netherlands, August 1992. IEEE
Computer Society Press.

A. Winzen. Automatische Erzeugung drei-
dimensionaler Modelle fiir Bildanalysesys-
teme. Technical report, Dissertation, IMMD
5 (Mustererkennung), Universitit Erlangen—
Niirnberg, Erlangen, 1994.

A. Winzen. Matching of 3D-lines for auto-
matic model-generation. In Impedovo [35],
pages 607-614.

A. Winzen and H. Niemann. Matching
and fusing 3d—polygonal approximations for
model-generation. In ICIP 94 [33], pages
228-232.

A. Winzen and H. Niemann. Automatic
model-generation for image analysis. In
W. Strasser and F. Wahl, editors, Graphics
& Robotics. Springer, Berlin, to appear 1994.
A. Winzen, D. Paulus, H. Niemann, and
V. Fischer. Semantische Netze tiir die Bild-
analyse: Objektorientierte Realisierung mit
paralleler Kontrolle. In H. Wedekind, editor,

21

Verteilte Systeme, pages 371-386. BI Wis-
senschaftsverlag, Mannheim, 1994.

