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Abstract

In this paper we outline a system to search and clas-
sify objects in an unknown environment. As a first
step towards this goal a dense depth map of the com-
plete object surface is computed by use of a stereo ap-
proach adapted to monocular color image sequences.
The resulting depth data of the stereo algorithm are
input of the judgement, registration and fusion step
described in this paper.

After judging the depth values and removing the
poor ones we use common lines of sight to identify
depth values in consecutive depth images which refer
to the same 3D—point. This allows to compute the
registering transformation directly, no matching step
of the 3D—data is necessary. Advantages of this new
approach are the independence of the registration
step from accuracy in calibration and the possibility
to register depth images containing only depth values
of a single plane.

In the fusion step a 3D accumulator is used to com-
bine depth values belonging to the same 3D-point. In
this step we integrate filtering of neighboring depth
values to restrict surface resolution and data size to
the maximal resolution of the resulting complete 3D
map of the object surface. This enables an extremely
efficient evaluation of the depth images.

The algorithms described in this paper allow to
overcome relatively inaccurate calibration and to
compute 3D data from monocular image sequences
by passive stereo approaches without placing a cali-
bration pattern in the scene.

Keywords: stereo vision, monocular image se-
quence, dense depth map, multiple views, 3D recon-
struction

1 Introduction

One of the challenging goals in computer vision is to
search and classify objects actively in an unknown
environment. A wide range of application would be
opened by achieving this goal, including but not re-
stricted to assistance of handicapped people, house-
hold robots and repairing of machines.

Many real world objects are clearly determined
solely by their geometric properties. For this reason
the three-dimensional form is an important source of
characteristic information on an object and enables a
reliable classification of a wide range of object types.

The goal of the system outlined in this paper is to



set up a system to compute a complete dense depth
map of the surface of an object without changing
the environment and thus acquiring full information
about the form of an object for use in classification
and searching.

Traditionally there are two classes of approaches
for depth computation: active and passive [Nie90].
While active approaches influence the environment
in which they work, for instance by projecting pat-
terned light onto the scene or by use of laser beams in
a laser range finder, passive approaches place only a
sensor in the scene to acquire visual information. Ex-
amples for passive approaches are stereo algorithms
and depth from X approaches, where X can be re-
placed by motion, shading, texture, focus or defocus.

It is true that in different types of invasive ap-
proaches a passive sensor is used, but the environ-
ment is changed by placing the object into a special
setup. For example in [SF95] the object is placed
on a turn table to achieve the conditions in accuracy
required and in many photogrammetric approaches
a calibration rig is build up around the object to de-
termine the transformation between all images of an
image sequence [LGUM94].

Active approaches and approaches where the en-
vironment of an object has to be changed are in the
following referred as invasive approaches to enhance
the difference to active vision approaches, where for
instance the camera is moved to get new views but
the scene itself is not changed. Since the system is
to be used in a natural environment without assis-
tance of a human operator the type of the approach
is restricted from the outset to a non invasive one.

In the class of non invasive approaches some are
restricted either to special surface types or can de-
termine depth only while no depth discontinuities
occur, e.g. shape from texture, shape from shad-
ing or shape from focus and shape from defocus.
In contrast with these restrictions stereo approaches
can be used on a wide range of object forms and
surface types [DA89] [Fua93]. With known motion
stereo approaches are in principle applicable directly
to monocular image sequences. The advantage of a
stereo approach over shape from motion algorithms
is the much lower number of images necessary to
compute the complete surface of an object. Since
matching in case of unknown camera position re-
quires a very low displacement between consecutive
images shape from motion algorithms typically need
more than 500 images compared to 40 for a stereo
approach.

This leads to the conclusion that a stereo approach

on monocular image sequences is best suited to en-
able depth computation in the described environ-
ment.

The main problem preventing the use of stereo in
monocular image sequences up to now was the lack
of a calibration problem causing inaccurate depth
measurements. So the question addressed in this ar-
ticle is: How should we judge and combine inaccu-
rate depth information obtained from different im-
age pairs? This problem is split into three parts:
Measuring the quality of depth information to skip
erroneous values (judgement), computing the trans-
formation between depth images each obtained from
a pair of images (registration) and combining depth
images when the transformation is known (fusion).

According to the task the paper is organized as fol-
lows: After the introduction the experimental setup
and system structure is outlined. The main part is
divided in three sections: computation and judge-
ment of depth, registering depth images and fus-
ing depth values. The first of these sections (Sec-
tion 3) deals with the calculation of depth values and
the quality measure derived from the approach used.
The second (Section 4) describes the measurement of
the transformation between depth images resulting
from different stereo image pairs. The third (Sec-
tion 5) explains the fusion of depth values belonging
to the same world point. Finally, experiments and
results are presented.

2 Experimental
System Design

Setup and

The setup for searching in an unknown environment
has to comply with several preconditions. To search
actively for an object requires to alter the view and
thus to change the camera position. In our experi-
mental environment a monocular camera is mounted
to the hand of a robot. So arbitrary movements of
the camera within the working space of the robot are
possible. This allows to take images of an object from
different viewing angles. A fixed stereo camera is su-
pervising the scene to detect interesting objects and
thus enables the determination of hypotheses about
the location of an object specifying the starting po-
sition for the monocular camera. Figure 1 is showing
this setup.

The system structure is designed to interact ac-
tively with the environment based on sensor data.
For this purpose three feedback loops are coupled.
The innermost feedback loop deals with data driven
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Figure 1: Setup showing the stereo camera super-
vising the scene and the robot with the monocular
camera exploring one object

computation of depth data of an object, the task
we concentrate on in this paper. The middle gives
a classification result about the type and orientation
of the object under consideration based on the depth
data. The outermost is making hypotheses about the
position of the object wanted. It is broken when the
correct object is found.

Figure 2 gives an overview on the depth computa-
tion loop. First the monocular camera is moved to
an initial position relative to an interesting object.
Within the loop (Figure 2) a collision free path to
the next camera position is determined, the camera
is moved to this position and the exact position is
measured. A depth image of the viewed object sur-
face is computed with each two images, the depth im-
ages from different views are judged and integrated
into a common depth map. After that the loop is
starting again. The loop is broken either when a
predefined number of images is taken or when the
accuracy and completeness of the depth map exceeds
a predefined value. The calibration, path planning
and stereo algorithms are described more detailed in
[Bef94, BPN96]. The next section is giving a brief
overview as detailed as necessary for the explanation
of the judgement, registration and fusion steps.

3 Depth Computation and
Judgement

As mentioned in the introduction a passive stereo
approach is best suited for active vision tasks in an
unknown environment. Since we have only one mov-
ing camera the direct use of stereo algorithms is not
possible. To adapt stereo algorithms to this setup
the camera has to be calibrated and a robust match-
ing step has to be developed dealing with the in-
accuracies of calibration and intensity changes due
to time and angular differences between consecutive
images. For each image in a sequence the camera
position is measured by the robot [Bef94], where
a gripper—camera—calibration from Lenz and Tsai
[TL88] is used to determine the camera position in
a global coordinate system. The known camera po-
sition enables a combined feature— and correlation—
based stereo approach. Thus a dense depth image
is computed from each two color images recorded by
the monocular camera [BPN96]. Each of this depth
images contains depth information on one view of
the object.

Since the camera position is known for each im-
age, it is possible to determine depth from all images
directly in a global coordinate system, without reg-
istering or fusion. But inaccuracies in the measure-
ments of the camera position lead to a translation
error in the relative position of two depth images
up to 25 mm, with an average of 6.47 mm. The
approach described in the subsequent sections is in-
dependent from this error, allowing to compute the
transformation between the depth images very fast
and accurate.

Before registration and fusion depth values are
judged and erroneous ones are eliminated since the
error would be propagated into the resulting depth
map. Four parameters influencing the reliability of
depth values are taken into consideration:

1. The distance range relative to the camera.

2. The depth difference of a depth value to its
neighbors.

3. The inclination of a surface patch towards the
optical axis.

4. The common area between consecutive depth
images.

The first three parameters are motivated by the
stereo approach used for depth computation. Its re-
sult — a partial dense depth map — is the input
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Figure 2: Depth computation loop

for the combined feature and correlation based ap-
proach. The depth map is partial, because depth
cannot be computed within homogeneous or oc-
cluded regions.

The camera must be as close as possible to the ob-
ject to move the camera around it. Therefore the
focus of the camera is adjusted to about 220 mm.
The distance range relative to the camera is given
by the depth of focus, the range where the object
surface can be obtained without blurring. Outside
this interval neither the edges necessary for the fea-
ture based matching step nor the correlation for the
block matching step can be determined reliably.

The depth difference of a depth value to its neigh-
bors allows the detection of outliers. Since depth
computation is based on a block matching step, it
is not possible to determine reliable depth values
for surface patches which are smaller than a quarter
of the block size. Therefore single depth values are
judged by viewing the differences to the four neigh-
boring values. If the difference against three of the
four neighbors in a 4—neighborhood exceeds a thresh-
old, the value is considered an outlier and rejected.

The restriction of the inclination of a surface patch
towards the optical axis is necessary because a sur-
face patch which is parallel or nearly parallel to the
optical axis can not be measured reliably. One of the
reasons is that such surfaces are often occluded in one
of the two stereo images. Another reason is that the
breadth of the edges decreases with decreasing in-
clination resulting in errors during feature detection
and feature based matching. Therefore when the dif-
ference to one neighbor in an 8-neighborhood with
distance n implies an inclination towards the optical
axis above 60 degrees the value is rejected. The dis-
tance n must be chosen as a function of the depth res-
olution d, and the resolution parallel to the z—axis of
the depth image d,. The result of arctan(d,/(nd,;))

> 60°
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Figure 3: Minimal possible inclination at a depth
change against a neighbor with distance two (en-
hanced line left) and distance one (enhanced line
right)

must be below the threshold of 60 degrees, otherwise
the least possible depth change would cause the rejec-
tion of the values at the border. Figure 3 illustrates
this relation.

The common area between consecutive depth im-
ages is measured after elimination of single erroneous
depth values. A minimum size of this area is on the
one hand necessary to ensure that the the number
of common depth values is high enough to registrate
the images. On the other hand this parameter al-
lows to detect depth images with unusable quality.
This typically occurs when the angular difference be-
tween two views is too high and the object is regular
shaped and textured. If the object has several differ-
ent surface patches with similar texture and shape
the occlusion caused by the angular change leads to



Figure 4: schematic example for a stereo image pair
causing erroneous matches. The enhanced boxes
show the visible part of the object in the right and
left stereo image.

a completely wrong matching, leaving only surfaces
with high inclinations or depth values outside the
admissible distance range. A schematic example is
shown in Figure 4. In both of the stereo images three
stripes are visible but due to occlusion only one of
them belongs to the same object surface patch.

4 Registering Depth Images

As mentioned in the introduction we have to over-
come an error of up to 25 mm in the relative position
of two depth images. Therefore it is insufficient to
compose the depth data in a common coordinate sys-
tem without further processing, although this would
be possible by use of the known position of the stereo
images relative to each other.

An usual approach to register overlapping depth
images is to formulate it as an optimization problem:
a transformation between each two depth images is
searched which minimizes the error between overlap-
ping regions [Kar93]. For this purpose a matching
step has to be performed on the depth images iden-
tifying depth data which belong to the same 3D—
point. This approach is not sufficient with the pas-
sive stereo approach used to determine the depth im-
ages. The noise is much higher and the resolution
is lower than in active stereo approaches like those
used there [Wah86, HR93]. Furthermore, if only one
planar surface can be matched, the transformation
between two depth images is not unique, the rota-
tion around the normal of the planar surface and
the translation parallel to it can not be determined.
Due to the restrictions of the passive stereo approach
this is likely to happen when used on simple regular
workpieces like those build from rectangular paral-
lelepipeds. In the worst case the image plane will be

parallel to one side of the parallelepiped and since
the angular difference between two consecutive views
is less than 21°, the angular difference between the
second view and any of the other sides will be more
than 60°.

In general: Be § the maximal inclination towards
the image plane where a surface patch can be deter-
mined reliable (here 60°) and be a the angle between
the optical axes in the two views of a stereo image
pair. If § + a < € where epsilon is the minimal angle
between one surface patch and any adjacent patch,
then in the worst case depth can only be determined
for this surface patch.

To overcome these problems we identify points in
each two stereo images which belong to the same real
3D points instead of matching the 3D data. If we
know that two image points in two different stereo
images are projections of the same 3D point we also
know that the two 3D positions computed from the
image points must be equal. So we have to search
for a transformation establishing the real relation be-
tween the depth maps.

We use the constraint that every image is part of at
least two stereo images. The conversion of an image
to a normalized stereo image is defined by a partial,
bijective mapping of the coordinates from the image
to the stereo image, partial, because the image sec-
tion in general is slightly changing causing undefined
regions in the normalized stereo image (see Figure 5).
An image which is part of two stereo images thus de-
fines a partial mapping between the coordinates of
both stereo images. Since every image coordinate
corresponds to a line of sight and every line of sight
corresponds to one particular 3D-point for opaque
objects — and only such are viewed — a mapping is
established between equal depth values of two depth
images.

This is illustrated in Figure 6, where * f denotes
the k-th image in an image sequence and *! f a stereo
image pair computed from the images * f and ! f.

By use of this relation which is independent of the
calibration accuracy, a system of equations can be
formulated to compute the transformation between
the depth images. In the following the equations
defining this transformation are given.

4.1 Notation

As noted above * f stands for the k-th image in an
image sequence. Consequently upper left indices in-
dicate the coordinate system of a vector: ¥p denotes
a point in the coordinate system of image *f. Lower



Figure 5: Two raw images (top) and corresponding
normalized stereo image (bottom). Black areas are
undefined.

left indices are used as labels for special points as o,
which signifies the origin of the coordinate system of
kf. So'lo = (z,y,2)T is the origin of image *f in
coordinate system of 'f. Upper right and left indices
are used as usual either as mathematical operation
indices (p”, R~ ') or as positional information in a
vector or sequence (pg, p;)-

A vector in the normalized imagg\coordi—

nate system i,(m) is denoted by bL(Mp =

(Bmp,_ l'(m)py, LM)p ). Where [, (m) indicates that
this coordinate system refers to a stereo image pair
computed from the images 'f and ™f, the brackets
around m indicate that I, (m) refers to the coordinate
system of the image computed from f and finally the
hat above (7) indicates that the stereo image is nor-
malized.

4.2 Transformation between raw im-
age and normalized stereo image

In a normalized stereo image pair the axes of the
two image coordinate systems are collinear and di-
rected equally, the z-axes are positioned on the same
straight line. Therefore the epipolar line of one im-
age point is intersecting the image planes of the two
stereo images in the same image scan line. This sim-
plifies the matching step and leads to a very simple
relation between disparity and depth. The relation
between the coordinate systems of the raw images
and the normalized stereo image pair is shown in
Figure 7, where L is a short form of ,(m) and M a
short form of (i),m denoting the normalized images

Figure 6: Common lines of sight. 'l is intersecting

k,lf’ lf and l,mf_

computed from ‘f and ™f respectively belonging to
the stereo image pair "™f.

The parameters necessary to compute the relation
between the normalized stereo image pair and the
raw images are computed by the following steps:

e The internal camera parameters are determined
by camera calibration [Pos90, Tsa86, Len87,
BeB94]. Internal parameters are the focal length
f, the distortion coefficients k1, k2, the pixel size
8z, 8y and the principal point (C,C,)T. These
parameters do not change within an image se-
quence.

e The external camera parameters are determined
from the robot position measurements by a grip-
per — camera — calibration [TL88, Bef94]. The
external parameters define the camera position
in the world coordinate system, given by the po-
sition of the optical centers }"0, 1,0 and the ro-
tation matrices ¥ R; and ¥ R,, of the images 'f
and ™f in the world coordinate system w.

e The transformation matrices into normalized
stereo images LR, and MR,, are computed from
the camera position of the images 'f and ™f ac-
cording to [Pos90].

With these parameters the following equations
define the transformation between the normalized
stereo image pair ¥ f consisting of »("™) f and ()™ f
and the raw images 'f and ™f :



Figure 7: Relation between raw images and normal-
ized stereo image pair

First pinhole coordinates (IL,X,IL,Y) are computed

from the computer coordinates (X X,LY). ( Upper-
case letters like (X, Y) denote 2D—coordinates in
the image plane, while lower—case letters (z, y, z)
are standing for 3D—coordinates).

I Ly _
(5)-(Few) o
D Y (c Y - Cy)‘sy
The pinhole coordinates are mapped to 3D-
coordinates in the image coordinate system of 'f.

iz p-1 ’/E\X
y | ="R Ly (2)
L, Pf

The 3D—coordinates are projected into the image
plane of 'f resulting in pinhole coordinates.

(w)=ily) o

The pinhole coordinates are mapped to distorted
computer coordinates which are equal to the raw im-
age coordinates of the image taken by the camera.

;X(1+n1r21~a2r4

ix \ _ P2mren) e 4
ZCY - LY(1+I;1!I'I"2H2'I"4) +lCm) ( )

For shortness equations 1 to 4 are united to one
transformation.

()5
(5)

The transformation between (1 X,.Y) and another
stereo image pair depending on this image can be

determined analogously leading to a transformation
l

—

(k).

XY i) 2 (6)
'y (k),1 ) ly

Due to the definition of the transformations each
two points (Ek)’lX, Ek)’lY) and (lc’(m)X, IC’(m)Y) are the
same, if the equation

—

o [TV o)
(k)1 gk),zY Y1
I(m)
_ (Y ) Ex (7)
'y, L,(m) L(m)yr
C

is valid. So the 3D-position computed for these
points must be equal.

Now let

GIPXY) =p and I q(X\Y)=q; (8)

) I,(m)
be homogeneous world coordinates computed from
(k)L f at coordinates (X,Y) and »(™) f at (X', Y").
Let p;, g; with ¢,j = 1,..., M be homogeneous
coordinates and for i = j let

(k)1 [,(m) 1
e X 'T_LIT <X (9)
((:k)le (k)vl ’(m) lcv(m)Yl

be valid.

Then a linear transformation

—

H — (k)le —
L,(m)



can be determined by minimizing the mean square

error
M

Z(qz’ - Hp,)’ =
i=1
The depth values obtained from the normalized

stereo images (¥)'f and b("™) f are then registrated
by the following function:

(Hp; + q;)/2 if p; and g, defined
p;, =< Hp, if only p, defined
q; if only g, defined
(10)

The equations above define an exact mapping be-
tween image coordinates in a raw image and the nor-
malized stereo images. In general integral coordi-
nates in a raw image will not be mapped to integral
coordinates in the two normalized stereo image com-
puted from it, but we know depth only at integral
coordinate values of the normalized stereo image. To
overcome this drawback two approaches are possible:
on the one hand we can interpolate depth values for
the non integral coordinates, on the other hand we
can round the coordinates to the next integral value.
So what is the maximal error caused by the later?

Since the maximal inclination of a plane in the
depth image is restricted to 60 degrees and the maxi-
mal distance between the real and the rounded value
is half a pixel, the maximal error is 2d, tan(60°),
where d, is the minimal distance in z-direction be-
tween two depth values. In our environment the
maximal error is 0.87 mm, which is lower than the
depth resolution of about 1.00 mm. Neglecting this
error allows to compute a function table during the
interpolation step defining the mapping between in-
tegral coordinates in the raw image and rounded co-
ordinates in the normalized stereo images. Thus the
effort to registrate the depth values is reduced to two
accesses to this function tables per depth value and
the evaluation of the linear equation system.

The resulting linear transformation between two
depth images is restricted to translation and rota-
tion. If scaling is allowed a depth image with only
one planar surface patch will lead to a transformation
adapting the depth values to the error perpendicular
to this planar surface.

By the registration algorithm described the mean
distance between depth values in consecutive images
is reduced from 6-24 mm to less than 2 mm.

Since only consecutive images are linked by this
transformation errors in the translation can be cu-
mulative in an image sequence. So far this did not

Figure 8: Three consecutive depth images of one cor-
ner of a cube, in the middle one a part is undefined.

cause problems in registration or fusion but a relax-
ation algorithm to optimize all transformations in an
image sequence simultaneously will be the next step
to exclude the possibility.

5 Fusing Depth Values

For overlapping regions in consecutive depth images
the fusion problem is solved by the algorithm out-
lined in the previous section, the relation between
the depth values is established by the transforma-
tion given there. Depth values where this relation
is unknown occur typically when the value for one
3D—point is undefined in the middle of three consec-
utive depth images, while it is defined in the first
and third, an example is shown in Figure 8. Since
the angular difference between the first and fourth
image exceeds 60 degrees it is very unlikely that a
value is undefined in two consecutive depth images
but defined in the preceding and succeeding one.
We use the Euclidean distance between the points
in the registered depth map to identify such values.
If the distance between two points belonging to dif-
ferent depth images is below the average distance
error ¢ — in our environment 2 mm —, and there is
no other point in the same depth image with lesser
distance the two points are fused. Formally:

If #p, nearest neighbor to lpj and ||*p, — lij <e
and —3 kpa : ||kpa - lpj|| < ||kpz' - lij

then *p; = li)j = (*p; + lpj)/2

An example is shown in Figure 9. While ™*2

Pji
is the nearest point in the depth image ’3’115"2_1" with
respect to ™p,, 5, "p;, 1 is nearer to m“pj“. So
only ™*2p,., and ™p,,, are fused.

In principle the complexity of this approach is
quadratic, the number of comparisons necessary is
equal to the product of the number of depth values
in the two depth images. The distance constraint al-
lows to reduce this effort by ordering the depth val-
ues and compare against values within the maximal
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Figure 9: Example for the fusing algorithm

distance only. To make efficient use of this distance
constraint the points have to be sorted according to
their position. Here we use the fact that the vol-
ume is restricted to the working space of the robot
and the depth of focus of the camera. Thus we can
map this volume to a finite set of discrete entries in
a three-dimensional array. The number of pixels in
z-direction n, in the normalized stereo image is one
upper bound for the number of entries necessary in
one dimension. A second boundary is given by the
number of pixels in z-direction times the resolution
in z-direction d, divided by the depth resolution d,.
The depth resolution is approximately e/bd, where
e is the distance from focus to object and b is the
stereo base, thus normally d, > 3d,, like in our envi-
ronment with d, = 0.25 mm and d, = 1.00 mm. This is
further reduced by the fact that the accuracy is lower
than the minimal depth difference, the error remain-
ing after registration is at least two times as high.
Therefore a typical value for the maximal number of
entries in one dimension is 64, the total number of
entries 643 = 262144 allowing a combination of regis-
tration, fusion and adaption of resolution in one step.
The algorithm for this step is shown in Figure 10.
Results are given in the next section.

6 Experiments and Results

The algorithms were implemented using HIPPOS
[Pau92, PH95], a NIHCL based object oriented class
library designed for image analysis. For several ob-
jects the camera was positioned to record 40 views
each. One result is shown in Figure 11. The pictures
show 6 disparity images of a Rubic’s cube (top and
middle row). In this images dark grey-levels indicate
far points and light grey-levels near points with re-
spect to the camera. Black regions show undefined
values. The 3 images in the bottom row show 3 views
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Figure 12: Speedup and efficiency of parallelization
by data partitioning

of the resulting three-dimensional after registration
before fusion and filtering.

Computationally expensive parts of the stereo al-
gorithm are parallelized on MEMSY, a modular, ex-
pandable multiprocessor system. This system con-
sists of 20 nodes with each 4 processors 88100 (24
mflops, 12 mflopds per processor). The speedup and
efficiency is given in Figure 12.

For object recognition and modelling a segmenta-
tion step based on the computed 3D-data will be
subject to further work.

7 Conclusion

The concept of common lines of sight allows a very
fast and accurate registering of consecutive depth im-
ages obtained by a stereo algorithm adapted to color
image sequences. No 3D-matching step is required
to register the depth images thus allowing to register
even single planar surface patches. Combining reg-
istering, fusion and data reduction leads to a very
fast algorithm, able to compute the 3D image from
40 depth images in less than 10 seconds. The algo-
rithms outlined in this paper enable the computation
of depth with a relatively inaccurate calibration thus
building a procedure to compute depth from monoc-
ular color image sequences successfully by a passive
non invasive stereo approach.
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[: edge length of an entry in the 3D array
n: number of entries in one dimension

compute extremal values for z-, y-, z-dimension

determine .50, Tmaz;s Ymin, Ymaz, Zmin, Zmaz from all registered 3D point values p

compute the center of the object

Tmid = (mmaz -

mmzn)/2 Ymid = (ymaz - ymzn)/z

Zmid = (zmaz -

FOR all registered 3D point values p = (z,y, 2)

iy = (Y — Ymia) /L + n/2

compute the appropriate index in the 3D object array

iz = (T — Tmia)/l +1/2 i, = (2 — zZmia)/l + n/2

(Pik,m * Mik,m + D)/ (Mikm + 1)

update the center of gravity and the number of points in this entry
Dik,m =
N kym = Nikym + 1

FOR

all entries in the 3D-array

IF current entry is not empty
THEN |[FOR all neighbors of this entry
IF current neighbor is not empty
THEN |compute the distance between the center of gravity of this neighbor and the actual
entry
IF [computed distance is below threshold § with  <1/2
THEN fuse both entries by computing the common center of gravity
Figure 10: Fusion of 3D point values in a 3D array
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