
Registering Depth Maps from Multiple Views Recorded by ColorImage SequencesR�udiger Be�Lehrstuhl f�ur Mustererkennung (Informatik 5)Friedrich-Alexander-Universit�at Erlangen-N�urnbergMartensstr. 3D-91058 Erlangentelephone: +49 9131 85-7891fax: +49 9131 303811email: bess@informatik.uni-erlangen.deAbstractIn this paper we outline a system to search and clas-sify objects in an unknown environment. As a �rststep towards this goal a dense depth map of the com-plete object surface is computed by use of a stereo ap-proach adapted to monocular color image sequences.The resulting depth data of the stereo algorithm areinput of the judgement, registration and fusion stepdescribed in this paper.After judging the depth values and removing thepoor ones we use common lines of sight to identifydepth values in consecutive depth images which referto the same 3D{point. This allows to compute theregistering transformation directly, no matching stepof the 3D{data is necessary. Advantages of this newapproach are the independence of the registrationstep from accuracy in calibration and the possibilityto register depth images containing only depth valuesof a single plane.In the fusion step a 3D accumulator is used to com-bine depth values belonging to the same 3D-point. Inthis step we integrate �ltering of neighboring depthvalues to restrict surface resolution and data size tothe maximal resolution of the resulting complete 3Dmap of the object surface. This enables an extremelye�cient evaluation of the depth images.

The algorithms described in this paper allow toovercome relatively inaccurate calibration and tocompute 3D data from monocular image sequencesby passive stereo approaches without placing a cali-bration pattern in the scene.Keywords: stereo vision, monocular image se-quence, dense depth map, multiple views, 3D recon-struction
1 IntroductionOne of the challenging goals in computer vision is tosearch and classify objects actively in an unknownenvironment. A wide range of application would beopened by achieving this goal, including but not re-stricted to assistance of handicapped people, house-hold robots and repairing of machines.Many real world objects are clearly determinedsolely by their geometric properties. For this reasonthe three-dimensional form is an important source ofcharacteristic information on an object and enables areliable classi�cation of a wide range of object types.The goal of the system outlined in this paper is to1



set up a system to compute a complete dense depthmap of the surface of an object without changingthe environment and thus acquiring full informationabout the form of an object for use in classi�cationand searching.Traditionally there are two classes of approachesfor depth computation: active and passive [Nie90].While active approaches inuence the environmentin which they work, for instance by projecting pat-terned light onto the scene or by use of laser beams ina laser range �nder, passive approaches place only asensor in the scene to acquire visual information. Ex-amples for passive approaches are stereo algorithmsand depth from X approaches, where X can be re-placed by motion, shading, texture, focus or defocus.It is true that in di�erent types of invasive ap-proaches a passive sensor is used, but the environ-ment is changed by placing the object into a specialsetup. For example in [SF95] the object is placedon a turn table to achieve the conditions in accuracyrequired and in many photogrammetric approachesa calibration rig is build up around the object to de-termine the transformation between all images of animage sequence [LGUM94].Active approaches and approaches where the en-vironment of an object has to be changed are in thefollowing referred as invasive approaches to enhancethe di�erence to active vision approaches, where forinstance the camera is moved to get new views butthe scene itself is not changed. Since the system isto be used in a natural environment without assis-tance of a human operator the type of the approachis restricted from the outset to a non invasive one.In the class of non invasive approaches some arerestricted either to special surface types or can de-termine depth only while no depth discontinuitiesoccur, e.g. shape from texture, shape from shad-ing or shape from focus and shape from defocus.In contrast with these restrictions stereo approachescan be used on a wide range of object forms andsurface types [DA89] [Fua93]. With known motionstereo approaches are in principle applicable directlyto monocular image sequences. The advantage of astereo approach over shape from motion algorithmsis the much lower number of images necessary tocompute the complete surface of an object. Sincematching in case of unknown camera position re-quires a very low displacement between consecutiveimages shape from motion algorithms typically needmore than 500 images compared to 40 for a stereoapproach.This leads to the conclusion that a stereo approach

on monocular image sequences is best suited to en-able depth computation in the described environ-ment.The main problem preventing the use of stereo inmonocular image sequences up to now was the lackof a calibration problem causing inaccurate depthmeasurements. So the question addressed in this ar-ticle is: How should we judge and combine inaccu-rate depth information obtained from di�erent im-age pairs? This problem is split into three parts:Measuring the quality of depth information to skiperroneous values (judgement), computing the trans-formation between depth images each obtained froma pair of images (registration) and combining depthimages when the transformation is known (fusion).According to the task the paper is organized as fol-lows: After the introduction the experimental setupand system structure is outlined. The main part isdivided in three sections: computation and judge-ment of depth, registering depth images and fus-ing depth values. The �rst of these sections (Sec-tion 3) deals with the calculation of depth values andthe quality measure derived from the approach used.The second (Section 4) describes the measurement ofthe transformation between depth images resultingfrom di�erent stereo image pairs. The third (Sec-tion 5) explains the fusion of depth values belongingto the same world point. Finally, experiments andresults are presented.2 Experimental Setup andSystem DesignThe setup for searching in an unknown environmenthas to comply with several preconditions. To searchactively for an object requires to alter the view andthus to change the camera position. In our experi-mental environment a monocular camera is mountedto the hand of a robot. So arbitrary movements ofthe camera within the working space of the robot arepossible. This allows to take images of an object fromdi�erent viewing angles. A �xed stereo camera is su-pervising the scene to detect interesting objects andthus enables the determination of hypotheses aboutthe location of an object specifying the starting po-sition for the monocular camera. Figure 1 is showingthis setup.The system structure is designed to interact ac-tively with the environment based on sensor data.For this purpose three feedback loops are coupled.The innermost feedback loop deals with data driven2
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objectsFigure 1: Setup showing the stereo camera super-vising the scene and the robot with the monocularcamera exploring one objectcomputation of depth data of an object, the taskwe concentrate on in this paper. The middle givesa classi�cation result about the type and orientationof the object under consideration based on the depthdata. The outermost is making hypotheses about theposition of the object wanted. It is broken when thecorrect object is found.Figure 2 gives an overview on the depth computa-tion loop. First the monocular camera is moved toan initial position relative to an interesting object.Within the loop (Figure 2) a collision free path tothe next camera position is determined, the camerais moved to this position and the exact position ismeasured. A depth image of the viewed object sur-face is computed with each two images, the depth im-ages from di�erent views are judged and integratedinto a common depth map. After that the loop isstarting again. The loop is broken either when aprede�ned number of images is taken or when theaccuracy and completeness of the depth map exceedsa prede�ned value. The calibration, path planningand stereo algorithms are described more detailed in[Be�94, BPN96]. The next section is giving a briefoverview as detailed as necessary for the explanationof the judgement, registration and fusion steps.

3 Depth Computation andJudgementAs mentioned in the introduction a passive stereoapproach is best suited for active vision tasks in anunknown environment. Since we have only one mov-ing camera the direct use of stereo algorithms is notpossible. To adapt stereo algorithms to this setupthe camera has to be calibrated and a robust match-ing step has to be developed dealing with the in-accuracies of calibration and intensity changes dueto time and angular di�erences between consecutiveimages. For each image in a sequence the cameraposition is measured by the robot [Be�94], wherea gripper{camera{calibration from Lenz and Tsai[TL88] is used to determine the camera position ina global coordinate system. The known camera po-sition enables a combined feature{ and correlation{based stereo approach. Thus a dense depth imageis computed from each two color images recorded bythe monocular camera [BPN96]. Each of this depthimages contains depth information on one view ofthe object.Since the camera position is known for each im-age, it is possible to determine depth from all imagesdirectly in a global coordinate system, without reg-istering or fusion. But inaccuracies in the measure-ments of the camera position lead to a translationerror in the relative position of two depth imagesup to 25 mm, with an average of 6:47 mm. Theapproach described in the subsequent sections is in-dependent from this error, allowing to compute thetransformation between the depth images very fastand accurate.Before registration and fusion depth values arejudged and erroneous ones are eliminated since theerror would be propagated into the resulting depthmap. Four parameters inuencing the reliability ofdepth values are taken into consideration:1. The distance range relative to the camera.2. The depth di�erence of a depth value to itsneighbors.3. The inclination of a surface patch towards theoptical axis.4. The common area between consecutive depthimages.The �rst three parameters are motivated by thestereo approach used for depth computation. Its re-sult | a partial dense depth map | is the input3
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view integrationjudgementFigure 2: Depth computation loopfor the combined feature and correlation based ap-proach. The depth map is partial, because depthcannot be computed within homogeneous or oc-cluded regions.The camera must be as close as possible to the ob-ject to move the camera around it. Therefore thefocus of the camera is adjusted to about 220 mm.The distance range relative to the camera is givenby the depth of focus, the range where the objectsurface can be obtained without blurring. Outsidethis interval neither the edges necessary for the fea-ture based matching step nor the correlation for theblock matching step can be determined reliably.The depth di�erence of a depth value to its neigh-bors allows the detection of outliers. Since depthcomputation is based on a block matching step, itis not possible to determine reliable depth valuesfor surface patches which are smaller than a quarterof the block size. Therefore single depth values arejudged by viewing the di�erences to the four neigh-boring values. If the di�erence against three of thefour neighbors in a 4{neighborhood exceeds a thresh-old, the value is considered an outlier and rejected.The restriction of the inclination of a surface patchtowards the optical axis is necessary because a sur-face patch which is parallel or nearly parallel to theoptical axis can not be measured reliably. One of thereasons is that such surfaces are often occluded in oneof the two stereo images. Another reason is that thebreadth of the edges decreases with decreasing in-clination resulting in errors during feature detectionand feature based matching. Therefore when the dif-ference to one neighbor in an 8{neighborhood withdistance n implies an inclination towards the opticalaxis above 60 degrees the value is rejected. The dis-tance nmust be chosen as a function of the depth res-olution dz and the resolution parallel to the x{axis ofthe depth image dx. The result of arctan(dz=(ndx))
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Figure 3: Minimal possible inclination at a depthchange against a neighbor with distance two (en-hanced line left) and distance one (enhanced lineright)must be below the threshold of 60 degrees, otherwisethe least possible depth change would cause the rejec-tion of the values at the border. Figure 3 illustratesthis relation.The common area between consecutive depth im-ages is measured after elimination of single erroneousdepth values. A minimum size of this area is on theone hand necessary to ensure that the the numberof common depth values is high enough to registratethe images. On the other hand this parameter al-lows to detect depth images with unusable quality.This typically occurs when the angular di�erence be-tween two views is too high and the object is regularshaped and textured. If the object has several di�er-ent surface patches with similar texture and shapethe occlusion caused by the angular change leads to4



Figure 4: schematic example for a stereo image paircausing erroneous matches. The enhanced boxesshow the visible part of the object in the right andleft stereo image.a completely wrong matching, leaving only surfaceswith high inclinations or depth values outside theadmissible distance range. A schematic example isshown in Figure 4. In both of the stereo images threestripes are visible but due to occlusion only one ofthem belongs to the same object surface patch.4 Registering Depth ImagesAs mentioned in the introduction we have to over-come an error of up to 25 mm in the relative positionof two depth images. Therefore it is insu�cient tocompose the depth data in a common coordinate sys-tem without further processing, although this wouldbe possible by use of the known position of the stereoimages relative to each other.An usual approach to register overlapping depthimages is to formulate it as an optimization problem:a transformation between each two depth images issearched which minimizes the error between overlap-ping regions [Kar93]. For this purpose a matchingstep has to be performed on the depth images iden-tifying depth data which belong to the same 3D{point. This approach is not su�cient with the pas-sive stereo approach used to determine the depth im-ages. The noise is much higher and the resolutionis lower than in active stereo approaches like thoseused there [Wah86, HR93]. Furthermore, if only oneplanar surface can be matched, the transformationbetween two depth images is not unique, the rota-tion around the normal of the planar surface andthe translation parallel to it can not be determined.Due to the restrictions of the passive stereo approachthis is likely to happen when used on simple regularworkpieces like those build from rectangular paral-lelepipeds. In the worst case the image plane will be

parallel to one side of the parallelepiped and sincethe angular di�erence between two consecutive viewsis less than 21�, the angular di�erence between thesecond view and any of the other sides will be morethan 60�.In general: Be � the maximal inclination towardsthe image plane where a surface patch can be deter-mined reliable (here 60�) and be � the angle betweenthe optical axes in the two views of a stereo imagepair. If �+� < � where epsilon is the minimal anglebetween one surface patch and any adjacent patch,then in the worst case depth can only be determinedfor this surface patch.To overcome these problems we identify points ineach two stereo images which belong to the same real3D points instead of matching the 3D data. If weknow that two image points in two di�erent stereoimages are projections of the same 3D point we alsoknow that the two 3D positions computed from theimage points must be equal. So we have to searchfor a transformation establishing the real relation be-tween the depth maps.We use the constraint that every image is part of atleast two stereo images. The conversion of an imageto a normalized stereo image is de�ned by a partial,bijective mapping of the coordinates from the imageto the stereo image, partial, because the image sec-tion in general is slightly changing causing unde�nedregions in the normalized stereo image (see Figure 5).An image which is part of two stereo images thus de-�nes a partial mapping between the coordinates ofboth stereo images. Since every image coordinatecorresponds to a line of sight and every line of sightcorresponds to one particular 3D{point for opaqueobjects | and only such are viewed | a mapping isestablished between equal depth values of two depthimages.This is illustrated in Figure 6, where kf denotesthe k-th image in an image sequence and k;lf a stereoimage pair computed from the images kf and lf .By use of this relation which is independent of thecalibration accuracy, a system of equations can beformulated to compute the transformation betweenthe depth images. In the following the equationsde�ning this transformation are given.4.1 NotationAs noted above kf stands for the k-th image in animage sequence. Consequently upper left indices in-dicate the coordinate system of a vector: kp denotesa point in the coordinate system of image kf . Lower5



Figure 5: Two raw images (top) and correspondingnormalized stereo image (bottom). Black areas areunde�ned.left indices are used as labels for special points as ko,which signi�es the origin of the coordinate system ofkf . So lko = (x; y; z)T is the origin of image kf incoordinate system of lf . Upper right and left indicesare used as usual either as mathematical operationindices (pT , R�1) or as positional information in avector or sequence (px, pi).A vector in the normalized image coordi-nate system dl;(m) is denoted by dl;(m)p =(dl;(m)px; dl;(m)py; dl;(m)pz). Where l; (m) indicates thatthis coordinate system refers to a stereo image paircomputed from the images lf and mf , the bracketsaroundm indicate that l; (m) refers to the coordinatesystem of the image computed from lf and �nally thehat above (b) indicates that the stereo image is nor-malized.4.2 Transformation between raw im-age and normalized stereo imageIn a normalized stereo image pair the axes of thetwo image coordinate systems are collinear and di-rected equally, the x-axes are positioned on the samestraight line. Therefore the epipolar line of one im-age point is intersecting the image planes of the twostereo images in the same image scan line. This sim-pli�es the matching step and leads to a very simplerelation between disparity and depth. The relationbetween the coordinate systems of the raw imagesand the normalized stereo image pair is shown inFigure 7, where bL is a short form of dl;(m) and cM ashort form of d(l);m denoting the normalized images
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Figure 6: Common lines of sight. ll is intersectingk;lf , lf and l;mf .computed from lf and mf respectively belonging tothe stereo image pair l;mf .The parameters necessary to compute the relationbetween the normalized stereo image pair and theraw images are computed by the following steps:� The internal camera parameters are determinedby camera calibration [Pos90, Tsa86, Len87,Be�94]. Internal parameters are the focal lengthf , the distortion coe�cients �1, �2, the pixel size�x, �y and the principal point (Cx; Cy)T . Theseparameters do not change within an image se-quence.� The external camera parameters are determinedfrom the robot position measurements by a grip-per { camera { calibration [TL88, Be�94]. Theexternal parameters de�ne the camera positionin the world coordinate system, given by the po-sition of the optical centers wl o, wmo and the ro-tation matrices wRl and wRm of the images lfand mf in the world coordinate system w.� The transformation matrices into normalizedstereo images bLRl and bMRm are computed fromthe camera position of the images lf and mf ac-cording to [Pos90].With these parameters the following equationsde�ne the transformation between the normalizedstereo image pair cl;mf consisting of dl;(m)f and d(l);mfand the raw images lf and mf :6



mzfL̂y M̂zlzly lx L̂z L̂xL̂Rl mx mybL̂o = lo M̂y M̂RmM̂o = mo M̂xFigure 7: Relation between raw images and normal-ized stereo image pairFirst pinhole coordinates (bLpX; bLp Y ) are computedfrom the computer coordinates (bLcX; bLc Y ). ( Upper-case letters like (X , Y ) denote 2D{coordinates inthe image plane, while lower{case letters (x, y, z)are standing for 3D{coordinates). bLpXbLp Y ! =  (bLcX � Cx)�x(bLc Y � Cy)�y ! (1)The pinhole coordinates are mapped to 3D{coordinates in the image coordinate system of lf .0@ lxlylz 1A = bLR�1l 0B@ bLpXbLp Yf 1CA (2)The 3D{coordinates are projected into the imageplane of lf resulting in pinhole coordinates.� lpXlpY � = lflz � lxly � (3)The pinhole coordinates are mapped to distortedcomputer coordinates which are equal to the raw im-age coordinates of the image taken by the camera.

� lcXlcY � = 0@ lpX(1+�1r2�2r4)�x + lCx)lpY (1+�1r2�2r4)�y + lCx) 1A (4)For shortness equations 1 to 4 are united to onetransformation.� lcXlcY � = lTbL( bLcXbLc Y !)= lTdl;(m)8<:0@ dl;(m)c Xdl;(m)c Y 1A9=; (5)The transformation between (lcX; lcY ) and anotherstereo image pair depending on this image can bedetermined analogously leading to a transformationlTd(k);l. � lcXlcY � = lTd(k);l8<:0@ d(k);lc Xd(k);lc Y 1A9=; (6)Due to the de�nition of the transformations eachtwo points (d(k);lc X;d(k);lc Y ) and (dl;(m)c X; dl;(m)c Y ) are thesame, if the equationlTd(k);l8<:0@ d(k);lc Xd(k);lc Y 1A9=; = � lcX1lcY1 �= � lcX2lcY2 � = lTdl;(m)8<:0@ dl;(m)c Xdl;(m)c Y 1A9=; (7)is valid. So the 3D{position computed for thesepoints must be equal.Now letwd(k);l p(X;Y ) = pi and wdl;(m)q(X 0; Y 0) = qj (8)be homogeneous world coordinates computed fromd(k);lf at coordinates (X;Y ) and dl;(m)f at (X 0; Y 0).Let pi, qj with i; j = 1; :::;M be homogeneouscoordinates and for i = j let0@ d(k);lc Xd(k);lc Y 1A = lT�1d(k);llTdl;(m)8<:0@ dl;(m)c X 0dl;(m)c Y 0 1A9=; (9)be valid.Then a linear transformationH =d(k);lHdl;(m)7



can be determined by minimizing the mean squareerror MXi=1(qi �Hpi)2 = �The depth values obtained from the normalizedstereo images d(k);lf and dl;(m)f are then registratedby the following function:bpi =8<: (Hpi + qi)=2 if pi and qi de�nedHpi if only pi de�nedqi if only qi de�ned (10)The equations above de�ne an exact mapping be-tween image coordinates in a raw image and the nor-malized stereo images. In general integral coordi-nates in a raw image will not be mapped to integralcoordinates in the two normalized stereo image com-puted from it, but we know depth only at integralcoordinate values of the normalized stereo image. Toovercome this drawback two approaches are possible:on the one hand we can interpolate depth values forthe non integral coordinates, on the other hand wecan round the coordinates to the next integral value.So what is the maximal error caused by the later?Since the maximal inclination of a plane in thedepth image is restricted to 60 degrees and the maxi-mal distance between the real and the rounded valueis half a pixel, the maximal error is 2dx tan(60�),where dx is the minimal distance in x-direction be-tween two depth values. In our environment themaximal error is 0:87 mm, which is lower than thedepth resolution of about 1:00 mm. Neglecting thiserror allows to compute a function table during theinterpolation step de�ning the mapping between in-tegral coordinates in the raw image and rounded co-ordinates in the normalized stereo images. Thus thee�ort to registrate the depth values is reduced to twoaccesses to this function tables per depth value andthe evaluation of the linear equation system.The resulting linear transformation between twodepth images is restricted to translation and rota-tion. If scaling is allowed a depth image with onlyone planar surface patch will lead to a transformationadapting the depth values to the error perpendicularto this planar surface.By the registration algorithm described the meandistance between depth values in consecutive imagesis reduced from 6{24 mm to less than 2 mm.Since only consecutive images are linked by thistransformation errors in the translation can be cu-mulative in an image sequence. So far this did not

Figure 8: Three consecutive depth images of one cor-ner of a cube, in the middle one a part is unde�ned.cause problems in registration or fusion but a relax-ation algorithm to optimize all transformations in animage sequence simultaneously will be the next stepto exclude the possibility.5 Fusing Depth ValuesFor overlapping regions in consecutive depth imagesthe fusion problem is solved by the algorithm out-lined in the previous section, the relation betweenthe depth values is established by the transforma-tion given there. Depth values where this relationis unknown occur typically when the value for one3D{point is unde�ned in the middle of three consec-utive depth images, while it is de�ned in the �rstand third, an example is shown in Figure 8. Sincethe angular di�erence between the �rst and fourthimage exceeds 60 degrees it is very unlikely that avalue is unde�ned in two consecutive depth imagesbut de�ned in the preceding and succeeding one.We use the Euclidean distance between the pointsin the registered depth map to identify such values.If the distance between two points belonging to dif-ferent depth images is below the average distanceerror � | in our environment 2 mm |, and there isno other point in the same depth image with lesserdistance the two points are fused. Formally:If kpi nearest neighbor to lpj and kkpi � lpjk < �and :9 kpa : kkpa � lpjk < kkpi � lpjkthen k~pi = l~pj = (kpi + lpj)=2An example is shown in Figure 9. While m+2pj+1is the nearest point in the depth image m+23D f withrespect to mpi+2, mpi+1 is nearer to m+2pj+1. Soonly m+2pj+1 and mpi+1 are fused.In principle the complexity of this approach isquadratic, the number of comparisons necessary isequal to the product of the number of depth valuesin the two depth images. The distance constraint al-lows to reduce this e�ort by ordering the depth val-ues and compare against values within the maximal8
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mpi+3Figure 9: Example for the fusing algorithmdistance only. To make e�cient use of this distanceconstraint the points have to be sorted according totheir position. Here we use the fact that the vol-ume is restricted to the working space of the robotand the depth of focus of the camera. Thus we canmap this volume to a �nite set of discrete entries ina three-dimensional array. The number of pixels inx-direction nx in the normalized stereo image is oneupper bound for the number of entries necessary inone dimension. A second boundary is given by thenumber of pixels in x-direction times the resolutionin x-direction dx divided by the depth resolution dz.The depth resolution is approximately e=bdx wheree is the distance from focus to object and b is thestereo base, thus normally dz > 3dx, like in our envi-ronment with dx = 0:25 mm and dz = 1:00 mm. This isfurther reduced by the fact that the accuracy is lowerthan the minimal depth di�erence, the error remain-ing after registration is at least two times as high.Therefore a typical value for the maximal number ofentries in one dimension is 64, the total number ofentries 643 = 262144 allowing a combination of regis-tration, fusion and adaption of resolution in one step.The algorithm for this step is shown in Figure 10.Results are given in the next section.6 Experiments and ResultsThe algorithms were implemented using HIPPOS[Pau92, PH95], a NIHCL based object oriented classlibrary designed for image analysis. For several ob-jects the camera was positioned to record 40 viewseach. One result is shown in Figure 11. The picturesshow 6 disparity images of a Rubic's cube (top andmiddle row). In this images dark grey-levels indicatefar points and light grey-levels near points with re-spect to the camera. Black regions show unde�nedvalues. The 3 images in the bottom row show 3 views
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Figure 12: Speedup and e�ciency of parallelizationby data partitioningof the resulting three-dimensional after registrationbefore fusion and �ltering.Computationally expensive parts of the stereo al-gorithm are parallelized on MEMSY, a modular, ex-pandable multiprocessor system. This system con-sists of 20 nodes with each 4 processors 88100 (24mops, 12 mopds per processor). The speedup ande�ciency is given in Figure 12.For object recognition and modelling a segmenta-tion step based on the computed 3D{data will besubject to further work.7 ConclusionThe concept of common lines of sight allows a veryfast and accurate registering of consecutive depth im-ages obtained by a stereo algorithm adapted to colorimage sequences. No 3D{matching step is requiredto register the depth images thus allowing to registereven single planar surface patches. Combining reg-istering, fusion and data reduction leads to a veryfast algorithm, able to compute the 3D image from40 depth images in less than 10 seconds. The algo-rithms outlined in this paper enable the computationof depth with a relatively inaccurate calibration thusbuilding a procedure to compute depth from monoc-ular color image sequences successfully by a passivenon invasive stereo approach.8 AcknowledgementsThis work was funded by the Deutsche Forschungs-gemeinschaft under grant number SFB 182. Onlythe author is responsible for the contents.9
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Figure 11: 6 depth images of a colored cube (top and middle row) and resulting depth data (bottom).
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