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Abstract

In this paper we show how to manage speech under-
standing using a control algorithm which enables par-
allel processing and is based on iterative optimization.

The task specific knowledge is represented by a
semantic network consisting of concepts representing
objects, and links. An optimal interpretation of a spo-
ken utterance is available if a best scored instance of a
goal-concept can be computed. To enable an efficient
parallel computation, the concept centered network is
converted to an attribute centered task—graph. For
computing an optimal instance of the goal-concept,
the task—graph has to be computed bottom—up until a
heuristic judgement function has been optimized. Sev-
eral instances of concepts can be computed on parallel,
e.g. on a local network of heterogeneous workstations.
The any-time capability of the control algorithm is
provided by the use of iterative optimization methods
for the search of a best fitting instance of a goal con-
cept.

1 INTRODUCTION

Automatic recognition of complex patterns,
specifically spontaneous speech and motion im-
ages, will become increasingly relevant for a great
number of applications in the future. Such ap-
plications include service robots to aid handi-
capped individuals, multi-modal telecooperation
tasks, etc. In order to apply such systems to the
real world, real-time as well as any-time capabil-
ities are indispensable.

Parallel processing is a promising means to
achieve the desired speed, iterative methods may
provide an any—time behaviour. A variety of par-
allel algorithms for problems from data—driven

!This work was supported by the Real World Comput-
ing Partnership (RWCP).

processing have been developed, especially in im-
age processing [1]. In contrast, parallel symbolic
processing is much less investigated, although
some major problems of the field, like e.g. par-
allel knowledge representation [2], are discussed
in the literature.

Recently, an approach to knowledge-based
pattern understanding based on iterative opti-
mization methods and allowing an efficient paral-
lel computation has been developed and success-
fully tested on a small image understanding task
[3, 4]: recognition of streets from TV image se-
quences recorded in a moving car. Three image
sequences, each consisting of 30 gray-level images,
were used. The goal of the analysis was to obtain
a description of the road and its markers.

In this paper, we propose the application of
this control algorithm to a real-world speech un-
derstanding problem, using as a framework a dia-
log system which is able to answer inquiries about
the German InterCity train time—table. In section
2 the basic idea of the algorithm will be shown. A
survey of the knowledge representation formalism
will also be given. In section 3 we will present
the speech understanding task and how this al-
gorithm has been applied to it, and in section 4
we will show first results on corpora of read and
spontaneously spoken utterances. The paper ends
with a Conclusion and Outlook in section 5.

2 A PARALLEL ANY-TIME
CONTROL ALGORITHM

The control algorithm presented in this paper was
developed for the use with knowledge represented
in a semantic network. Semantic networks were
introduced by the end of the sixties as a coarse



model of the human mind [5]. Information about a
general idea (object, event, etc.) is represented by
nodes, relations between those ideas are modeled
by links. The semantic network formalism which
we use, ERNEST(ERlanger NEtzwerk SySTem)
[6], provides three types of nodes: concepts, repre-
senting a general idea, (e.g. Noun), modified con-
cepts, which are concepts restricted by the value of
some of its attributes (e.g. Noun; number: plural),
and instances, representing a concrete realization
of a concept (e.g. “train”). Relations between the
nodes are established by three types of links:

e part links, which link a concept to the sim-

pler concepts it consists of,

e concrete links, linking concepts of different
levels of abstraction, and

e specialization links, which are used to estab-
lish inheritance of attributes, relations and
links from more general concepts to more
special ones.

The main components of a concept C are its
parts P and its concretes K. Furthermore, a
concept has a set of attributes A and structural
relations S between these attributes, which are
computed during analysis by referred functions F.
Each concept refers also to a function which com-
putes during analysis the score G of a modified
concept or an instance of C'. Since there may be
different realizations of the same “object”, modal-
ittes H; were introduced into the knowledge repre-
sentation formalism?, each one defining a permis-
sible combination of obligatory and optional parts
and concretes of the object modeled by concept C.
For example, the concept SY_NG representing a
noun group may consist of a proper noun by its
own (e.g. “Berlin”) or of the combination of an
article, an adjective, and a noun (e.g. “the next
train”). SY_NG would, in this case, be defined
by two modalities:

HI(SY'NG): {obl. proper noun} and
HQ(SY'NG): {obl. noun; opt. article, adjective}.

We have seen above, how knowledge is rep-
resented by the semantic network formalism of

>This was done in order to keep the knowledge base
small. Another possibility would be to define one concept
for each different realization of an object. This would, how-
ever, result in a very large and unwieldy knowledge base.

ERNEST. For the knowledge to be used by a pat-
tern understanding system, a control algorithm is
necessary. The general task to be managed by the
control algorithm is the computation of a symbolic
description B of the observed data f(x), which

e optimally fits to the observed data and

e is mazimally consistent with internally rep-
resented task-specific knowledge.

In ERNEST, the goal of analysis itself is repre-
sented by one or more concepts which are denoted
goal concepts Cy,. The description of the observed
data is then represented by an instance I(Cl,) of
the goal concept. Since every concept refers to
a function which computes a score G of an in-
stance or a modified concept of it, there is also
a score G(I(Cy,)). Now, for solving the analysis
task, one can request the computation of an opti-
mal instance I*(Cy,):

B(f(z)) = I'(Cy)

I*(C,,) = argmax{G(I(C,,))|M, A} (1)
{1(Cq,)}

which means: Generate an instance I* for a goal
concept Cg, with mazimal score G using the ini-
tial symbolic description A and the internal model
M, which is a network of concepts M = (Cy).

For computing an instance of a concept I(Cy),
it is necessary to compute instances of all of its
obligatory parts and concretes for one modality
Hl(k), values for all of its attributes and relations,
and finally the score G(I(Cy)). Facing both, the
large amount of data and the limited processing
time in most pattern understanding tasks, the ex-
ploitation of parallelism provides a promising way
to compute an optimal instance I*(Cy,) in time
with the sensory input.

In the approach proposed here, parallelism is
exploited on two levels: on knowledge level and
on control level (see below). To allow an efficient
exploitation of parallelism, the concept—centered
knowledge base is compiled into a fine-grained
task graph on sub—conceptual level, and the pat-
tern understanding problem is defined as a com-
binatorial optimization problem solved by means
of iterative optimization methods, like e.g. thresh-
old acceptance and great deluge algorithm [7], or
genetic algorithms [8]. In each iteration step, a
partial solution (i.e. an instance of a goal con-
cept which approximately meets the requirements



mentioned above) is computed. This results, per
definition, in the any-time behaviour of the algo-
rithm, since a coarse solution is obtained if less
computation time is available, and a refined so-
lution is obtained if more iteration steps can be
performed.

Parallelism on knowledge level refers to
the parallel computation of one instance of a goal
concept. One possibility to exploit parallelism
on this level is given by employing an isomor-
phic mapping between the processors of a parallel
hardware and the nodes and links of a knowledge
base (e.g. [9]). This turned out to be a feasi-
ble approach if both concepts and inferences are
simple. In our approach, however, concepts may
be complex and become a bottleneck in instanti-
ation, since in the ERNEST formalism a concept
may have an arbitrary number of attributes and
relations.

To get around this problem, one compiles in a
pre—analysis step the knowledge base into a fine—
grained, attribute centered, and acyclic task graph

= (V,E). Each node v; € V represents an at-
tribute, a relation, or the judgment of a concept.
If node v; is an argument of the procedure that
computes the value for node v;, a directed link
E;; = (v;,V;) € E is created to express that com-
putation of node v; has to be finished before com-
putation of v; may start. The acyclic graph may
be mapped to a multiprocessor system for paral-
lel processing (cf. [4]). Two steps are necessary
to compute the task graph:

1. A recursive top—down expansion of the goal
concepts Cy, ...Cy, by creating and link-
ing modified concepts for all obligatory and
optional parts and concretes (see Figure 1);

2. Creation of the task graph D by splitting
up all concepts into their attributes, rela-
tions, judgments, etc. and linking them as
described above.

The expansion procedure in step 1 is necessary
because each concept appears only once in the
knowledge base. For example, in Figure 1 each
single syntactic concept has as a concrete a con-
cept representing a word-hypothesis (H-WHYP).
When computing an instance for e.g. SY_PREP
(representing a preposition), an instance for the
concept HWHYP as a concrete of SY PREP
must be computed.

SY_PNG

SY_NG

/%n;\ \L_ =~ —amg

SY_PREP SY NPR SY_-NOUN SY DET SY_ADJ
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Figure 1: Example of the expansion mechanism for
an excerpt of the knowledge base of EVAR (cf. sec-
tion 3).

Nodes without predecessors represent (initial)
attributes of concepts of lowest level of abstrac-
tion (e.g. concepts representing word hypotheses)
and form the interface to the initial segmentation;
nodes without successors represent the judgments
of the goal concepts to be instantiated. By a
bottom—up computation of all nodes of the task
graph, an instance for each goal concept is com-
puted.

Task of the control algorithm is, as mentioned
before, to find the “best” interpretation of the seg-
mentation objects, i.e. the instance of the goal
concept with maximum score (in our speech un-
derstanding application, we so far only define one
single goal concept, therefore we will refer in the
following to “the goal concept Cy”). Compet-
ing instances arise from segmentation errors (e.g.
errors in word recognition) and from ambiguous
knowledge in the knowledge base, e.g. a concept
C can be instantiated for each of its modalities
Hl(k). So one can say that the instantiation of a
goal concept C, depends basically on:

e the assignment (4;,0;),i = 1,...,u, of
segmentation results O; to some initial at-
tributes A; of primitive concepts, and

e the choice (Cy, H, (k)) k=1,...,\ of a mo-
dality H. ( ) for each concept Ck that enables

multlple definitions of an object.

In the approach presented here, the computa-
tion of a best scored instance is solved by combi-
natorial optimization. For that purpose, the cur-



rent state of analysis is summarized in a (u + \)—
dimensional vector

r o= ((4i,0);(Cy, H®)) (2)
and the result of instantiation is rewritten as a
function

g(r) = (GI(Cy))Ir), (3)

of the state vector ».

For the reliable computation of a best scored
instance I*(Cy) from the judgement vector in
Equation (3) a cost function ¢(r) is introduced
(cf. [4]). The minimization of ¢ is done, as men-
tioned before, by means of iterative optimization.
In each iteration step, exactly one state of analy-
sis r is assigned to the task graph D. Then, by a
bottom—up computation of D, the judgment g(r)
and the costs ¢(r) are computed. Iteration steps
are performed until the cost function ¢ yields a
value smaller then a chosen threshold T or as long
as processing time is available. As a (partial) solu-
tion, the best scored instance Ipes:(Cy) computed
for rpes; with minimal costs ¢y is reported.

Parallelism on control level can be ex-
ploited by a parallel computation of several com-
peting instances (i.e. by a simultaneous evalua-
tion of several states of analysis). This can be
done by using e.g. the PVM (Parallel Virtual
Machine, cf. [10]) on a local network of heteroge-
neous workstations. Each workstation computes
the task graph D for a different state of analysis
r. In [3], results are reported using p = 5 worksta-
tions (HP 735) for the small image understanding
task also mentioned in section 1.

Figure 2 shows the scheme for the parallel
control algorithm. On knowledge level, the task
graph D adapted to a specific state of analysis
(e.g. initial attribute A; is connected to seg-
mentation object O,,, modality Hl(k) has been
assigned to all nodes belonging to concept Cj,
etc.) may be computed on parallel (parallel data—
driven instantiation). On control level, D is com-
puted simultaneously on different workstations
(WS;,i = 1...p) for several states of analysis
(parallel search).

3 APPLICATION TO SPEECH
UNDERSTANDING

As a framework for the application of the above
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Figure 2: Scheme of the iterative parallel control
algorithm. WS; stands for the ith workstation in a
network of heterogeneous workstations.

mentioned control algorithm to a real-world
speech understanding problem, we use the di-
alog system EVAR (Erkennen “to recognize”,
Verstehen “to understand”, Antworten “to an-
swer”, Riickfragen “to ask back”) [11], which is
able to answer inquiries about the German train
time—table. It is composed of two main modules:
the acoustic processing (i.e. speech recognition)
and the linguistic analysis (i.e. speech under-
standing) module.

The acoustic processing analyzes the speech
signal and generates, by means of Hidden Markov
Models and a stochastic grammar, a word hy-
potheses graph or best word chains. This word
graph (or the best word chain) serves as input for
the linguistic analysis component. For further de-
tails of the acoustic processing see [12].

The linguistic analysis of EVAR is built us-
ing the network formalism of ERNEST. The sys-
tems knowledge base is divided into procedural
and declarative knowledge. The former consists
of the procedures to calculate the values of at-
tributes, relations, judgments, etc. The latter is
built of concepts, which are arranged in the fol-
lowing levels of abstraction:

o Word-hypotheses: represents the interface
between speech recognition and speech un-
derstanding; requests and verifies word hy-
potheses from the acoustic—phonetic front—



end.

e Syntazr: represents syntactic constituents;
generates syntactic constituents out of the
set of word hypotheses.

e Semantics: models verb and noun frames
with their deep cases; verifies the seman-
tic consistence of the syntactic constituents,
compounds them to larger ones, and per-
forms task independent interpretation.

e Pragmatics: represents task dependent
knowledge; interprets the constituents from
the semantic module in the task—specific
context.

e Dialog: models possible sequences of dialog
acts; reacts in accordance to the interpreted
intention of the spoken utterance.

In our approach, the original (sequential) con-
trol algorithm provided by ERNEST, which is
based on a modified top—down/bottom—up A*-
algorithm, is being substituted by the parallel
control algorithm described in section 2. This
requires modifications of the systems knowledge
base, e.g.:

e Since in the parallel control algorithm a
strictly bottom—up instantiation is carried
out, context has to be explicitly modeled in
the knowledge base?;

e Procedure interfaces have to be changed,
since “search nodes” containing the actual
information about the analysis do not ex-
ist anymore in the attribute—centered task—
graph.

So far we have adapted the new control al-
gorithm from word-hypotheses up to the dialog
level, making it possible to instantiate a concept
modeling an initial dialog step (i.e. a first request
of the user), e.g.:

e “Good morning, | want to go to Munich to-
morrow” or

e “Which train is leaving for Hamburg today
after eight o'clock?”

3In the former A* based control, context—information
was propagated in a top—down step during analysis.
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Figure 3: Excerpt of the knowledge base of EVAR.

Search space for our combinatorial optimiza-
tion problem results in

I A
Z| = HPz"H9k (4)
k=1

i=1

pi: Number of competing hypotheses for A;

0k: Number of competing modalities for Cj.

In a real speech understanding problem, | Z |
is very large because of linguistic ambiguities and
errors from the word recognition.
of search space by a top—down/bottom—up prop-
agation of intermediate results during analysis is
not supported by our strictly bottom—up instanti-
ation. Therefore, we developed and implemented
a suited algorithm which makes a static top—down
propagation of linguistic constraints before analy-
sis. This algorithm is applied once to the task
graph D during its generation, deleting nodes or
restricting values of nodes.

The constraints which are propagated refer
e.g. to modalities, values of attributes, etc. (e.g.
an initial attribute node linked to a node on syn-
tactic level representing a preposition will only be
bound to a word which is a preposition). The dele-
tion of nodes led to a reduction of the task graph
by a factor of 6.5, reducing also the processing
time for one iteration step by the same amount;
furthermore, the modalities factor of search space
was reduced from about 107® to about 108.

Despite the propagation of linguistic cons-
traints, search space is still very large. In order
to improve the speed of convergence, a suited ini-
tialization of the state of analysis, which means
to choose an initial state of analysis vector 7,
which leads to costs ¢(rinit) as close as possible

A reduction



to the global minimum ¢,,;,, seems to be promis-
ing. We therefore developed and implemented an
initialization procedure based on heuristic rules
and the incoming word chain or word hypotheses
graph. This heuristic initialization was used for
evaluating to what extend a well-aimed initializa-
tion influences the speed of convergence. Results
of this experiments can be found in section 4.

4 EXPERIMENTAL RESULTS

Goal of the experiments was to evaluate the per-
formance of the system with respect to its pro-
cessing time and the amount of correctly analyzed
pragmatic intentions?, which are, for example:

We want to go to Hamburg  today.
S~~~ —_—— ——

TRAVELLER DESTINATION DEP_TIME

The environment of our experiments was the
following;:

e the goal concept of the task graph we used
was a concept on dialog level modeling an
initial users request;

e the task graph itself consisted of approxi-
mately 20 000 nodes;

e the optimization method used was stochas-
tic relaxation (cf. [3]);

e the optimization criterion was the maxi-
mization of the number of covered
words;

e as input for the linguistic analysis we used
the spoken word chain.

Stochastic relaxation was used since in [4] this
method turned out to provide the best results
(apart from genetic algorithms) for the examined
image understanding task (cf. also section 1).
Parallelization on control level was simulated for
p =1 ...5 processors. The task graph was com-
puted sequentially on each processor. Commu-
nication between processors occurred once after
they had finished computation of a suboptimal in-
stance for the goal concept (independent search).
The test corpora used were:

“These are pragmatic units the system needs to know in
order to react to the users request, and are represented in
EvVAR by pragmatic concepts, cf. section 3

e ASL-Siid test corpus of read speech, and

e EVAR-Spontan test corpus of
speech.

spontaneous

The ASL-Siid corpus was designed by differ-
ent persons at different institutes and consists of
first user requests of train time-table informa-
tion. Out of this corpus, we chose 139 utterances
which can be completely analyzed by the former
EVAR system with the A* based control algorithm.
These 139 utterances contain a total number of
446 pragmatic intentions, for which instances of
concepts have to be computed during analysis.
Table 1 shows the number of correctly instanti-
ated pragmatic concepts (in %) for this corpus of
read speech. This results were achieved by using
the heuristic initialization mentioned in section 3.

correct pragmatic intentions (in %)

n pzl‘ p=2 ‘p=3 ‘p=4 ‘p=5
89.0 92.6 92.8 94.2 94.4
89.0 92.8 93.0 95.2 96.2
10 86.8 94.6 95.7 97.1 97.5
25| 90.4 95.9 97.5 98.7 98.9
50 94.4 97.5 98.7 98.9 99.3

O =

Table 1: Percentage of correctly analyzed pragmatic
intentions for n iterations and p processors; test cor-
pus ASL-Siid.

The any—time behaviour of the system is con-
firmed in Table 1 by the fact that the more iter-
ation steps the system performed, the more prag-
matic intentions were analyzed correctly. The sys-
tem is able to react after each iteration step ac-
cording to the partial solution that was found at
this point. After n =1 and p =5, 97% of all des-
tination places were correctly instantiated. Re-
call that each utterance contains an average of 3.2
pragmatic intentions. One can say that in at least
97% (practically all) of the utterances the system
is able to keep a dialog with the user by confirm-
ing the departure place and asking for a pragmatic
intention it has not yet found, e.g. the departure
time.

The advantage of parallelization on control
level is shown by the fact that we get better re-
sults by performing several iteration steps on p
=1, ..., p = b processors, i.e. the more processors
we use, the faster (concerning the number of iter-



ation steps) the analysis converges. Since the task
graph is initialized by a different state of analysis®
for each processor used, performing n = 1 itera-
tion step on p = 5 processors yields better results
(94%) than performing n = 5 iteration steps on
p = 1 processor (89%). At the moment, process-
ing time amounts to an average of 0.5 seconds per
iteration step, independent of the size of the ut-
terance.

Table 2 shows that by applying the heuristic
initialization an error reduction of 86% could be
achieved after the first iteration step. Because of
the linguistic restrictions (cf. section 3), results
are relatively good after the first iteration step
even without an initialization.

lp=1]p=2]p=3[p=4[p=5]
— Init. 56.7 | 60.9 | 60.9 | 60.9 | 60.9
+ Init. 89.0 | 92.6 | 92.8 | 94.2 | 944

‘nzl

Table 2: Percentage of correctly analyzed pragmatic
intentions with and without heuristic initialization of
the state of analysis; test corpus ASL-Siid.

Table 3 shows the percentage of correctly ana-
lyzed pragmatic intentions for the EVAR-Spontan
test corpus. The EVAR-Spontan corpus consists
of about 1 000 real, spontaneous dialogs collected
by our current train time—table information sys-
tem connected to the public telephone line. Out of
this corpus, we selected 435 first users utterances
from the dialogs of one recording phase (phase 08,
cf. [13], Page 154). The selected utterances con-
tained at least one pragmatic intention out of the
application domain. Utterances, like for example

e “Hello, are you a computer?” or
e “l want to go to hell”

have been excluded from the evaluation. The
number of pragmatic intentions in these 435 se-
lected utterances was 988.

One can see in Table 3, that on a spontaneous
test corpus performance concerning the number of
correctly analyzed pragmatic intentions decreases
comparing to the results on the read test corpus

Please note that by the heuristic initialization not all
parameters of the state of analysis vector are determined;
there are still parameters which are randomly set.

correct pragmatic intentions (in %)

n pzl‘ p=2 ‘p:3 ‘p:4 ‘p:5
78.2 80.6 80.9 86.3 86.5
78.5 81.1 81.6 87.7 87.9
10 || 80.9 83.8 84.4 87.9 87.9
25 84.3 87.3 88.6 88.6 88.9
50 || 85.1 88.6 88.9 89.2 89.3

Ot =

Table 3: Percentage of correctly analyzed pragmatic
intentions for n iterations and p processors; test cor-
pus EVAR-Spontan.

ASL-Sud . This is due to the fact that grammati-
cal irregularities of spontaneous speech are not yet
sufficiently considered in the linguistic knowledge
base of EVAR. The results are, even though, quite
good. Here too, one can state the any-time be-
haviour and the advantages of parallelization on
control level. Processing time was the same as
compared to processing time for the ASL-Siid ut-
terances. After n = 1 and p = 5, 94% of all
destination places were correctly instantiated and
in 95% of the utterances, at least 1 pragmatic in-
tention has been found.

If one compares Table 2 and Table 4, one can
observe that results without initialization are close
to each other for both corpora. On the sponta-
neous speech corpus, however, reduction of error
rate by initialization was of “only” 69% compared
to 86% for ASL-Siid . This seems to be plausi-
ble and even quite good, given that the heuris-
tic rules for initialization were developed based
on the read corpus. Since an initialization showed
to be very efficient, we are at present working on
a well-aimed initialization of the state of analysis
by using different stochastic methods, e.g. neural
networks, polygrams, and classification trees.

|n=1 [ p=1]p=2]|p=3]|p=4[p=5]
— Init. 54.9 | 55.8 | 56.1 | 56.3 | 56.3

+ Init. || 78.2 | 80.6 | 80.9 | 86.3 | 86.5

Table 4: Percentage of correctly analyzed pragmatic
intentions with and without heuristic initialization of
the state of analysis; test corpus EVAR-Spontan.

Besides the initialization, which leads to a high
percentage of correctly analyzed pragmatic inten-
tions after the first iteration step, convergence
speed can be further improved by implementing



an optimal procedure for choosing a new state of
analysis after each iteration. Change of the state
of analysis is done at the moment basically at ran-
dom, and resulted in an average error decrease of
70% for ASL-Siid and 30% for EVAR-Spontan af-
ter 50 iteration steps (cf. tables 1 and 3). The
large difference between the two corpora results,
as mentioned before, from the fact that the spon-
taneously spoken corpus contained pragmatic in-
tentions which are not yet modeled by the lin-
guistic knowledge base of EVAR. It will be evalu-
ated in the near future, to what extend the spon-
taneous utterances we used for evaluation of the
parallel control algorithm can be analyzed using
the former sequential A* based control algorithm
of EVAR.

5 CONCLUSION AND OUTLOOK

In this paper we proposed the application of a par-
allel any—time control algorithm for semantic net-
work based pattern understanding to a real-world
speech understanding problem. First experimen-
tal results showed the feasibility of the approach.
Future work will concentrate on the extension of
the control algorithm to all dialog steps, on the
processing of word hypotheses graphs, and on the
further improvement of processing time and con-
vergence speed (cf. section 4). Moreover, an in-
cremental processing of word hypotheses should
be investigated for supporting a real-time perfor-
mance and for a further improvement of the any—
time behaviour.
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