
Probabilistic semantic analysis of speechJ�urgen Haas, Joachim Hornegger, Richard Huber, Heinrich NiemannUniversit�at Erlangen-N�urnberg,Lehrstuhl f�ur Mustererkennung (Informatik 5)Martensstra�e 3, D-91058 Erlangen, GermanyE-mail: fhaas,hornegger,huber,niemanng@informatik.uni-erlangen.deAbstract. This paper presents a new probabilistic approach to seman-tic analysis of speech. The problem of �nding the semantic contents ofa word chain is modeled as the problem of assigning semantic attributesto words. The discrete assignment function is characterized by randomvectors and its probabilities. By computing the best of all possible sta-tistically modeled assignments, we get the semantic contents of a wordchain and along with it a semantic segmentation. The introduced gen-eral statistical framework has to deal with incomplete data estimationproblems. These are solved applying the Expectation Maximization algo-rithm. We show that the well{known hidden Markov models result fromthe suggested theory as a specialization. Experiments prove that this ap-proach works quite well in the domain of train{time{table inquiries forGerman IC/EC{train connections.1 Introduction: problem, motivation, and related workThe ultimate goal in speech understanding is to extract the meaning and theintention out of the user's utterance and to react in an appropriate way ratherthan to recognize it exactly word by word. Usually, parsers are used to extractthe meaning out of the word chain for the actual application. Looking at thehistory of speech processing shows that statistical methods and models are avery powerful and promising approach in speech processing and analysis [6].We propose the use of a probabilistic approach applying Bayesian classi�ca-tion and the decision rule with minimal error for the probabilistic interpretationof word chains. A new statistical modeling scheme for the generation of wordchains, under the assumption of special semantic meanings, is introduced. Theinvolved parameters of the stochastic models can be estimated automatically.The learning stage corresponds to incomplete data estimation problems whichare solved using the Missing Information Principle and the associated Expecta-tion Maximization algorithm (EM algorithm) [1]. The experimental results provethe e�ciency and the practical use of this novel approach to semantic analysis.The suggested statistical framework is motivated by results discussed in [3]and [5]. In contrast to [5], our approach is not restricted to �rst order statisticaldependencies in the underlying statistical process. We can deal with dependen-cies of arbitrary order, both in automatic learning and classi�cation. Comparedwith [3] we estimate parameters for a stochastic assignment function withoutusing the length of word chains or the number of semantic segments.



2 Statistical modeling of understandingWe postulate that speech understanding is done by the assignment of semanticattributes Ck to the words of a word chain w. Each word chain is segmented inseveral parts characterizing one semantic attribute (e.g. \from Bonn" as depar-ture city) and its value (e.g. \Bonn"). For the actual application, the consideredsemantic attributes are represented as a set fC1; : : : ; CNg describing parame-ters which in
uence the system's reaction. These attributes can be quite general(e.g. time, date) or application dependent (e.g. departure city). It is obviousthat a sentence could also contain parts without any information necessary forthe current application. Therefore, a semantic attribute C0 is introduced, whichdescribes these parts by the NIL attribute. This attribute de�nes the so{called\�ller parts" of the sentence. Our approach of describing the intention of a wordchain is quite similar to that described in [3]. Fig. 1 shows an example for thedesired assignment of semantic attributes to words.
w1 w2 w3 w4 w12w11w10w9w8w7w6w5w =WordChain atto

time
gotoI want from Berlin Bonn o'clocktoday ten

NIL sourceC =AttributesSemantic C0 C3 C1 C5 C7 �destination date
Fig. 1. Optimal assignment of semantic attributes Ck to words wj for the sentence\I want to go from Berlin to Bonn today at ten o'clock."The problem of understanding a word chainw = [wj ]1�j�n, where wj denotesthe j{th word, is now transformed into the problem of extracting the semantic at-tributes and their values out of the sentence. To provide a suitable mathematicalsetting, we introduce a statistical modeling of speech understanding based on twotied stochastic processes: one models the appearance of semantic attributes, theother characterizes the assignment of words and attributes. Herein, each possiblesemantic attribute Ck (k = 0; 1; : : : ; N) is associated with a stochastic processthat generates single words. The mass function p(wj jCk) is the probability thatthe word wj occurs and is associated with the attribute Ck. An assignment func-tion � maps each element wj of the word chain w to the index of the correspond-ing semantic attribute, i.e., �(wj) = kj 2 f0; 1; : : : ; Ng. For word chains w, therandom vector � induced by the assignment function � is de�ned as the vector ofall assignments for the words in w: �(w) = (�(w1); : : : ; �(wn))T = (k1; : : : ; kn)T .This assignment vector � allows the de�nition of a probability mass functionp(�(w)) on the set of all correspondences of words and semantic attributes. The



probabilities are subject to the constraint P� p(�(w)) = 1. For the example inFig. 1 the described assignment vector � is:�(w) = (0; 0; 0; 0; 3; 3; 1; 1; 5; 7; 7; 7)T : (1)Using the stochastic modeling of attributes and the probabilities of assign-ments, we compute the conditional probability p(w j C) for observing w assum-ing the set of semantic attributes C. This probability measure is rewritten withhelp of the non{observable assignment function � and its discrete probabilities.Standard probability theory provides the equationp(w; � j C) = p(�)p(w j C; �) = p(�)p(w1; : : : ; wn j C; �) : (2)The semantic assignment vector � is not part of the training data. We onlyhave a semantic annotation along with the sentences not an explicit alignmentof attributes to words, so to say, for each utterance we know, which attributescan be found, but we do not know the words that are responsible for the oc-curence of them. For that reason, we make use of the statistical modeling ofthe assignment, and integrate out all possible assignments � to the attributesCk (k = 0; 1; : : : ; N). Thus, we get the marginal probability p(w j C) out ofp(w; � j C) by summation over these assignments, i.e.,p(w j C) = X� p(�)p(w j C; �) : (3)The probability measure for the word chain w can be factorized in measures forobserving the current word wj having seen the predecessor words w1; : : : ; wj�1.Additionally, the assignment function gives the corresponding semantic attributeC�(wj ) for the word and the conditional probability is reduced to the observationof a special word under the assumption of one semantic attribute. That givesus the possibility to factorize over all semantic attributes, pick out the wordsassigned to a special Ck (all wj with �(wj) = k) and compute the probabilityfor observing this word with the model for the actual attribute i.e., the modeldetermined by the assignment function.p(w j C) =X� p(�)p(w j C; �) =X� p(�) NYk=00B@ nYj=1�(wj )=k p(wj j w1; : : : ; wj�1; Ck)1CA=X� p(�) nYj=1 p(wj j w1; : : : ; wj�1; C�(wj)) (4)The semantic segmentation of the word chain w in attribute-dependent partscan be found by searching for the best assignment vector � associated with theword sequence.



3 Learning the parameters of semantic assignmentWe have to estimate the discrete probabilities p(�) attached to assignment vec-tors and the probabilities p(wj jCl) (1 � j � n and 0 � l � N) for a givensemantic attribute Cl to generate words wj . The training data include a seman-tic description with the attributes realised within the word chain w. An explicitalignment between words and attributes is not available. Thus, the computationof discrete probabilities leads to an incomplete data estimation problem. Theprobability p(�) for the assignment vector and the attribute dependent proba-bility p(wj jCl) for observing the word wj have to be estimated without observingthe assignment function � in the training set. This incomplete data estimationproblem can be solved applying the EM algorithm.We have to estimate probabilities p(�) = p(l1; l2; : : : ; ln) with lj 2 f0; 1; : : : ; Ng.For simplicity and complexity reasons we assume that the statistical dependencyof assignments is of order g. For this purpose, we can decompose the probabilityfor an assignment vector � into the conditional probabilitiesp(�) = p(l1; l2; : : : ; ln) = p(l1) � p(l2 j l1) � p(l3 j l1l2) � : : : � p(ln j l1l2 : : : ln�1)= p(l1) � p(l2 j l1) � : : : � p(lg j l1l2 : : : lg�1) nYk=g+1 p(lk j lk�g : : : lk�1) : (5)In accordance with hidden Markov models, we introduce the shorter notationali1 li2 :::lig for the conditional probability p(lig j li1 li2 : : : lig�1 ) and getp(�) = p(l1) � p(l2 j l1) � : : : � p(lg j l1l2 : : : lg�1) nYk=g+1 p(lk j lk�g : : : lk�1)= al1 � al1l2 � : : : � al1l2:::lg nYk=g+1 alk�g :::lk : (6)Setting the order of statistical dependency for the assignment vector to g = 1,the transition probabilities aij for HMM result from the above formalism.The second part of the factorization of equation (4) expresses the probabilityp(wj j w1; : : : ; wj�1; C�(wj)) for observing the word wj after having seen thewords w1 : : : wj�1 and assigning wj to the semantic attribute with index number�(wj). This probability is simpli�ed by ignoring the dependence for seeing aword wj of the predecessor words to p(wj j C�(wj)). With these assumptions andnotations, equation (4) is:p(w j C) = X� p(�) nYj=1 p(wj j w1; : : : ; wj�1; C�(wj))= Xl1;l2;:::;ln al1 � al1l2 � : : : � al1l2:::lg nYk=g+1 alk�g :::lk nYj=1 p(wj j Clj ) (7)The iterative estimation formulas for the required discrete probabilities can becomputed applying the EM algorithm. A detailed derivation can be found in [4].



Assume, M test sentences 1w; 2w; : : : ;Mw are available for training purposes.The probabilities associated with the assignment function can be iterativelyestimated using the following formulas, wherein i and i+1 denote the i{th and(i+ 1){st iteration steps:a(i+1)l1 = 1M MX%=1 X��(%w1)=l1 p(i)(%w; �jC)p(i)(%wjC) ; (8)
a(i+1)l1l2 = MX%=1 X��(%w1)=l1;�(%w2)=l2 p(i)(%w; �jC)p(i)(%wjC)MX%=1 X��(%w1)=l1 p(i)(%O; �jC)p(i)(%wjC) ; (9)

a(i+1)l1;l2;:::;lg = MX%=1 X��(%w1)=l1;�(%w2)=l2;:::;�(%wg)=lg p(i)(%w; �jC)p(i)(%wjC)MX%=1 X��(%w1)=l1;�(%w2)=l2;:::;�(%wg�1)=lg�1 p(i)(%w; �jC)p(i)(%wjC) ; (10)and a(i+1)lk�g;:::;lk = MX%=1 %nXk=g+1 X��(%wk�g)=lk�g;:::;�(%wk)=lk p(i)(%w; �jC)p(i)(%wjC)MX%=1 %nXk=g+1 X��(%wk�g)=lk�g;:::;�(%wk�1)=lk�1 p(i)(%w; �jC)p(i)(%wjC) : (11)Obviously, these equations are generalizations of the well{known Baum{Welchreestimation formulas. They can be used for statistical dependencies of arbitraryorder g. The same holds for the discrete probabilities which characterize wordproductions, if the semantic attribute is known (1 � j � n and 0 � lj � N):p(i+1)(wj jClj ) = MX%=1 %nXk=1 X��(%wk)=l;%wk=wj p(i)(%w; �jC)p(i)(%wjC)MX%=1 %nXk=1 X��(%wk)=l p(i)(%w; �jC)p(i)(%wjC) : (12)For an e�cient computation of the estimates, generalized versions of the forward{backward{algorithms are required. For the discussion of implementation detailsand computational aspects we recommend [4].



4 Experiments & ResultsFor our experiments we use the database described in [2]. These data were col-lected with the Erlanger Train-Time-Table Dialogue System EVAR. For trainingpurposes, we have 9823 sentences along with their semantic annotation, the num-ber of di�erent sentences is 3873. Some of the sentences appear quite often in thedatabase, e.g. the one word sentence \Ja" (Yes) is seen 1660 times and a single\Nein" (No) 929 times due to the realized dialog strategy in our informationretrieval system. For test purposes, we use 4715 sentences also collected withEVAR. Some of the test sentences were already seen during training, but still2113 sentences are new. In the training set some very frequent multiple sentencescan be found, e.g. the above mentioned \Ja" is seen 798 times, \Nein" 498 times.The training set consists of 2339 di�erent sentences. The words in the trainingand test sentences are the observables for the probabilistic processes modelingsemantic attributes. We have 1021 di�erent words.In the experiments reported here we use the semantic annotation to build fourrespectively twelve semantic attributes to be detected. In the �rst experiment wewant to distinguish between the four attributes CITY, DATE, TIME and NIL wherethe attribute NIL should model those parts of sentences that do not belong toany other attribute, e.g. the single word utterances \Ja" and \Nein" should beassigned to NIL. In the second experiment we use the following twelve attributes:1. CITY2. SOURCECITY3. GOALCITY4. DATE 5. POFDAY6. RELDAY7. WEEKDAY8. SPECIAL 9. TIME10. RELTIME11. MARKER12. NILMost attributes are self-explanatory. POFDAY is the abbreviation for 'part-of-day'and is used for describing time intervals like \in the morning", \around lunchtime", etc. RELDAY denotes dates given in a relative manner, e.g. \today" or\tomorrow", RELTIME is used for relative time expressions like \earlier" or \aslate as possible". The attribute SPECIAL is used for dates given as legal holidayslike \Easter" or \Christmas", MARKER includes all relevant dialog markers, e.g.\Yes", \No", \Thank you" and even swear-words.For the two sets of semantic attributes we use ergodic models where each staterepresents one attribute. As initialization for the assignment probabilities we useuniform probabilities. The initialization of the output probabilities for the statesis done by counting the words in those sentences in which the correspondingattribute appears. Therefore we take a counter for each word initialized with 1(for avoiding the value 0 as output probability) and increase this counter everytime we see this word in a sentence expressing the interesting attribute.The initialized models are iteratively trained with the above described train-ing set of approximately 10 000 sentences. Then for each sentence of the test setthe best sequence of states is computed. For �rst order dependencies we use theViterbi algorithm, for second order dependencies the algorithm described in [4],which is a generalized Viterbi algorithm. The results of these experiments areshown in Table 1.



4 attributes 12 attributesHMM G2HMM HMM G2HMMAccurate sentences 3906 4283 2753 2773Wrong sentences 809 432 1962 1942Accurate Detections 83% 91% 58% 59%InsertionsSentences 343 253 1862 1834DeletionsSentences 506 253 715 753Table 1. Accuracy and Error-Rates for models with statistical dependency of orderg = 1 (HMM) and order g = 2 (G2HMM) with four and twelve semantic attributesWe accept only those sentences as correct where all semantic attributes thatare annotated in the reference are automatically detected and there is no at-tribute more than the annotated ones. Insertions are those errors where themodel aligns an attribute not to be found in the reference, a deletion occurs if atleast one of the reference attributes does not appear in the alignment result. Thesum of insertions and deletions must not match the number of wrong sentencesas there are sentences with insertions and deletions and those are counted twice.Problems arise within this evaluation scheme when we look at the attributeNIL. This attribute is not included in the reference annotation as long as thereis semantical relevant information in the word chain. Therefore, NIL could neverbe detected as deleted in word chains with other semantic attributes and wouldalways be an insertion. For that reason, it is not necessary to count the insertionson this semantic attribute. If we look at those sentences that are completely ir-relevant in the domain, we have an empty semantic annotation for it and identifythis empty reference as the NIL attribute. In those sentences, this attribute canbe deleted.The results in the Table 1 show that the models with order g = 2 have betterrecognition rates than those of order g = 1, because they use a wider context ofthe assignment function to decide upon the actual word wj to which attributeit should be aligned. The improvement for 12 attributes is smaller than the onefor 4 attributes because of the increase of parameters to be estimated and thesmall amount of training data.The number of insertions is clearly higher than the number of deletions. Thisfact can be explained with the rather bad modeling of �ller parts in the NIL state.If we look at the initialization procedure we see that we count all the words in asentence including a special attribute. Therefore, the count of words like \Ich"(I) or \fahren" (go to) is, e.g. in the experiment with 4 attributes, even for theattribute CITY very high because a lot of people call the EVAR system and startwith a sentence like \Ich will nach M�unchen fahren." (I want to go to Munich).As the NIL state is only initialized and trained with sentences without meaning in



the application domain at all those words are very rare and therefore their outputprobability for the NIL attribute is lower than the one for the attribute CITY. Asconsequence, words like the mentioned \Ich" or \fahren" will be aligned to CITYeven in a sentence expressing anything else, e.g. \Ich will um neun Uhr fahren." (Iwant to go at nine o'clock). Further investigations have to examine whether theseinsertion errors reduce the capabilities and performance of a complete systemusing the probabilistic approach to semantic analysis as much as deletions. Thedeletion of an attribute could never be withdrawn whereas the insertion couldbe detected in the next step of �nding the corresponding value for the attributeand therefore be corrected.5 Summary and ConclusionsIn this paper we describe, how a Bayesian framework and the optimal deci-sion rule can be applied to the problem of extracting the meaning from a wordchain.This could be done by assigning semantic attributes to the words and ex-tracting the attribute-dependent parts of the word chain. The problem of �ndingthe semantic contents is statistically modeled with an unknown assignment func-tion. The parameters describing the assignment function can be estimated usingthe EM algorithm. The semantic analysis is done by �nding the best alignmentof semantic attributes to the words applyinh a generalized version of the well{known Viterbi algorithm.. As the results with accuracy from 59% for twelveattributes and 91% for four attributes show, this probabilistic approach for thesemantic analysis of speech works quite well in our domain for German IC/EC-train connections.References1. A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum Likelihood from IncompleteData via the EM Algorithm. Journal of the Royal Statistical Society, Series B(Methodological), 39(1):1{38, 1977.2. W. Eckert, E. N�oth, H Niemann, and E.G. Schukat-Talamazzini. Real Users BehaveWeird | Experiences made collecting large Human{Machine{Dialog Corpora. InProc. of the ESCA Tutorial and Research Workshop on Spoken Dialogue Systems,pages 193{196, Vigs�, Denmark, June 1995.3. M. Epstein, K. Papineni, S. Roukos, T. Ward, and S. Della Pietra. Statistical nat-ural language understanding using hidden clumpings. In Proc. Int. Conf. on Acous-tics, Speech, and Signal Processing, pages 176{179, Atlanta, 1996.4. J. Hornegger. Statistische Modellierung, Klassi�kation und Lokalisation von Objek-ten. Shaker, Aachen, 1996.5. R. Pieraccini and E. Levin. A learning approach to natural language understand-ing. In NATO-ASI, New Advances & Trends in Speech Recognition and Coding,volume 1, pages 261{279, Bubion (Granada), Spain, 1993.6. H. Stahl, J. M�uller, and M. Lang. An e�cient top{down parsing algorithm forunderstanding speech by using stochastic syntactic and semantic models. In Proc.Int. Conf. on Acoustics, Speech, and Signal Processing, pages 397{400, Atlanta,1996.This article was processed using the LaTEX macro package with LLNCS style


