
Bayesian Vision: From Intensity Marginals toMutual Information and Entropic ObjectRecognition
AbstractIn this paper, we introduce a new and general framework for active statistical objectrecognition. Model generation, classi�cation, localization, as well as viewpoint planningare considered in a uni�ed manner using either gray{level images or derived features. In-stead of introducing geometrically motivated object models, the representation of objectsis based on density functions. These include both structural and statistical informationon objects and their appearance in the image plane. If no pose{invariant features areused, statistical object models will include rotation and translation parameters as well ascharacteristic properties of projections from the model space into the image plane. Spatialdistributions of single intensity values or image features are estimated using a set of sam-ple views and the expectation maximization algorithm. This method can deal with latenttraining data, i.e., missing depth and unknown assignments. The probabilistic frameworkpermits the application of powerful mathematical tools that reduce the complexity ofrecognition, localization, and viewpoint planning algorithms: mutual information, den-sity transformations and marginalizations. Impressive examples show the advantages ofthe introduced statistical concepts applied to object recognition problems.Keywords: statistical image modeling, statistical object recognition, pose estimation, in-tensity marginal, mixture density, mutual information



1 IntroductionThe ultimate goal of object recognition systems is the e�cient transformation of image datainto symbolic data which describe the present objects and their pose in such a way that the taskof the system can be solved in an accurate manner. The application of statistical and activemethods to solve this computer vision task is of increasing interest, and seem to overcome someproblems of purely geometrically based techniques with sensor noise, instabilities of images,and the selection of most discriminating views [7, 11, 19, 28]. There exist several reasonswhich make the use of probabilistic techniques appropriate and suggest the development of astatistical framework for computer vision:� the exceptional success of statistical methods in other �elds of pattern recognition likespeech recognition [17],� instabilities of image features due to varying illumination, quantization errors, or sensornoise [28],� optimality of the Bayesian decision rule with respect to misclassi�cation in the presenceof a 0{1 cost function [4], and� theoretical results concerning information theory, parametric and non{parametric esti-mation theory which might be advantageous for model generation algorithms and poseestimation [6, 22].Many object recognition methods are based on single views and associated features like 2{Dpoints or lines. The instabilities and inaccuracies of features as well as the change of viewingdirections are often not su�ciently considered within the chosen mathematical frameworks [10].Even statistical identi�cation and pose estimation algorithms make use of automatically com-puted segmentation results [7, 18, 24, 20, 28], but do neither inuence the selection of viewpoints2



and the number of views required for reliable recognition, nor do they select the segmentationalgorithms and features from the set of available functions and values. The statistical mod-eling of observable image features, of the assignment function or of relational dependenciesbetween observed primitives is done by joint probability density functions. The disadvantagesof segmentation{based approaches using single views are manyfold: segmentation algorithmslead to the reduction of data which usually results in features of lower information and dis-criminating power. The more data are available, the higher is the expected discriminatingpower. This is also valid for the sensor data. If the chosen camera position is not �xed andthe algorithm can select a viewing direction which shows the highest discriminating power forthe given object, we expect more reliable recognition results. For traditional approaches toobject recognition based on segmentation, it is true that | even if the segmentation resultsare modelled statistically | illumination and other properties are not part of the probabilisticmodel, explicitly.Instead of using segmentation results and one single, randomly chosen view for recognition,it seems natural to use intensity values or responses of selected �ltering operations directly.The viewing direction should be selected such that ambiguities are resolved and a reliableidenti�cation is possible. For that reason and due to the motivations mentioned within theintroduction, this paper introduces spatially dependent parametric density functions for imagemodeling and illustrates, how these probabilistic models can be used for e�cient pose esti-mation and classi�cation. The statistical framework allows also the judgment of views in aninformation{theoretical manner. For a given viewing direction, the amount of mutual informa-tion between the model and the observation can be measured using the available probabilitydensity functions, the pose parameters, and the gray{level image. Also the usage of multipleviews for recognition purposes is possible. 3



The basic problems treated in this paper are summarized as follows:� statistical modeling of objects and their appearance in the image plane,� computation of most discriminating views with respect to the given model data base,� dynamic determination of the most rational recognition algorithm, and� use of marginals to reduce the computational complexity of pose estimation and viewpointselection.The remainder of this paper is organized as follows: next section gives a discussion of relatedwork and a brief summary of statistical methods for object recognition and state{of{the{art forviewpoint planning. The third section introduces the theoretical framework for statistical imagemodeling and shows selected examples. These include mixture models and the embedding ofpose parameters into model densities. We also discuss the mathematical framework for modelgeneration algorithms (Section 4), pose estimation methods (Section 5), and the classi�cationproblem (Section 6). Section 7 deals with the complexity of statistical object recognition andpose estimation, and shows that projections and associated marginals lead to simpli�cationswhich induce more e�cient recognition algorithms. Marginalization is considered as a new andpowerful method which decreases the complexity for pose estimation and classi�cation. Theviewpoint planning problem using information theory is part of Section 8. We show how viewsof highest discriminating power can be selected automatically using mutual information. Thepaper concludes with the experimental evaluation of introduced concepts and a brief summary,which also gives some hints to future research problems.
4



2 Related WorkMost object recognition systems based on gray{levels apply averaging techniques. Invariantfeatures for the identi�cation of 2{D objects are computed [14] or some histogram type rep-resentations are chosen [19]. Often the pose estimation problem is of minor interest, and therepresentation of unknown objects in cluttered background is not part of the modeling for-malism. A �rst gray{level based approach to estimate pose parameters of 3{D objects usingmutual information is introduced in [26]. This algorithm requires a 3{D model, and appliesmethods of information theory and non{parametric densities for image registration purposes.An appearance based vision system, which applies Karhunen{Lo�eve transform to image vectors,is discussed in [15]. Each view is associated with a vector, the complete object is representedby a manifold induced by feature vectors of di�erent views. A recommended comparison ofappearance based approaches with other representations can be found in [16]. The discussionthere shows that appearance based methods, which avoid segmentation, lead to more robustrecognition modules than methods which are restricted to geometric primitives, like point orline features. This result has also motivated the approach proposed in this paper.The selection of viewpoints depends on two facts [25, 23]: on the one hand the view canbe selected which is the most probable and stable view of an object, and on the other handthe viewpoint shows the 2{D projection which allows the best distinction of considered objectswith respect to the model database. The mathematical fundamentals for likelihood of views andview stability of single objects are introduced and experimentally veri�ed in [27]. This methodallows the de�nition of prior probabilities for di�erent viewing directions, and thus reducesthe search space for pose parameters. These measures only depend on the object and do notconsider other objects of the model database. In contrast to established techniques for viewpoint5



planning [23], the consideration of pattern recognition problems using information theory, asdiscussed in [6], can be extended to compute those features with highest discriminating power.The maximization of mutual information was �rst proposed by Schiele and Crowley [19] toviewpoint planning and robot vision applications, who report remarkable experimental testson this method using multiple perceptive �elds. Here we extend these ideas to a more generalsetting.
3 Statistical Modeling of Intensity ImagesBayesian image analysis and viewpoint planning based on information theory requires statisticaldescriptions of objects and their appearance in the image plane. For that reason, we are lookingfor a general mathematical framework which allows the de�nition of model densities. This canbe, for instance, achieved by the registration of probabilistic properties of gray{levels or by thestatistics of observable geometric primitives like 2{D points or regions [7, 12]. The requiredprobabilistic models here should allow both identi�cation and localization of objects. Thus,a mathematical formalism is needed which yields a theoretical framework for the statisticaldescription of the spatial behavior of intensity values or image features dependent on the objects'pose. Position and orientation are related to a pre{de�ned reference coordinate system. First,the discussion concentrates on the statistical modeling of objects using intensity images. Second,specializations will result in model densities for more abstract features, and show the powerand generality of the introduced formalism. The given examples stress the generality of thechosen statistical modeling scheme.
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3.1 Mixture Modeling of Spatial DistributionsAn intensity image f = [fi;j]1�i�N;1�j�M is represented as a matrix of discrete values, whichare typically gray{level or color images. For simplicity, the following discussion is restrictedto scalars, such as gray{levels. Within a statistical setting, the complete observable imageis considered as a random �eld. There are several possibilities to characterize the statisticalbehavior of intensity values. Histograms, for example, are suitable for the description of gray{levels and their relative frequencies. They are successfully applied to object identi�cation [2] andlocalization (e.g., histogram backprojection, [21]). But, in general, histograms do neither reectthe spatial distribution of intensity values in the image plane, nor the dependency of gray{levelson the object's pose parameters. For that reason, Markov random �elds [11] or hidden Markovmesh �elds [3] are widely used for image modeling. These statistical representations include thespatial distribution of gray{levels as well as spatial dependencies of considered random variables.The geometrical 3{D structure of objects and the relation to 2{D projections, however, is notexplicitly represented, in contrast to structural descriptions, such as in [5].The proposed statistical modeling scheme considers spatial distributions of single intensityvalues in the image plane dependent on the gray{levels, and models these by bivariate prob-ability density functions (p.d.f.). A parametric representation of p.d.f.'s can be obtained bymixtures of Gaussians. Gaussians are adequate, because a well{known theoretical result statesthat linear combinations of Gaussians allow the approximation of arbitrary p.d.f.'s up to acertain error bound [29].For the mathematical formalization, let us assume that intensity values are discrete andcan have r di�erent values, i.e., g1; g2; : : : ; gr. Usually a quantization of eight bits is assumed,and thus gl is an element of the set f0; 1; : : : ; 255g. For each gray{level gl (1 � l � r) we7
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Figure 1: Spatial appearance of di�erent gray{levels. The left image shows a gray{level image,the right plot characterizes the spatial distribution of gray{level 100 using 100 example views.consider the parametric spatial density function in the image plane p((i; j)jagl); where (i; j) 2f1; 2; : : : ; Ng � f1; 2; : : : ;Mg is a 2{D image point; the symbol agl denotes the parameters ofthe density function associated with intensity value gl which is independent of the lattice point(i; j). The observable image is decomposed into r images, one image for each intensity valuegl, 1 � l � r. At this point, the modeling of these images is done seperately.Example: Figure 1 shows a gray{level image and the density for a single intensity value.The spatial distribution of intensity value gl can be approximated by a mixture of Gaussians. Inthis case, the parameters agl summarize the characteristic parameters of the mixture, i.e., thediscrete probability for each mixture component, the mean vectors, and the covariance matrices.If r intensity values are present, we get r images, one for each gray{level, and thus r mixturesof Gaussians. 2If we assume pairwise statistically independent intensity values, the statistical descriptionof the complete image f de�ned on the 2{D grid X = [i; j]1�i�N;1�j�M is the conditional
8



probability density function de�ned by the productp(Xjf ; fag1 ;ag2 ; : : :agng) = NYi=1 MYj=1 p((i; j)T jafi;j ) : (1)This density allows the computation of a statistical measure for an observed image, presup-posed the parameters of the involved mixtures are known. Intensity values corresponding toobjects depend on the pose parameters of objects in the world coordinate system as well as onillumination conditions. Thus, above probability density function (1) has to be extended withrespect to these degrees of freedom. This is done by the introduction of density transforms.3.2 Mixtures with Integrated Feature TransformRotation and translation of objects induces a transform of observed random variables in theimage plane. Let us assume, a random vector x with p.d.f. px(x) is mapped by T to therandom variable y. If the transform T is bijective, i.e., the inverse mapping T �1 exists, thep.d.f. py(y) of random variable y is [1]:py(y) = j det(JT�1(y))j px(T�1(y)) ; (2)wherein JT�1(y) denotes the Jacobian of T �1 at y.Example: Let x be normally distributed with mean vector �x and covariance matrix �x.An a�ne bijective mapping is given by the matrix R and the vector t, and we de�ne y =Rx + t : The application of formula (2) shows that the resulting random variable is againnormally distributed. The mean vector is �y = R�x + t and for the covariance matrix we get�y = RT�xR. 29



Using this result, we can extend p.d.f. (1) with respect to a�ne transforms, which includerotations and translations as special cases. The general p.d.f. including additional degrees offreedom thus isp(Xjf ; fag1 ;ag2 ; : : :agng;R; t) = NYi=1 MYj=1 p((i; j)T jafi;j ;R; t) : (3)Example: Let us assume that the spatial probability density p((i; j)jagl) of single intensityvalues gl is a mixture of Gaussians, i.e.,p(xjagl) = mlXk=1 pgl;k N (xj�gl;k;�gl;k)= mlXk=1 pgl;k � exp ��12(x� �gl;k)T��1gl;k(x� �gl;k)�qdet (2��gl;k) ; (4)wherein xT = (i; j), ml the number of mixture components corresponding to gray{level gl, andPmlk=1 pgl;k = 1. If we extend these mixtures with respect to a�ne transforms, we get:p(Xjf ; fag1;ag2; : : :agng;R; t) = NYi=1 MYj=1 mlXk=1 pfi;j ;k N ( ij!jR�fi;j ;k + t;RT�fi;j ;kR)! (5)This p.d.f. allows the computation of a probability measure for an image corresponding to anobject with pose parameters, here de�ned by R and t. 2Instead of a�ne mappings, there are several other transformations which might be consid-ered. The rotation, translation, and the subsequent projection of 3{D objects into the imageplane, the underlying illumination model, the transformations required for resolution hierar-chies or the application of some �ltering operations, like corner detection, induce transforma-tions which have to be part of the density functions. In general, most transformations, like10



projections, are not bijective mappings, i.e., there exists no inverse. For these transformationsthe standard density transform given by (2) cannot be applied directly. To overcome this prob-lem, the considered transform has to be extended to a bijective transform. This procedure addssome auxiliary random variables, which can be eliminated in a second step by marginalizationsafter the density transform [1].Example: Let us consider the spatial distribution of point features instead of intensityvalues. In terms of the above suggested statistical modeling scheme, the p.d.f. for 2{D pointsrequires only a product of a single mixture of densities, because instead of r intensity values, wehave only one type of points and the associated positions in the image plane. Figure 2 showsan example for a gray{level image and the result of a standard corner detection algorithm.Compared with intensity values, the appearance of point features is quite sparse in the imageplane. Therefore, the discriminating power of point features is expected to be much lower thangray{levels. We assume that the observable point features in the image plane o1, o2; : : :, oqare transformed and projected corners of the original 3{D object. Let the involved mapping bede�ned by the a�ne transform oi = Rc + t ; (6)wherein oi 2 IR2, the corresponding model point c 2 IR3, R 2 IR2�3 and t 2 IR2. The statisticaldistribution of the observable 2{D features can be characterized by a mixture of Gaussians[7, 28]. If we assume that this holds also for the 3{D model points, we get the following p.d.f.for the 2{D observations:p(Oja;R; t) = qYi=1 mXk=1 pk N (oijR�k + t;RT�kR) ; (7)11



where O = fo1;o2; : : : ;oqg, �k 2 IR3, and �k 2 IR3�3. This p.d.f. shows that the statisticalmodels used in [28] and [7] are specializations of (1). The correspondence problem is not present,since it is eliminated by summation over all mixture components. 2

Figure 2: Gray{level image and computed point featuresThe introduction of p.d.f. with integrated transforms for image modeling raise up severaltypes of problems, which we will consider next:� How can we estimate the density parameters using sample views?� How can we estimate the object's pose parameters?� Which decision rule will be applied for classi�cation?� Which methods can be applied to increase the e�ciency of pose estimation and classi�-cation?� Which methods can be used to viewpoint planning in the presence of statistical models?We start the discussion of these questions with the model generation stage for statistical objectmodels.
4 Model GenerationThe model generation based on model densities corresponds to a parameter estimation prob-lem. For a set of observed training images and the corresponding pose parameters, the model12



parameters have to be computed such that the p.d.f. �ts the observation with respect to anoptimality criterion. If we apply the maximum likelihood estimation for that purpose, theunknown parameters maximize the likelihood function for a given observation.Example: Let us assume we approximate the density function for each intensity value glusing a mixture of Gaussians. The unknown parameters of this model density are (c.f. (5))1. the number ml of mixture components,2. the discrete probabilities pgl;k , (1 � k � ml),3. the ml 2{D mean vectors, and4. the (2� 2) covariance matrices.If we have V training views f 1, f 2; : : : ; fV and the corresponding transformation parametersR1; t1; : : : ; RV ; tV , the maximum likelihood estimation corresponds to the optimization problemargmaxml;f�gl;k;�gl;k;1�k�mlg VYv=1 NYi=1 MYj=1 mlXk=1 pfv;i;j ;k N ( ij!jRv�fv;i;j ;k + tv;RTv�fv;i;j ;kRv)! : (8)2This example shows that we have to deal with two di�erent types of optimization: dynamicand static. The number of mixture components ml de�nes the static structure of the densityand sets the dimension of the search space for other parameters: the higher we choose ml, themore mean vectors, covariance matrices, and weights have to be estimated. The computation ofthe optimal number of mixtures ml is a dynamic optimization problem, as it is well known fromcontrol theory. If ml is �xed, the static optimization is restricted to the estimation of mixtureparameters, like means or covariances. Due to the fact that it is not known in advance whichimage point corresponds to which component of the chosen mixture, the parameter computationis associated with an incomplete data estimation problem [22].13



4.1 Vector QuantizationThe initialization of mixtures, which includes the estimation of mixture components and otherparameters, is also one of the central problems in speech processing [8]. Usually, speech sampledata are pre{processed by a vector quantization step. This reduces the set of all sample vectorsto a set of reference vectors of much lower cardinality, which is the so{called code{book. Eachvector of the sample data is mapped on a vector of the code{book in an uniqe manner.This method is also applied herer for image processing. For our application, we use the well{known LBG vector quantization algorithm combined with mean square errors to compute thenumber of mixture components as well as initial estimates of mean vectors [8]. This method,however, is restricted to those application where the dimensions of code{book vectors andsample data are equal. Vector quantization methods which work with projected observationsare still open research problems. The estimation, for instance, of a code{book including 3{Dvectors using 2{D projected sample data is not possible using these methods.4.2 Parameter Estimation using Incomplete DataThe estimation of parameters has to be done using training data with missing information. If,for instance, only 2{D projections of 3{D objects can be observed, the depth information is notpart of the training set. An established algorithm, which can deal with incomplete training data,is the expectation maximization algorithm (EM algorithm) [22], which is a local optimizationmethod. The EM algorithm is an iterative version of the maximum likelihood estimation. Theadvantage of the EM algorithm is that for most applications dealing with mixture densities, thesearch space can be decomposed into lower dimensional and independent sub{spaces. Therefore,the parameter estimation problem is divided into simpler and independent optimization tasks.14



Example: Let us assume we observe sets of 2{D points which are projections of normallydistributed 3{D points, and we have to estimate the 3{D mean vectors using the 2{D imagepoints. Due to the fact that we do neither know the depth values, nor the assignment of the 2{D points to the corresponding 3{D points, we have to deal with an incomplete data estimationproblem. The application of the EM algorithm results in iterative training formulas whichcan estimate the mean vectors from projections, without knowing the correspondence betweenprojected points and the missing 3{D information [7]. For a detailed discussion on applicationsof the EM algorithm with respect to mixtures of densities we recommend [13]. 2
5 Pose EstimationModel densities show two di�erent types of parameters: model parameters, which specify thespatial distribution, and pose parameters, which characterize the position and orientation withinthe world coordinate system. The model parameters are estimated during the training stage.If the p.d.f. has to be evaluated for a given image f , also the knowledge of pose parametersis necessary. Within the statistical framework, this corresponds to the maximum likelihoodestimation problem:fcR; btg = argmaxR; t p(Xjf ; fag1;ag2; : : :agng;R; t) : (9)Example: The localization of 2{D objects requires the estimation of the rotation angle inthe image plane and the 2{D translation vector. The pose estimation problem is thus related toa global optimization within a 3{D search space. 2The computation of pose parameters, however, is a computationally hard problem and15



requires e�cient implementations. We will outline some methods to solve this task in Section 7.
6 Classi�cationIf there are K object classes, which can appear in the image, the classi�cation problem is to �nda discrete function which maps a given image f to the correct object class 
�, � = 1; 2; : : : ; K.The identi�cation of objects within a statistical framework is based on the Bayesian decisionrule. This decision method requires the computation of posterior probabilities. Let p(
�jf) bethe a posteriori probability for class 
�, if the image f is given. We decide for that class 
�,which maximizes the a posteriori probability, i.e.,
� = argmax
� p(
�jf) : (10)This decision rule guarantees the optimality of the implemented classi�er with respect to miss-classi�cations if the statistical models are appropriate. The a posteriori probabilities are easilycomputed, if the pose parameters are known (c.f. Section 5).
7 Methods to Increase E�ciencyAbove discussion shows that in the presence of non{invariant features, it is necessary to estimatethe pose parameters for recognition purposes. For that reason, the e�ciency of recognition al-gorithms crucially depends on the e�ciency of pose estimation. The run{time of the parameterestimation module, which is based on global optimization algorithms, is essentially inuencedby � the dimension of the search space, 16



� the number of function evaluations, and� the time required for density evaluations.The following subsections present some possibilities to reduce the computational e�ort for poseestimation with respect to these three items.7.1 ParallelizationPose estimation within the chosen statistical framework corresponds to a global optimizationproblem. If, for instance, orthographic projection is assumed, the search space has �ve dimen-sions: three rotation angles and two components of the translation vector. The search space,in general, can be partitioned into disjoint subsets. This also induces a decomposition of thesearch problem into independent sub{tasks, and allows the distribution of the global optimiza-tion problem to several processors. For each element of the partition we global maximum. Acomparison of global maxima of subspaces results in the global maximum we are looking for.The speed{up depends on the number of used processors and is expected to be linear. Indeed,parallelization is the most obvious acceleration of pose estimation, but there are also some moresophisticated methods, which work on image data and take advantage of some mathematicalproperties of present objective functions, i.e., model densities.7.2 Resolution HierarchiesAlgorithms in image processing and computer vision apply resolution hierarchies to reduce thecomplexity of the considered problem. Lower resolutions reduce the number of image pointsand therefore the time required for density evaluations. The usage of resolution hierarchies isalso advantageous within the context of the chosen statistical framework. The switch betweenseveral resolution levels has to be done using statistical models. The involved p.d.f. can be17



computed using standard density transforms (c.f. (2)).Example: The easiest way to de�ne resolution hierarchies (which is from a theoretical pointof view not correct, but works �ne on images captures with CCD devices) is to use average gray{levels of a well{de�ned neighborhood of a given pixel of the image grid. The computation ofmeans of gray{levels induces a density transform on the original p.d.f. (1). Since densitieswhich correspond to sums of random variables can be computed by subsequent convolutions ofthe summands' densities [1], the p.d.f. of lower resolutions are known. For example, if normallydistributed random variables are considered, the convolution operations result in Gaussians, too[1]. 2Instead of using resolution hierarchies, we can also choose only each n{th point of the imagegrid for density evaluations. A probabilistic method will use a random process to select theimage points, which might be considered for density evaluations.7.3 QuantizationIn the previous section, we suggested to reduce the spatial resolution of the image to speed{upthe evaluation time of involved density functions. Another reduction can be achieved by thequantization of considered intensity values. Threshold operations, like binarization or histogramlinearization, allow the reduction of gray{levels appearing in the image. Also for quantizationpurposes, a straightforward density transform can be used to compute the p.d.f. of reducedgray{levels.Example: A multi{thresholding operation makes it possible to map a gray{level image with255 gray{levels to an image with, for instance, �ve gray levels. Figure 3 shows an example of agray{level image with reduced intensity values. The spatial distribution of �ve gray{levels canbe used as p.d.f. for recognition and reduces the computational complexity of (1), obviously.18



Figure 3: Gray{level image with 256 intensity values (left) and �ve intensity values (right)The introduction of features like points or lines is another example for (much more di�cult)quantizations, which simplify the original model density (1). 27.4 MarginalsUp to now, we have partitioned the search space, have reduced the number of function eval-uations as well as the complexity of model densities. Methods which reduce the dimension ofthe search space were not discussed and are not obvious. Figure 4 illustrates that projectionscan eliminate free parameters. One{dimensional projections of point features, for example, areinvariant with respect to translations along the y{axis of the image coordinate systems and re-garding rotations around the x{axis. The search space is thus reduced, if one{dimensional pointfeatures are considered instead of 2{D points. The consequence for practical implementationsis that for pose estimation, we �rst compute hypotheses in the lower dimensional sub{space andre�ne these parameters in the higher{dimensional search space. Within the statistical models,projection on the y{axis corresponds to the computation of the marginal density of the originalp.d.f. Marginalizations, therefore, simplify the global optimization problems, which are relatedto pose estimation.
19
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Figure 4: Projections reduce the number of free parametersExample: If the spatial distribution of intensity values is modeled by (1), intensity marginalscan be computed by integrating out the x{ or the y{components. The resulting semi{invariantscan be applied to solve several problems. Applications of intensity marginals can be found, forinstance, in document analysis systems. Therein, marginals are used to detect lines of writtentext. 2The Bayesian approach to computer vision presented so far can be used to learn, to recognize,and to localize objects. Nevertheless, the mathematical framework shows some remarkabledisadvantages: The projection of features does not necessarily keep the global maximum, and,of course, decreases the discriminating power of features. Furthermore, it might happen thatdi�erent 3{D objects share the same features in projections. Figure 5, for example, showstwo di�erent 3{D objects with a common 2{D view. The computation of pose parameterscorresponds to a parameter estimation problem. Due to the fact that consistent estimatorsshow a convergence in probability for increasing sample data, the use of multiple views should20



Figure 5: Two di�erent 3{D objects which share a common viewincrease the reliability of estimated pose parameters. Both the reliability of estimated poseparameters and the handling of mentioned ambiguities will be improved by using multipleviews.
8 Mutual Information and Viewpoint PlanningIf a calibrated camera is available, which is controlled by a robot, multiple views can be takenof a scene. The transforms between single views are known, because the extrinsic cameraparameters can be computed using the robot's position. Let us assume, we have V views.Thus, we have the images f 1; f 2; : : : ; fV , and the rotation and translation of the camerabetween single views. The transforms are denoted by f�Rv;�tv; 1 � v � V g, wherein �Rvand �tv symbolize the transform of the camera for the v{th view with respect to a referenceposition. For simplicity, we assume that the transform associated with the �rst view is theidentity. If pose parameters R and t of an object are unknown and if multiple views areavailable, the position and orientation can be computed by solving the maximum likelihoodestimation problem fcR; btg = argmaxR; t VYv=1 p(Xjf v;a;R; t;�Rv;�tv) : (11)21



Di�erent views for recognition and pose estimation purposes can be selected randomly or fol-lowing some heuristics or applying some optimality criterions. If a set of features is given,standard pattern recognition theory provides a various methods to select n{best features withrespect to the classi�cation task. Among them are algorithms based on information theory.The idea of these methods is to select those subsets with the highest amount of information.Since each view results in sensor data (or features), the selection of viewpoints is closely relatedto the problem of choosing the most discriminating elements of a, in principle in�nite, set offeatures.According to optimal viewpoint planning strategies, it is necessary at every moment tochoose and to observe such images from the given object supplying the largest amount ofinformation, i.e., eliminating the largest degree of uncertainty. The term information wasmathematically formalized by Shannon, and the presented statistical characterizations of ob-jects of previous sections allow the de�nition of the viewpoint selection problem in the sense ofShannon's information theory [6, 19].For that purpose, we consider the process of generating images of objects as a transmissionof information through a communication channel. We put an object of class 
� into thecommunication channel. The output is the observable image f . The input alphabet 
 of thechannel is de�ned by the object classes 
1, 
2; : : : ; 
K and the output alphabet F results fromthe available images f . Figure 6 illustrates di�erent types of information, as they appear withrespect to object recognition problems. Irrelevance summarizes the information which is addedby the channel. This might be background features or some noise e�ects. The equivocation isthe part of information which gets lost during the transmission through the channel. Examplesare the depth data, which are eliminated by the projection to the image plane. The mutualinformation de�nes the rate of transmission of information through the channel related to the22



input object. Therefore, mutual information is the most important measure of the assumedtransmission channel. In contrast to standard de�nitions, mutual information depends here alsoon transformation parameters. These parameters are, however, not part of the observation.The mutual information I(
�;f ;R; t) (with integrated transform denoted by R and t) ofthe communication channel is de�ned byI(
�;f ;R; t) = log p(f ;
�;R; t)p(f ;R; t)p(
�;R; t)= log p(f ;
�;R; t)P
� p(f ;
�;R; t)p(
�;R; t) : (12)Due to the statistical nature of model densities introduced in this paper, the probabilitiesrequired for the evaluation of mutual information can be evaluated, if the pose parameters areknown. Since the position and orientation of objects inuence the amount of information, wecan give a formal de�nition of the best viewing direction:fR�; t�g = argmaxR; t I(
�;f ;R; t) : (13)With this information{theoretical formalization, the best views of objects with respect to agiven model database are well{de�ned and can be computed.For the practical use of this concept, we compute in an o�{line pre{processing stage thosepose parametersR� and t�, which show the highest mutual information for each object class 
�.This can be done by using the same global optimization methods which are also applied for poseestimation, and has to be recomputed, if the model database is extended for additional objects.If a set of most discriminating viewpoints is required, a sequence of best rotation and translationparameters with decreasing information can be computed using mutual information. Results of23
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Figure 6: Illustration of relations between object recognition and mutual information
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optimalR�; t�R; tobserved viewview �R;�t
referencepositionFigure 7: Computation of the transform required to �nd the best viewpoint.this pre{processing step can be used to implement an entropic active object recognition system,which gives the so{called most rational algorithm for recognition [6, p. 355].Example: Let us assume we observe an image f showing an object of an unknown class
�. The pose parameters can be estimated using this single view. If the most signi�cant viewingdirection (de�ned by R� and t�) for object 
� is known, we can compute the transformationparameters, �R and �t, for the camera to the most discriminating viewpoint. If an initialestimate of R and t is computed by (9) the transformation can be computed using the graphshown in Figure 7. 2

9 Experimental ResultsThe experimental evaluation considers recognition experiments using both gray{level imagesand point features for classi�cation purposes.11In case of acceptance, the �nal paper will include more experiments. The work is in progress.
25



Figure 8: Objects of the model data base9.1 Object Recognition using Intensity ImagesIn the �rst set of experiments, we avoid segmentation and reduce gray{level images to lowerdimensional features vectors by a Karhunen{Lo�eve transforms [15]. The spatial distribution ofthese vectors is modelled by single Gaussians. For model generation purposes, there are 100training views of each object available. The disjoint test set contains also 100 views of eachobject. The considered four object classes are shown in Figure 8. The computed recognitionrate with homogeneous background is 50 %, if 20{dimensional vectors are used. If we use theabsolute values of the 2{D Fourier transform instead of intensity values, the overall recognitionrate increases to 100 % for the given test set. The statistical modeling of transformed gray{levelimages by mixtures of spatial distributions, here, leads to a recognition rate of 91 %.9.2 Object Recognition using Point FeaturesThe reduction of intensity images to point features leads to the expected decrease of recognitionrates. Instead of 100 % using Fourier transforms, only 82 % of the objects are classi�edcorrectly. Nevertheless, point features are worth being considered for further experiments.Corners of polyhedral objects allow the estimation of higher dimensional mixture densities,even if only projected training data are available. This is not the case, if only intensity areconsidered without having a suitable illumination model. Assume we model the 3{D corners of26



Figure 9: Maximum likelihood estimate of pose parameters resulting from point featuresnumber of processors 2 3 4 5 6speed{up 1.7 2.8 3.5 3.9 4.2Table 1: Parallelization of pose estimationan object using a mixture of Gaussians. The 3{D mean vectors and the covariance matrices, forinstance, have to be estimated using 2{D, orthographic projections from several views. Due tothe hidden depth information, the EM algorithm is applied for model generation purposes. Forpose estimation, a the solution of a global optimization task is required. The global optimizationis done by probabilistic search methods. A reliable global optimization of the objective functionwithin the �ve{dimensional search space requires in average four hours on a HP 735 (125 MIPS),if twelve mixture components are involved. The use of marginals to reduce the complexity ofglobal optimization, induces a descend of the computation time to 1.5 minutes. The correctpose parameters on synthetic data (400 2{D images) could be found with a probability of 82%. The experiments also show, the marginals do not only reduce the dimensions of the searchspace, but also the time for evaluating density functions. An example for maximum likelihoodestimates of pose parameters can be found in Figure 9. The implementation of a parallel searchmethod which distributes the optimization problem to several processors leads to speed{upssummarized in Table 1.Recognition experiments on 1600 images showing 3{D objects with homogeneous back-27



ground result in classi�cation rates of 70 % if single views are used for identi�cation.9.3 Object Recognition using Multiple ViewsThe use of multiple views for object recognition shows two advantages: on the one hand theobjective function for pose estimation shows a unique global maximum if additional views areconsidered, on the other hand the discriminating power increases. The use of multiple viewsfor pose estimation shows remarkable improvements regarding the correct pose parameters. Werun experiments using 400 random views of synthetic objects and the correct pose parametersincreased from 96 % to 100 % if a second view is used. Existing ambiguities considering a singleimage are eliminated with a second view, but the average computation time using two viewsinstead of one is three times higher: in average it takes 420s to compute the right position.
10 Summary and ConclusionsThis paper has shown a Bayesian approach to object recognition using gray{level images orinduced geometrical features like points or lines. The statistical modeling of objects allowsthe use of the Bayesian decision rule, and thus the implementation of a theoretically optimalclassi�er is possible. Object models correspond to density functions, wherein mixtures anddensity transforms are important. In this context, model generation procedures as well aspose computation are related to parameter estimation problems. For computational e�ciency,we use marginals which reduce the dimension of the search spaces for several applications.Another important concept deals with problems of viewpoint planning and priors of viewingdirections based on mutual information with integrated feature transform. This informationtheoretical formalization results in an entropic object recognition system, which uses sensor28



data with the highest amount of information. The best views are generated maximizing themutual information between object classes and observed images.The introduced statistical framework is suitable for object recognition, pose computation,and viewpoint planning. Nevertheless, two important issues remain unexplored:� How many views and how many features are required for a certain recognition rate?� Which resolution and which type of features are optimal with respect to the given com-puter vision problem?
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