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Abstract

In this paper, we introduce a new and general framework for active statistical object
recognition. Model generation, classification, localization, as well as viewpoint planning
are considered in a unified manner using either gray—level images or derived features. In-
stead of introducing geometrically motivated object models, the representation of objects
is based on density functions. These include both structural and statistical information
on objects and their appearance in the image plane. If no pose-invariant features are
used, statistical object models will include rotation and translation parameters as well as
characteristic properties of projections from the model space into the image plane. Spatial
distributions of single intensity values or image features are estimated using a set of sam-
ple views and the expectation maximization algorithm. This method can deal with latent
training data, i.e., missing depth and unknown assignments. The probabilistic framework
permits the application of powerful mathematical tools that reduce the complexity of
recognition, localization, and viewpoint planning algorithms: mutual information, den-
sity transformations and marginalizations. Impressive examples show the advantages of

the introduced statistical concepts applied to object recognition problems.
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1 Introduction

The ultimate goal of object recognition systems is the efficient transformation of image data
into symbolic data which describe the present objects and their pose in such a way that the task
of the system can be solved in an accurate manner. The application of statistical and active
methods to solve this computer vision task is of increasing interest, and seem to overcome some
problems of purely geometrically based techniques with sensor noise, instabilities of images,
and the selection of most discriminating views [7, 11, 19, 28]. There exist several reasons
which make the use of probabilistic techniques appropriate and suggest the development of a
statistical framework for computer vision:

e the exceptional success of statistical methods in other fields of pattern recognition like

speech recognition [17],
e instabilities of image features due to varying illumination, quantization errors, or sensor
noise [28],

e optimality of the Bayesian decision rule with respect to misclassification in the presence

of a 0—1 cost function [4], and

e theoretical results concerning information theory, parametric and non—parametric esti-

mation theory which might be advantageous for model generation algorithms and pose
estimation [6, 22].

Many object recognition methods are based on single views and associated features like 2-D
points or lines. The instabilities and inaccuracies of features as well as the change of viewing
directions are often not sufficiently considered within the chosen mathematical frameworks [10].
Even statistical identification and pose estimation algorithms make use of automatically com-

puted segmentation results [7, 18, 24, 20, 28|, but do neither influence the selection of viewpoints



and the number of views required for reliable recognition, nor do they select the segmentation
algorithms and features from the set of available functions and values. The statistical mod-
eling of observable image features, of the assignment function or of relational dependencies
between observed primitives is done by joint probability density functions. The disadvantages
of segmentation—based approaches using single views are manyfold: segmentation algorithms
lead to the reduction of data which usually results in features of lower information and dis-
criminating power. The more data are available, the higher is the expected discriminating
power. This is also valid for the sensor data. If the chosen camera position is not fixed and
the algorithm can select a viewing direction which shows the highest discriminating power for
the given object, we expect more reliable recognition results. For traditional approaches to
object recognition based on segmentation, it is true that — even if the segmentation results
are modelled statistically — illumination and other properties are not part of the probabilistic
model, explicitly.

Instead of using segmentation results and one single, randomly chosen view for recognition,
it seems natural to use intensity values or responses of selected filtering operations directly.
The viewing direction should be selected such that ambiguities are resolved and a reliable
identification is possible. For that reason and due to the motivations mentioned within the
introduction, this paper introduces spatially dependent parametric density functions for image
modeling and illustrates, how these probabilistic models can be used for efficient pose esti-
mation and classification. The statistical framework allows also the judgment of views in an
information—theoretical manner. For a given viewing direction, the amount of mutual informa-
tion between the model and the observation can be measured using the available probability
density functions, the pose parameters, and the gray—level image. Also the usage of multiple

views for recognition purposes is possible.



The basic problems treated in this paper are summarized as follows:

e statistical modeling of objects and their appearance in the image plane,

e computation of most discriminating views with respect to the given model data base,

e dynamic determination of the most rational recognition algorithm, and

e use of marginals to reduce the computational complexity of pose estimation and viewpoint

selection.

The remainder of this paper is organized as follows: next section gives a discussion of related
work and a brief summary of statistical methods for object recognition and state—of-the—art for
viewpoint planning. The third section introduces the theoretical framework for statistical image
modeling and shows selected examples. These include mixture models and the embedding of
pose parameters into model densities. We also discuss the mathematical framework for model
generation algorithms (Section 4), pose estimation methods (Section 5), and the classification
problem (Section 6). Section 7 deals with the complexity of statistical object recognition and
pose estimation, and shows that projections and associated marginals lead to simplifications
which induce more efficient recognition algorithms. Marginalization is considered as a new and
powerful method which decreases the complexity for pose estimation and classification. The
viewpoint planning problem using information theory is part of Section 8. We show how views
of highest discriminating power can be selected automatically using mutual information. The
paper concludes with the experimental evaluation of introduced concepts and a brief summary,

which also gives some hints to future research problems.



2 Related Work

Most object recognition systems based on gray—levels apply averaging techniques. Invariant
features for the identification of 2-D objects are computed [14] or some histogram type rep-
resentations are chosen [19]. Often the pose estimation problem is of minor interest, and the
representation of unknown objects in cluttered background is not part of the modeling for-
malism. A first gray—level based approach to estimate pose parameters of 3-D objects using
mutual information is introduced in [26]. This algorithm requires a 3-D model, and applies
methods of information theory and non—parametric densities for image registration purposes.
An appearance based vision system, which applies Karhunen—Loeve transform to image vectors,
is discussed in [15]. Each view is associated with a vector, the complete object is represented
by a manifold induced by feature vectors of different views. A recommended comparison of
appearance based approaches with other representations can be found in [16]. The discussion
there shows that appearance based methods, which avoid segmentation, lead to more robust
recognition modules than methods which are restricted to geometric primitives, like point or
line features. This result has also motivated the approach proposed in this paper.

The selection of viewpoints depends on two facts [25, 23]: on the one hand the view can
be selected which is the most probable and stable view of an object, and on the other hand
the viewpoint shows the 2—-D projection which allows the best distinction of considered objects
with respect to the model database. The mathematical fundamentals for likelihood of views and
view stability of single objects are introduced and experimentally verified in [27]. This method
allows the definition of prior probabilities for different viewing directions, and thus reduces
the search space for pose parameters. These measures only depend on the object and do not

consider other objects of the model database. In contrast to established techniques for viewpoint



planning [23], the consideration of pattern recognition problems using information theory, as
discussed in [6], can be extended to compute those features with highest discriminating power.
The maximization of mutual information was first proposed by Schiele and Crowley [19] to
viewpoint planning and robot vision applications, who report remarkable experimental tests
on this method using multiple perceptive fields. Here we extend these ideas to a more general

setting.

3 Statistical Modeling of Intensity Images

Bayesian image analysis and viewpoint planning based on information theory requires statistical
descriptions of objects and their appearance in the image plane. For that reason, we are looking
for a general mathematical framework which allows the definition of model densities. This can
be, for instance, achieved by the registration of probabilistic properties of gray—levels or by the
statistics of observable geometric primitives like 2-D points or regions [7, 12]. The required
probabilistic models here should allow both identification and localization of objects. Thus,
a mathematical formalism is needed which yields a theoretical framework for the statistical
description of the spatial behavior of intensity values or image features dependent on the objects’
pose. Position and orientation are related to a pre—defined reference coordinate system. First,
the discussion concentrates on the statistical modeling of objects using intensity images. Second,
specializations will result in model densities for more abstract features, and show the power
and generality of the introduced formalism. The given examples stress the generality of the

chosen statistical modeling scheme.



3.1 Mixture Modeling of Spatial Distributions

An intensity image f = [fijli<i<n1<j<um is represented as a matrix of discrete values, which
are typically gray-level or color images. For simplicity, the following discussion is restricted
to scalars, such as gray-levels. Within a statistical setting, the complete observable image
is considered as a random field. There are several possibilities to characterize the statistical
behavior of intensity values. Histograms, for example, are suitable for the description of gray-
levels and their relative frequencies. They are successfully applied to object identification [2] and
localization (e.g., histogram backprojection, [21]). But, in general, histograms do neither reflect
the spatial distribution of intensity values in the image plane, nor the dependency of gray—levels
on the object’s pose parameters. For that reason, Markov random fields [11] or hidden Markov
mesh fields [3] are widely used for image modeling. These statistical representations include the
spatial distribution of gray—levels as well as spatial dependencies of considered random variables.
The geometrical 3-D structure of objects and the relation to 2-D projections, however, is not
explicitly represented, in contrast to structural descriptions, such as in [5].

The proposed statistical modeling scheme considers spatial distributions of single intensity
values in the image plane dependent on the gray-levels, and models these by bivariate prob-
ability density functions (p.d.f.). A parametric representation of p.d.f.’s can be obtained by
mixtures of Gaussians. Gaussians are adequate, because a well-known theoretical result states
that linear combinations of Gaussians allow the approximation of arbitrary p.d.f.’s up to a
certain error bound [29].

For the mathematical formalization, let us assume that intensity values are discrete and
can have r different values, i.e., g1, 9s,...,9,. Usually a quantization of eight bits is assumed,

and thus g; is an element of the set {0,1,...,255}. For each gray-level g; (1 <1 < r) we



Figure 1: Spatial appearance of different gray—levels. The left image shows a gray-level image,
the right plot characterizes the spatial distribution of gray-level 100 using 100 example views.

consider the parametric spatial density function in the image plane p((7, j)|a,, ), where (3, j) €
{1,2,...,N} x {1,2,...,M} is a 2-D image point; the symbol a,, denotes the parameters of
the density function associated with intensity value g; which is independent of the lattice point
(7,7). The observable image is decomposed into r images, one image for each intensity value
g1, 1 <1 < r. At this point, the modeling of these images is done seperately.

Example: Figure 1 shows a gray—level image and the density for a single intensity value.
The spatial distribution of intensity value g; can be approrimated by a mixture of Gaussians. In
this case, the parameters a, summarize the characteristic parameters of the mizture, i.e., the
discrete probability for each mizture component, the mean vectors, and the covariance matrices.
If r intensity values are present, we get r images, one for each gray-level, and thus r mixtures
of Gaussians. a

If we assume pairwise statistically independent intensity values, the statistical description

of the complete image f defined on the 2-D grid X = [i,j];;cn,<j<a is the conditional



probability density function defined by the product

N M

p(X[fi{ag, aq,...a5,}) = [[IIp(G5)" as,) - (1)

i=1j=1

This density allows the computation of a statistical measure for an observed image, presup-
posed the parameters of the involved mixtures are known. Intensity values corresponding to
objects depend on the pose parameters of objects in the world coordinate system as well as on
illumination conditions. Thus, above probability density function (1) has to be extended with

respect to these degrees of freedom. This is done by the introduction of density transforms.

3.2 Mixtures with Integrated Feature Transform

Rotation and translation of objects induces a transform of observed random variables in the
image plane. Let us assume, a random vector @ with p.d.f. pz(x) is mapped by T to the
random variable y. If the transform T is bijective, i.e., the inverse mapping T " exists, the

p.d.f. p,(y) of random variable y is [1]:

py(y) = [det(Jp-1(y))lp=(T *(y)) , (2)

wherein Jp 1(y) denotes the Jacobian of T ' at y.

Example: Let  be normally distributed with mean vector p, and covariance matriz X,.
An affine bijective mapping is given by the matrix R and the vector t, and we define y =
Rx +t . The application of formula (2) shows that the resulting random variable is again

normally distributed. The mean vector is p, = R p, +t and for the covariance matriz we get

¥,=R"Y,R. m



Using this result, we can extend p.d.f. (1) with respect to affine transforms, which include
rotations and translations as special cases. The general p.d.f. including additional degrees of

freedom thus is

N M

p(X‘fa{agwa'gza"'agn}aR’t) = HHp((i’j)T‘afi,j’R’t) : (3)

i=1j=1

Example: Let us assume that the spatial probability density p((i, j)|a,,) of single intensity

values g, 1s a mizture of Gaussians, i.e.,

m
p(m‘agz) = Zpgz,k N(w‘/"'gl,ka ng,k)
k=1

o Pgi k * €XP (—%(m - l"’g,,k)TS_(;,lk(m - ﬂgl,k))

= 2 : (4)

k=1 det (27T291’k)

T

wherein & = (i, ), m; the number of mizture components corresponding to gray-level g;, and

> ity Dok = 1. If we extend these miztures with respect to affine transforms, we get:

N M

my 'l
p(X‘f’ {a'gu Qgys - - - a'gn}’ Ra t) = H H <k_1pfi,j,k N( <]> ‘Rp’fi,j,k +t, RTZfi,jykR)> (5)

i=1j=1

This p.d.f. allows the computation of a probability measure for an image corresponding to an
object with pose parameters, here defined by R and t. a
Instead of affine mappings, there are several other transformations which might be consid-
ered. The rotation, translation, and the subsequent projection of 3-D objects into the image
plane, the underlying illumination model, the transformations required for resolution hierar-
chies or the application of some filtering operations, like corner detection, induce transforma-

tions which have to be part of the density functions. In general, most transformations, like

10



projections, are not bijective mappings, i.e., there exists no inverse. For these transformations
the standard density transform given by (2) cannot be applied directly. To overcome this prob-
lem, the considered transform has to be extended to a bijective transform. This procedure adds
some auxiliary random variables, which can be eliminated in a second step by marginalizations
after the density transform [1].

Example: Let us consider the spatial distribution of point features instead of intensity
values. In terms of the above suggested statistical modeling scheme, the p.d.f. for 2-D points
requires only a product of a single mixture of densities, because instead of r intensity values, we
have only one type of points and the associated positions in the image plane. Figure 2 shows
an example for a gray—level image and the result of a standard corner detection algorithm.
Compared with intensity values, the appearance of point features is quite sparse in the image
plane. Therefore, the discriminating power of point features is expected to be much lower than
gray-levels. We assume that the observable point features in the image plane o1, 09,..., 0,
are transformed and projected corners of the original 3—D object. Let the involved mapping be

defined by the affine transform
o, = Rc+t s (6)

wherein o; € R?, the corresponding model point ¢ € R*, R € R**® and t € R®. The statistical
distribution of the observable 2-D features can be characterized by a mizture of Gaussians
[7, 28]. If we assume that this holds also for the 3—-D model points, we get the following p.d.f.

for the 2-D observations:

p(Ola, R,t) = HZpk N(o)|Ru, +t, R R) | (7)

i=1k=1

11



where O = {01,09,...,0,}, py, € R?, and Xy € R*3. This p.d.f. shows that the statistical
models used in [28] and [7] are specializations of (1). The correspondence problem is not present,

since it is eliminated by summation over all mixture components. O

Figure 2: Gray-level image and computed point features

The introduction of p.d.f. with integrated transforms for image modeling raise up several
types of problems, which we will consider next:

e How can we estimate the density parameters using sample views?

e How can we estimate the object’s pose parameters?

e Which decision rule will be applied for classification?

e Which methods can be applied to increase the efficiency of pose estimation and classifi-

cation?

e Which methods can be used to viewpoint planning in the presence of statistical models?

We start the discussion of these questions with the model generation stage for statistical object

models.

4 Model Generation

The model generation based on model densities corresponds to a parameter estimation prob-
lem. For a set of observed training images and the corresponding pose parameters, the model

12



parameters have to be computed such that the p.d.f. fits the observation with respect to an
optimality criterion. If we apply the maximum likelihood estimation for that purpose, the
unknown parameters maximize the likelihood function for a given observation.

Example: Let us assume we approximate the density function for each intensity value g
using a mizture of Gaussians. The unknown parameters of this model density are (c.f. (5))

1. the number m; of mizture components,

2. the discrete probabilities py x , (1 < k < my),

3. the my; 2-D mean vectors, and

4. the (2 x 2) covariance matrices.
If we have V training views fy, fo,..., fy and the corresponding transformation parameters

R, t,..., Ry, ty, the mazimum likelthood estimation corresponds to the optimization problem

vV N

M my .
argmax H H H (Z Ptk N( (;) ‘va"'fv,i,j,k + t,, RZ—'qu,i,jykR'U)> . (8)

ml,{p.gl,k,Zgl,k;lgkgml}v:l i=1j=1 \k=1

O

This example shows that we have to deal with two different types of optimization: dynamic
and static. The number of mixture components m; defines the static structure of the density
and sets the dimension of the search space for other parameters: the higher we choose m;, the
more mean vectors, covariance matrices, and weights have to be estimated. The computation of
the optimal number of mixtures m; is a dynamic optimization problem, as it is well known from
control theory. If m; is fixed, the static optimization is restricted to the estimation of mixture
parameters, like means or covariances. Due to the fact that it is not known in advance which
image point corresponds to which component of the chosen mixture, the parameter computation

is associated with an incomplete data estimation problem [22].
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4.1 Vector Quantization

The initialization of mixtures, which includes the estimation of mixture components and other
parameters, is also one of the central problems in speech processing [8]. Usually, speech sample
data are pre—processed by a vector quantization step. This reduces the set of all sample vectors
to a set of reference vectors of much lower cardinality, which is the so—called code—book. Each
vector of the sample data is mapped on a vector of the code—book in an unige manner.

This method is also applied herer for image processing. For our application, we use the well—
known LBG vector quantization algorithm combined with mean square errors to compute the
number of mixture components as well as initial estimates of mean vectors [8]. This method,
however, is restricted to those application where the dimensions of code-book vectors and
sample data are equal. Vector quantization methods which work with projected observations
are still open research problems. The estimation, for instance, of a code-book including 3-D

vectors using 2-D projected sample data is not possible using these methods.

4.2 Parameter Estimation using Incomplete Data

The estimation of parameters has to be done using training data with missing information. If,
for instance, only 2—-D projections of 3—D objects can be observed, the depth information is not
part of the training set. An established algorithm, which can deal with incomplete training data,
is the expectation maximization algorithm (EM algorithm) [22], which is a local optimization
method. The EM algorithm is an iterative version of the maximum likelihood estimation. The
advantage of the EM algorithm is that for most applications dealing with mixture densities, the
search space can be decomposed into lower dimensional and independent sub—spaces. Therefore,

the parameter estimation problem is divided into simpler and independent optimization tasks.
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Example: Let us assume we observe sets of 2-D points which are projections of normally
distributed 3-D points, and we have to estimate the 3-D mean vectors using the 2-D image
points. Due to the fact that we do neither know the depth values, nor the assignment of the 2—
D points to the corresponding 3—D points, we have to deal with an incomplete data estimation
problem. The application of the EM algorithm results in iterative training formulas which
can estimate the mean vectors from projections, without knowing the correspondence between
projected points and the missing 8—D information [7]. For a detailed discussion on applications

of the EM algorithm with respect to miztures of densities we recommend [13]. a

5 Pose Estimation

Model densities show two different types of parameters: model parameters, which specify the
spatial distribution, and pose parameters, which characterize the position and orientation within
the world coordinate system. The model parameters are estimated during the training stage.
If the p.d.f. has to be evaluated for a given image f, also the knowledge of pose parameters
is necessary. Within the statistical framework, this corresponds to the maximum likelihood

estimation problem:

Example: The localization of 2-D objects requires the estimation of the rotation angle in
the image plane and the 2-D translation vector. The pose estimation problem is thus related to
a global optimization within a 3-D search space. O

The computation of pose parameters, however, is a computationally hard problem and

15



requires efficient implementations. We will outline some methods to solve this task in Section 7.

6 Classification

If there are K object classes, which can appear in the image, the classification problem is to find
a discrete function which maps a given image f to the correct object class Q,, k =1,2,..., K.
The identification of objects within a statistical framework is based on the Bayesian decision
rule. This decision method requires the computation of posterior probabilities. Let p(Qy|f) be
the a posteriori probability for class €2, if the image f is given. We decide for that class 2,

which maximizes the a posteriori probability, i.e.,
Q. = argmaxp([f) . (10)
A

This decision rule guarantees the optimality of the implemented classifier with respect to miss-
classifications if the statistical models are appropriate. The a posteriori probabilities are easily

computed, if the pose parameters are known (c.f. Section 5).

7 Methods to Increase Efficiency

Above discussion shows that in the presence of non—invariant features, it is necessary to estimate
the pose parameters for recognition purposes. For that reason, the efficiency of recognition al-
gorithms crucially depends on the efficiency of pose estimation. The run—time of the parameter
estimation module, which is based on global optimization algorithms, is essentially influenced
by

e the dimension of the search space,

16



e the number of function evaluations, and
e the time required for density evaluations.
The following subsections present some possibilities to reduce the computational effort for pose

estimation with respect to these three items.

7.1 Parallelization

Pose estimation within the chosen statistical framework corresponds to a global optimization
problem. If, for instance, orthographic projection is assumed, the search space has five dimen-
sions: three rotation angles and two components of the translation vector. The search space,
in general, can be partitioned into disjoint subsets. This also induces a decomposition of the
search problem into independent sub—tasks, and allows the distribution of the global optimiza-
tion problem to several processors. For each element of the partition we global maximum. A
comparison of global maxima of subspaces results in the global maximum we are looking for.
The speed—up depends on the number of used processors and is expected to be linear. Indeed,
parallelization is the most obvious acceleration of pose estimation, but there are also some more
sophisticated methods, which work on image data and take advantage of some mathematical

properties of present objective functions, i.e., model densities.

7.2 Resolution Hierarchies

Algorithms in image processing and computer vision apply resolution hierarchies to reduce the
complexity of the considered problem. Lower resolutions reduce the number of image points
and therefore the time required for density evaluations. The usage of resolution hierarchies is
also advantageous within the context of the chosen statistical framework. The switch between
several resolution levels has to be done using statistical models. The involved p.d.f. can be
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computed using standard density transforms (c.f. (2)).

Example: The easiest way to define resolution hierarchies (which is from a theoretical point
of view not correct, but works fine on images captures with CCD devices) is to use average gray—
levels of a well-defined neighborhood of a given pizel of the image grid. The computation of
means of gray-levels induces a density transform on the original p.d.f. (1). Since densities
which correspond to sums of random variables can be computed by subsequent convolutions of
the summands’ densities [1], the p.d.f. of lower resolutions are known. For example, if normally
distributed random variables are considered, the convolution operations result in Gaussians, too
[1]. O

Instead of using resolution hierarchies, we can also choose only each n—th point of the image
grid for density evaluations. A probabilistic method will use a random process to select the

image points, which might be considered for density evaluations.

7.3 Quantization

In the previous section, we suggested to reduce the spatial resolution of the image to speed—up
the evaluation time of involved density functions. Another reduction can be achieved by the
quantization of considered intensity values. Threshold operations, like binarization or histogram
linearization, allow the reduction of gray-levels appearing in the image. Also for quantization
purposes, a straightforward density transform can be used to compute the p.d.f. of reduced
gray—levels.

Example: A multi—thresholding operation makes it possible to map a gray—level image with
255 gray-levels to an image with, for instance, five gray levels. Figure 3 shows an example of a
gray-level image with reduced intensity values. The spatial distribution of five gray-levels can

be used as p.d.f. for recognition and reduces the computational complexity of (1), obviously.
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Figure 3: Gray-level image with 256 intensity values (left) and five intensity values (right)

The introduction of features like points or lines is another example for (much more difficult)

quantizations, which simplify the original model density (1). a

7.4 Marginals

Up to now, we have partitioned the search space, have reduced the number of function eval-
uations as well as the complexity of model densities. Methods which reduce the dimension of
the search space were not discussed and are not obvious. Figure 4 illustrates that projections
can eliminate free parameters. One—dimensional projections of point features, for example, are
invariant with respect to translations along the y—axis of the image coordinate systems and re-
garding rotations around the xz—axis. The search space is thus reduced, if one-dimensional point
features are considered instead of 2-D points. The consequence for practical implementations
is that for pose estimation, we first compute hypotheses in the lower dimensional sub—space and
refine these parameters in the higher—-dimensional search space. Within the statistical models,
projection on the y—axis corresponds to the computation of the marginal density of the original
p.d.f. Marginalizations, therefore, simplify the global optimization problems, which are related

to pose estimation.

19



x 9
e
| e e A
i o o
. e e
. o Y
Y

Figure 4: Projections reduce the number of free parameters

Example: If the spatial distribution of intensity values is modeled by (1), intensity marginals
can be computed by integrating out the x— or the y—components. The resulting semi—invariants
can be applied to solve several problems. Applications of intensity marginals can be found, for
instance, in document analysis systems. Therein, marginals are used to detect lines of written
text. O

The Bayesian approach to computer vision presented so far can be used to learn, to recognize,
and to localize objects. Nevertheless, the mathematical framework shows some remarkable
disadvantages: The projection of features does not necessarily keep the global maximum, and,
of course, decreases the discriminating power of features. Furthermore, it might happen that
different 3-D objects share the same features in projections. Figure 5, for example, shows
two different 3—D objects with a common 2-D view. The computation of pose parameters
corresponds to a parameter estimation problem. Due to the fact that consistent estimators

show a convergence in probability for increasing sample data, the use of multiple views should
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Figure 5: Two different 3-D objects which share a common view

increase the reliability of estimated pose parameters. Both the reliability of estimated pose
parameters and the handling of mentioned ambiguities will be improved by using multiple

views.

8 Mutual Information and Viewpoint Planning

If a calibrated camera is available, which is controlled by a robot, multiple views can be taken
of a scene. The transforms between single views are known, because the extrinsic camera
parameters can be computed using the robot’s position. Let us assume, we have V views.
Thus, we have the images f;, f,,..., fy, and the rotation and translation of the camera
between single views. The transforms are denoted by {AR,, At,;1 < v < V}, wherein AR,
and At, symbolize the transform of the camera for the v—th view with respect to a reference
position. For simplicity, we assume that the transform associated with the first view is the
identity. If pose parameters R and t of an object are unknown and if multiple views are
available, the position and orientation can be computed by solving the maximum likelihood

estimation problem

%
{R,t} = argmax [[ p(X|f,, a, R, t,AR,, At,) . (11)

R,t =1
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Different views for recognition and pose estimation purposes can be selected randomly or fol-
lowing some heuristics or applying some optimality criterions. If a set of features is given,
standard pattern recognition theory provides a various methods to select n—best features with
respect to the classification task. Among them are algorithms based on information theory.
The idea of these methods is to select those subsets with the highest amount of information.
Since each view results in sensor data (or features), the selection of viewpoints is closely related
to the problem of choosing the most discriminating elements of a, in principle infinite, set of
features.

According to optimal viewpoint planning strategies, it is necessary at every moment to
choose and to observe such images from the given object supplying the largest amount of
information, i.e., eliminating the largest degree of uncertainty. The term information was
mathematically formalized by Shannon, and the presented statistical characterizations of ob-
jects of previous sections allow the definition of the viewpoint selection problem in the sense of
Shannon’s information theory [6, 19].

For that purpose, we consider the process of generating images of objects as a transmission
of information through a communication channel. We put an object of class (2, into the
communication channel. The output is the observable image f. The input alphabet €2 of the
channel is defined by the object classes €21, €25, ..., Qk and the output alphabet F results from
the available images f. Figure 6 illustrates different types of information, as they appear with
respect to object recognition problems. Irrelevance summarizes the information which is added
by the channel. This might be background features or some noise effects. The equivocation is
the part of information which gets lost during the transmission through the channel. Examples
are the depth data, which are eliminated by the projection to the image plane. The mutual

information defines the rate of transmission of information through the channel related to the
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input object. Therefore, mutual information is the most important measure of the assumed

transmission channel. In contrast to standard definitions, mutual information depends here also

on transformation parameters. These parameters are, however, not part of the observation.
The mutual information I(f,, f; R,t) (with integrated transform denoted by R and t) of

the communication channel is defined by

p(f,Q%; R, 1)
p(f; R, t)p(Q; R, 1)
. p(f,Q; R, 1)
Zﬂn p(fa Qn; Ra t)p(Qn; R, t)

I(me;Rat) = log

lo

(12)

Due to the statistical nature of model densities introduced in this paper, the probabilities
required for the evaluation of mutual information can be evaluated, if the pose parameters are
known. Since the position and orientation of objects influence the amount of information, we

can give a formal definition of the best viewing direction:

{R.,t.} = argmax I(Q, f;R,t) . (13)
R,t

With this information—theoretical formalization, the best views of objects with respect to a
given model database are well-defined and can be computed.

For the practical use of this concept, we compute in an off-line pre—processing stage those
pose parameters R, and t,, which show the highest mutual information for each object class 2.
This can be done by using the same global optimization methods which are also applied for pose
estimation, and has to be recomputed, if the model database is extended for additional objects.
If a set of most discriminating viewpoints is required, a sequence of best rotation and translation

parameters with decreasing information can be computed using mutual information. Results of
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Figure 6: Illustration of relations between object recognition and mutual information
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Figure 7: Computation of the transform required to find the best viewpoint

this pre—processing step can be used to implement an entropic active object recognition system,
which gives the so—called most rational algorithm for recognition [6, p. 355].

Example: Let us assume we observe an image f showing an object of an unknown class
Q.. The pose parameters can be estimated using this single view. If the most significant viewing
direction (defined by R, and t.) for object Q. is known, we can compute the transformation
parameters, AR and At, for the camera to the most discriminating viewpoint. If an initial
estimate of R and t is computed by (9) the transformation can be computed using the graph

shown in Figure 7. a

9 Experimental Results

The experimental evaluation considers recognition experiments using both gray-level images

and point features for classification purposes.!

'In case of acceptance, the final paper will include more experiments. The work is in progress.

25



Figure 8: Objects of the model data base

9.1 Object Recognition using Intensity Images

In the first set of experiments, we avoid segmentation and reduce gray-level images to lower
dimensional features vectors by a Karhunen-Loéve transforms [15]. The spatial distribution of
these vectors is modelled by single Gaussians. For model generation purposes, there are 100
training views of each object available. The disjoint test set contains also 100 views of each
object. The considered four object classes are shown in Figure 8. The computed recognition
rate with homogeneous background is 50 %, if 20—dimensional vectors are used. If we use the
absolute values of the 2—D Fourier transform instead of intensity values, the overall recognition
rate increases to 100 % for the given test set. The statistical modeling of transformed gray-level

images by mixtures of spatial distributions, here, leads to a recognition rate of 91 %.

9.2 Object Recognition using Point Features

The reduction of intensity images to point features leads to the expected decrease of recognition
rates. Instead of 100 % using Fourier transforms, only 82 % of the objects are classified
correctly. Nevertheless, point features are worth being considered for further experiments.
Corners of polyhedral objects allow the estimation of higher dimensional mixture densities,
even if only projected training data are available. This is not the case, if only intensity are

considered without having a suitable illumination model. Assume we model the 3-D corners of
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Figure 9: Maximum likelihood estimate of pose parameters resulting from point features

number of processors | 2 3 4 5 6
speed—up 1.7128(35|39]|4.2

Table 1: Parallelization of pose estimation

an object using a mixture of Gaussians. The 3—-D mean vectors and the covariance matrices, for
instance, have to be estimated using 2-D, orthographic projections from several views. Due to
the hidden depth information, the EM algorithm is applied for model generation purposes. For
pose estimation, a the solution of a global optimization task is required. The global optimization
is done by probabilistic search methods. A reliable global optimization of the objective function
within the five-dimensional search space requires in average four hours on a HP 735 (125 MIPS),
if twelve mixture components are involved. The use of marginals to reduce the complexity of
global optimization, induces a descend of the computation time to 1.5 minutes. The correct
pose parameters on synthetic data (400 2-D images) could be found with a probability of 82
%. The experiments also show, the marginals do not only reduce the dimensions of the search
space, but also the time for evaluating density functions. An example for maximum likelihood
estimates of pose parameters can be found in Figure 9. The implementation of a parallel search
method which distributes the optimization problem to several processors leads to speed—ups
summarized in Table 1.

Recognition experiments on 1600 images showing 3-D objects with homogeneous back-
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ground result in classification rates of 70 % if single views are used for identification.

9.3 Object Recognition using Multiple Views

The use of multiple views for object recognition shows two advantages: on the one hand the
objective function for pose estimation shows a unique global maximum if additional views are
considered, on the other hand the discriminating power increases. The use of multiple views
for pose estimation shows remarkable improvements regarding the correct pose parameters. We
run experiments using 400 random views of synthetic objects and the correct pose parameters
increased from 96 % to 100 % if a second view is used. Existing ambiguities considering a single
image are eliminated with a second view, but the average computation time using two views

instead of one is three times higher: in average it takes 420s to compute the right position.

10 Summary and Conclusions

This paper has shown a Bayesian approach to object recognition using gray—level images or
induced geometrical features like points or lines. The statistical modeling of objects allows
the use of the Bayesian decision rule, and thus the implementation of a theoretically optimal
classifier is possible. Object models correspond to density functions, wherein mixtures and
density transforms are important. In this context, model generation procedures as well as
pose computation are related to parameter estimation problems. For computational efficiency,
we use marginals which reduce the dimension of the search spaces for several applications.
Another important concept deals with problems of viewpoint planning and priors of viewing
directions based on mutual information with integrated feature transform. This information

theoretical formalization results in an entropic object recognition system, which uses sensor
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data with the highest amount of information. The best views are generated maximizing the

mut

ual information between object classes and observed images.

The introduced statistical framework is suitable for object recognition, pose computation,

and

viewpoint planning. Nevertheless, two important issues remain unexplored:

e How many views and how many features are required for a certain recognition rate?

e Which resolution and which type of features are optimal with respect to the given com-

puter vision problem?
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