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J. Hornegger, D. Paulus, H. Niemann1

Lehrstuhl für Mustererkennung (Informatik 5),
Universität Erlangen, Martensstraße 3, D-91058 Erlangen, Germany

Abstract: This paper introduces a unified Bayesian approach to 3–D computer vision
using segmented image features. The theoretical part summarizes the basic require-
ments of statistical object recognition systems. Non–standard types of models are intro-
duced using parametric probability density functions, which allow the implementation
of Bayesian classifiers for object recognition purposes. The importance of model den-
sities is demonstrated by concrete examples. Normally distributed features are used for
automatic learning, localization, and classification. The contribution concludes with the
experimental evaluation of the presented theoretical approach.

1 Introduction

Classification in computer vision is commonly dominated by geometrical, model–
based approaches (Faugeras (1993)). Heuristics for many algorithms in image
processing restricted to the given problem domain and motivated by associated
applications are reported in the literature. Herein, model–based image analysis
provides the scientific framework for matching algorithms and for understanding
the information process. The comprehensive goal is to describe the intrinsic
character of images in a symbolic or parametric manner.
Bayesian methods have provided solutions to various classical problems in pattern
recognition. Especially the progress in the field of speech processing is substan-
tially based on the application of statistical methods. The general use of Bayesian
classifiers is motivated by several aspects: they show optimality in a decision
theoretic sense under a 0–1 cost function (Duda and Hart (1973)). Furthermore,
statistical methods can deal with uncertainty in a natural manner, have a well
elaborated mathematical theory, and provide a unified framework within which
many different tasks can be considered. For that reason, we favor model–based
computer vision algorithms which apply statistical discriminants or, at least, close
approximations of Bayesian classifiers.
In this paper, we present a probabilistic framework for 3–D vision: statistical
methods for object modeling, algorithms for the automatic estimation of model
parameters — even in the presence of incomplete and disturbed training data —,
classification rules, and localization methods for 3–D objects using 2–D views.
The introduced model densities show several degrees of freedom, and standard
hidden Markov models or mixtures of densities can be derived by specialization.
The experiments prove that the classification and pose estimation task for 3–D
objects using real image data can be treated statistically.

1The authors wish to thank the German Research Foundation (DFG), who partially funded the
work reported here under grant SFB 182.
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A general discussion of Bayesian image analysis (section 2) is followed by a statis-
tical description of objects and their appearance in scenes (section 3). The object
recognition and localization problem is formalized (section 4), and experimental
results for these problems are given (section 5).

2 Bayesian Image Analysis

There exists a wide range of model–based methods for computer vision. Model–
based statistical algorithms, in general, require the stages model selection, sam-
pling, parameter estimation, and goodness–of–fit. The main difference between
standard geometrical techniques and probabilistic modeling schemes is due to
the fact that Bayesian image analysis methods make use of statistical models to
incorporate both, general and object specific prior knowledge. The object recog-
nition problem is understood as the assignment of a subset of observed image
features to a pattern class Ω� (1 � � � K), which characterize one object or a set
of objects. Statistical classifiers known from pattern recognition theory require
feature vectors c of fixed dimensions and a probabilistic description of pattern
classes. For an observed feature vector, the Bayesian decision rule is� = argmax� p(Ω�jc) = argmax� p(Ω�)p(cjΩ�) ; (1)

i.e., we decide for that class with highest a posteriori probability. The basic prob-
lem for the implementation of statistical classifiers is the definition of adequate
a posteriori probabilities. It is a priori not obvious how this statistical concept
can be applied to solve 3–D object recognition and pose estimation problems.
The required generalization of (1) is guided by the ground rules of Bayesian
image analysis approaches stated by Besag (1993), which are commented in the
following:

1. Underlying images, scenes or features have to be characterized by prior
probabilities.

These statistical measures define the prior knowledge; they describe, for
instance, the probabilities for the appearance of objects, for the permitted
pose parameters or for specific configurations of objects in the scene. The
prior knowledge also allows to incorporate prior geometrical information
for object recognition. At this point we do not consider the observable
features, yet.

2. Joint probability density functions for observations have to be defined.

The statistical behavior of observable features has to be defined by a prob-
ability density function. This statistical measure describes the probability
that a set of features appears, if a special object is present. If the features
vary with the object’s pose, this density function depends on the position
and orientation of objects, too.
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3. Prior probabilities and the joint density functions are combined to find the
probability density function.

The combination of prior probabilities and the feature specific joint density
functions results in a probability measure, which can be applied to recogni-
tion and pose estimation. This probability measure is called model density
and describes a traditional form of regularization. The observable features
and prior knowledge equally contribute to these model densities, and form
the basic mathematical concept for model generation, pose estimation, and
classification.

4. Definition of an inference strategy which allows the efficient computation
of a posteriori probabilities for classification.

The evaluation of a posteriori probabilities is necessary for applying the
Bayesian decision rule. Efficient methods are required for the computation
of a posteriori probabilities. If hidden Markov models are used, for example,
the inference algorithm utilizes the efficient forward–backward algorithm
(Rabiner and Juang (1993)).

These guidelines constitute the recipe for the introduction of statistical models for
3–D object recognition purposes.

3 Statistical Modeling of 3–D Objects

The Bayesian framework for 3–D object recognition based on 2–D images has
to incorporate the following elements: prior knowledge, rotation and translation
of objects, self–occlusion, projection from the model into the image space, and
statistical modeling of errors and inaccuracies caused by varying illumination,
sensor noise or segmentation errors.
Here, we will not consider single pixels or grid models, but restrict the statistical
modeling on segmented images. We assume that the image [fi;j] is transformed
into a set of Dimage–dimensional feature vectors, i.e., the segmentation operator S
defines the mapping S : [fi;j] 7! O ; (2)

where O = fok 2 IRDimagej1 � k � mg. Within the segmentation step points,
lines, regions or other features can be computed. The number of observed, which
are projected to the 2–D image plane is not constant for different images. The
cardinality of O depends on the viewing direction, on the applied segmentation
algorithm, and on the lighting conditions. Due to the projection, the range in-
formation and the assignment between image and model features is lost. The
statistical model generation, classification, and localization are limited to these
projected feature vectors O. In general, model densities of 3–D objects appear-
ing in images embody three principal components: the uncertainty of observed
feature vectors, the dependency of features on the object’s pose, and the corre-
spondence between image and model features. The statistical description of an
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object belonging to class Ω� is defined by the density p(OjB�;R; t), and discrete
priors p(Ω�), 1 � � � K, if only single objects appear, or p(Ω�1;Ω�2; : : : ;Ω�q)
for multiple object scenes. Here,O represents the set of observed feature vectors,
and the parameter set B� contains the model–specific parameters, which model
the statistical behavior of features as well as the assignment. The parameters R
and t, however, symbolize the rotation, translation, and the projection from the
model space into the image plane.
The major problem now is the explicit definition of p(OjB�;R; t). Generally,
we distinguish between the 3–D model and the 2–D image space. The observableDimage–dimensional image features are characterized by O = fo1;o2; : : : ;omg.
The corresponding Dmodel–dimensional features in the model space are denoted
by C� = fc�;1; c�;2; : : : ; c�;n�g, where in general n� 6= m due to segmentation
errors and occlusion.
Example: If a 3–D cube is characterized by its corners, C� includes the 3–D
corners. The 2–D image features O are the projected 3–D corners of the model.
Let us assume the parametric density of the model feature c�;lk corresponding took is given by p(c�;lkja�;lk). A standard density transform results in the densityp(okja�;lk ;R; t), which characterizes the statistical behavior of the feature ok in
the image plane dependent on the object’s pose parameters R and t.
Example: If normally distributed 3–D model features are present, then a�;lk
includes the 3–D mean vector ��;lk and the (3 � 3) covariance matrix ��;lk .
Let the affine transform ok = Rc�;lk + t define the mapping from the model into
the image space. The image feature ok is again normally distributed with mean
vector R��;lk + t and covariance matrix R��;lkRT .
An assignment function �� defines a discrete mapping, which yields for an ob-
served feature ok the index lk 2 f1; 2; : : : ; n�g of the corresponding model featurec�;lk , i.e., ��(ok) = lk. A set of observed features can thus be associated with
the assignment vector �� = (��(o1); ��(o2); : : : ; ��(om))T , which is considered
to be a random vector, i.e., the classical matching problem is also modelled statis-
tically. The discrete probability of this random vector is denoted by p(��). The
probability density function for observing the set of features O thus is,p(OjB�;R; t) = X�� p(��) mYk=1

p(okja��(ok);R; t) ; (3)

wherein the non observable assignment is eliminated by marginalization, i.e., we
sum over all assignments ��. The evaluation of (3) is computationally bounded
by O(nm� m). If pairwise statistically independent assignments are assumed, this
complexity reduces toO(n�m), and we get a product of density mixtures. Hidden
Markov models are derived from (3), if statistically dependent assignments of first
order are assumed and the feature transform is omitted. The inference strategy
for this case is bounded by O(n2�m) (Hornegger (1996)).
This flexible formalism of model densities can easily be applied to use multiple
views for pose estimation or classification. Assume there are N different views
yielding the feature sets 1O; 2O; : : : ; NO. The correct pose parameters are de-
noted by R and t. The images are grabbed by a camera, which is mounted on a
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calibrated robot arm. Thus, the approximate extrinsic parameters %R and %t for
each view %O are known. These parameters can be expressed in terms of sums
using the viewed object’s pose R and t:%R = R+ ∆%R and %t = t + ∆%t : (4)

The density for multiple observations thus isp(1O; 1O; : : : ; NOjB�;R; t) = NY%=1

p(%OjB�;R+ ∆%R; t+ ∆%t) ; (5)

if statistically independent views are presupposed. The use of multiple views will
improve the discriminating power of the observed features, because the more data
are available for pose estimation and classification, the more reliable results can
be expected, even if calibration results will not provide the exact parameters.

4 Statistical Object Recognition

The automatic generation of model densities includes different components: the
definition of the structure and the computation of free parameters. The number
of model features, the distribution of single features, the mapping from the model
into the image space and the dependency of assignments characterize the struc-
ture. A practical solution of automatic structure generation is an open research
problem (Hornegger (1996)). Nevertheless, there exist algorithms for the esti-
mation of the parameter set B�, if the structure of the model density is defined;
the computation of B� for each object class Ω�, � = 1; 2; : : : ; K includes the
estimation of the discrete probabilities p(��), which model the assignment func-
tion, and fa�;l j l = 1; : : : ; n�g, which characterizes single model features. The
available training data consist of features, which are projected model features.
The depth information as well as the assignment function are missing. Therefore,
the computation of B� corresponds to an incomplete data estimation problem.
An established method which can deal with this type of parameter estimation
problems is provided by the Expectation Maximization algorithm (Dempster et.
al. (1977)). For normally distributed point features, for instance, there exist
closed form iteration formulas which allow the estimation of mean vectors from
projections. The interested reader will find the complete derivation of several
training algorithms for normally distributed point and line features in Horneg-
ger (1996). The probabilistic modeling of objects makes the application of the
Bayesian decision rule (1) possible, but some extensions are required. Instead of
a single vector a set of features O is given. Furthermore, the pose parameters are
part of the probability density functions. The modified Bayesian decision rule,
which allows the statistical classification of objects thus is� = argmax� p(Ω�jO) = argmax� p(Ω�)p(OjB�;R; t) : (6)

Since rotation and translation of objects is a priori unknown, R and t are free
parameters. A posteriori probabilities p(Ω�jO) cannot be evaluated explicitly.
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The pose estimation stage has to compute the best position and orientation before
the class decision is possible; the estimation of R and t corresponds to the
maximization problemfcR; btg = argmaxR;t p(OjB�;R; t) : (7)

This parameter estimation task is associated with a global optimization problem
of a concave multimodal likelihood function. Probabilistic optimization routines
are discussed in Hornegger (1996) which allow practically efficient solutions.

5 Experimental Results

The experimental evaluations examine several aspects: we compare standard
methods for pose estimation with the introduced statistical approach, show the
improvement of pose estimation results using multiple views, and discuss the
recognition rates based on a test set including 1600 randomly chosen views of
simple polyhedral objects (Figure 1). All experiments run on an HP 9000/735
(99 MHz, 124 MIPS).

Figure 1: Polyhedral 3–D objects

First a comparison of pose estimation techniques based on the geometrical align-
ment method of Huttenlocher (1993) and the statistical approach was done using
49 test images. The statistical pose estimation algorithm requires 80s using global
optimization, and the alignment method needs 70s in average. The correct pose
is computed for 45 images using the statistical approach (see Figure 2). The
alignment method failed for 11 images. This experiment shows that the statistical
approach can compete with geometrically based methods both with respect to
reliability and run time. The computation time for pose estimation is crucially
influenced by the global optimization module and its efficiency. The parame-
ter space of continuous model densities is easily partitioned into disjoint subsets
which can be considered independent from each other. The use of four processors,
for instance, results in a speed–up of 3.5. Table 1 summarizes the speed–up for
increasing numbers of processors.
The use of multiple views for pose estimation shows remarkable improvements
regarding the correct pose parameters. We run experiments using 400 views and
the correct pose parameters increased from 96% to 100%. Existing ambiguities
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number of processors 2 3 4 5 6
speed–up 1.7 2.8 3.5 3.9 4.2

Table 1: Parallelization of pose estimation

Figure 2: Examples of scenes with heterogeneous background (left: gray–level
image, middle: segmentation result, right: estimated pose)

considering a single image are eliminated with a second view, but the average
computation time using two views instead of one is three times higher. In average
it takes 420s to compute the right position.
The recognition results using 1600 test images of objects shown in Figure 1 are
summarized in Table 2. It is distinguished between point and line features.

6 Summary and Conclusions

In this paper, we proposed a framework for Bayesian image analysis. We pre-
sented a coherent approach to both modeling single features and the probabilistic
characterization of the assignment function between image and model features.
The introduced concept of model densities combine assignment, rotation, transla-
tion, projection of features, and prior knowledge in a unified manner. The model
generation process has to deal with incomplete data estimation problems, whereas
the pose computation corresponds to a maximum likelihood estimation. Due to
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recognition rate [%] run time per image [sec]
3–D object points lines points lines

Ω1 47 44 466 1882
Ω2 78 82 485 2101
Ω3 58 36 465 1933
Ω4 89 76 471 1520

average 68 59 472 1859

Table 2: Run time and recognition rate of 3–D experiments

the statistical nature of the introduced modeling scheme, the implementation of
Bayesian classifiers for object recognition is made possible. Experimental results
with real data show the practical use of statistical classifiers in computer vision.
Indeed, with respect to computer vision applications statistical methods are still
in its infancy, but the implemented and evaluated applications show that there is
a considerable potential for future development and research.
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