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Abstract

In this contribution we describe an object{oriented software architecture for image
segmentation, 3{D pose estimation as well as Bayesian object recognition: models
are represented by densities, model generation corresponds to parameter estimation
tasks, and the identi�cation applies the Bayesian decision rule. We show results of
3{D object recognition experiments based on the observation of 2{D points or lines.
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1 Introduction

Image processing and object recognition systems are expected to provide op-
timality with respect to various factors like e�ciency, robustness or modu-
larity and maintainability of software. In this paper we introduce a Bayesian
framework for 3{D object recognition and sketch its object{oriented imple-
mentation. Whereas Bayesian methods provide solutions for many problems
in low{level image processing and in pattern recognition, classi�cation in com-
puter vision is still dominated by geometrical, model{based approaches [3].

In Sect. 2 we briey report on basic aspects of software{engineering for com-
puter vision. In Sect. 3 we present a novel and unconventional probabilistic
framework for 3{D vision: statistical methods for object modeling, algorithms
for the automatic estimation of model parameters, Bayesian decision, and lo-
calization methods. In Sect. 4 we apply this framework to the problem of 3{D
object recognition from 2{D views. A discussion and suggestions for further
research conclude the paper.

1This work was funded partially by the Deutsche Forschungsgemeinschaft (DFG)
under grant number SFB 182. Only the authors are responsible for the contents.
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2 Software{Engineering for Computer Vision

By the dissemination of the Image Understanding Environment (IUE) [2],
data representation is now widely implemented in classes using the C++ pro-
gramming language. However, little has been published yet on hierarchies of
operations for image processing: A common implementation platform for im-
age analysis has to provide uni�ed interfaces to both data and algorithms. A
C++ class library called �̀���o& (HIPPOS) [8] was designed for the representa-
tion of data computed from image processing. A uniform data representation
object called the segmentation object is used to collect information of segmen-
tation processes. In [4] this system is extended to a hierarchy of operators
for image processing and analysis. The reason for this approach is that poly-
morphic interfaces to image processing operations de�ned by classes provide
and enforce much more uniform syntax and semantics than function libraries.
When basic rules for e�ciency [8] are observed, no di�erence in execution
times for image processing objects can be measured compared to functions.

The bene�t of operator objects is manifold: the interfaces are safer, easier
to document, extensible, etc. Uni�ed interfaces to algorithms enforced by this
programming style facilitate simple exchange of individual modules, as demon-
strated in [5,6]. For statistical object recognition we need the following basic
modules: algorithms for feature detection, interchangeable probabilistic mod-
els, parameter estimation algorithms and various global and local optimization
algorithms which accept as arguments a function to be optimized, for instance,
a parametric density function.

3 Statistical Object Recognition

A Bayesian framework for 3{D object recognition requires that the appearance
of objects in the image plane is characterized using probability density func-
tions. These densities have to incorporate prior knowledge on objects, rotation
and translation, self{occlusion, projection to the image space, the assignments
of image and model features as well as the statistical modeling of errors and
inaccuracies caused by varying illumination, sensor noise or segmentation er-
rors [5]. We call these densities model densities. The structure of these models
can vary: it can be a single multivariate Gaussian density, a hidden Markov
model or some other type of density. All model densities have to provide sim-
ilar methods, like evaluating the density for a given set of random variables.
We have implemented a class hierarchy for densities including an abstract base
class which de�nes the interface for all model generation, pose estimation, and
classi�cation modules.
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Let us assume K possible object classes and observations O of feature vectors
ok in a segmentation object O = fok 2 IR2j1 � k � mg, where the num-
ber m varies for di�erent images. Appearance and position of features in the
image show a probabilistic behavior. The statistical description of an object
belonging to class 
� consists of a model density p(OjB�;R; t) combined with
discrete priors p(
�), 1 � � � K, for the probability of a single object of class

� to appear in the scene. The priors are estimated by relative frequencies of
objects in the training samples. The parameter R denotes rotation and pro-
jection from the model space to the image plane; t represents translation. The
set B� contains the model{speci�c parameters for the behavior of features as
well as the parameters for the assignment of image and model features.

For the explicit de�nition of p(OjB�;R; t) we use the observed feature set O
and the corresponding 3{D features in the model space C� = fc�;1; c�;2; : : : ;
c�;n�g, where in general n� 6= m due to segmentation errors and occlusion.
Let the parametric density of the model feature c�;lk corresponding to ok be
given by p(c�;lkja�;lk), where a�;l (l = 1; : : : ; n�) characterize single model
features. For a normally distributed 3{D point, for instance, a�;lk denotes the
mean vector and the covariance matrix. A standard density transform results
in the density p(okja�;lk ;R; t), which characterizes the statistical behavior of
the feature ok in the image plane dependent on the object's pose parameters.

The probabilistic modeling of the assignment from image to model features
is based on discrete random vectors. An assignment function �� de�nes a dis-
crete mapping from an observed feature ok to the index lk 2 f1; 2; : : : ; n�g
of the corresponding model feature c�;lk, i.e., ��(ok) = lk. A set of observed
features can thus be associated with the assignment random vector �� =
(��(o1); ��(o2); : : : ; ��(om))

T which is related to the discrete probability p(��),
i.e., the matching problem is also modelled statistically. The discrete proba-
bility of p(��) extents the probability density function for observing the set
of features O. Due to the statistical interpretation of ��, the non{observable
assignment can be eliminated by the following marginalization:

p(OjB�;R; t)=
X
��

p(��)
mY
k=1

p(okja�;��(ok);R; t) : (1)

If the structure of the model density (i.e., the number of model features and
the dependency structure of single assignments) is known, algorithms for the
estimation of the parameter set B� exist (Sect. 4). The computation of B�

for each object class 
�, � = 1; 2; : : : ; K requires p(��) and fa�;lg. Due to the
projection of the 3{D world to the 2{D image plane, the range information
is lost. Furthermore, the assignment of image and model features is not a
component of the observations. The calculation of B� thus corresponds to an
incomplete data estimation problem which can be solved using the Expectation
Maximization algorithm (EM algorithm, [1,6]).
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The framework introduced so far requires a a minor modi�cation of the stan-
dard Bayesian decision rule, since a segmentation object O is given instead of
a single vector, and the unknown pose parameters are part of the probability
density. The modi�ed Bayesian decision rule for the statistical classi�cation
of objects is: � = argmax� p(
�jO) = argmax� p(
�)p(OjB�;R; t): The a
posteriori probabilities p(
�jO) cannot be evaluated explicitly. The pose es-
timation stage has to compute the best orientation and position R; t before
the class decision is possible. This corresponds to the maximization problem
fcR; btg = argmaxR;t p(OjB�;R; t) which requires a global optimization of a
concave multimodal likelihood function. A class hierarchy of probabilistic op-
timization routines similar to the operator hierarchy in Sect. 2 or to the hier-
archy for model densities allows practically e�cient solutions and alternative
strategies, such as stochastic relaxation, simulated annealing, and adaptive
random search [5]. The abstract base class provides uni�ed interfaces with
methods like minimize or maximize, deferring all implementation details to
derived classes.

4 Object Recognition Using 2{D Points and Lines

The framework described in Sect. 3 was used for the recognition of 3{D objects
based on 2{D images [5]: we assume that each input image (e.g. Fig. 1) is
transformed into a segmentation object of 2{D feature vectors O = fok 2
IR2j1 � k � mg. The elements ok may be points (e.g. corners or vertices) or
lines, which can be detected by several combinations of segmentation operators
which all result in the uniform segmentation object.

Fig. 1. Simple polyhedral 3{D objects (
1;
2;
3;
4) used in the experiments

For segmented point features, B� provides the parameters characterizing the
assignments as well as the accuracy and stability of the object points. Closed
form iteration formulas can be found for normally distributed point features,
which allow the estimation of mean vectors from projections without knowing
corresponding features of di�erent views [5].

Although model densities as de�ned in Sect. 3 tolerate variations of segmen-
tation objects to some extent, stable segmentation is desired and improves
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Fig. 2. Experiment for object recognition with heterogeneous background

recognition and localization. From the considerations in Sect. 2, several se-
quences of operations were evaluated manually. For observed point features,
best results were obtained by edge detection, line following and subsequent
corner detection using the H{curvature introduced in [4] (Fig. 2 middle).

A training set of 1600 and a test set of 1600 randomly chosen views of the
objects in Fig. 1 were evaluated on an HP 9000/735 (99 MHz, 124 MIPS).
Fig. 2 (left) shows an example for the localization of one object in a scene of
three objects. The segmented points and the estimated position of the object
of interest are illustrated in Fig. 2 (middle and right). The recognition rates
and run times for object classi�cation are summarized in Tab. 1.

recognition rate [%] run time per image [sec]
3{D object points lines points lines


1 47 44 466 1882

2 78 82 485 2101

3 58 36 465 1933

4 89 76 471 1520

average 68 59 472 1859

Tab. 1. 3{D experiments for classi�cation using 1600 images

A comparison of pose estimation techniques based on the geometrical align-
ment method [7] and the statistical approach on 49 images yielded a correct
pose estimation for 45 images using the statistical approach, compared to 38
correct results for the alignment method. The average computation time per
image was 70s for the alignment method. The abstract interface for global
optimization was used to evaluate di�erent optimization strategies. Using the
adaptive random search method, an average computation time of 80s could
be reached.

This exible formalism of model densities can also be extended to use multi-
ple views for pose estimation or classi�cation [5] which remarkably improves
recognition rates: in experiments using 400 views, the correct pose parameters
increased from 96% to 100%. In average it takes, however, 420s to compute
the correct position based on multiple views.
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5 Discussion and Further Work

The formalism introduced in this paper can be applied to other problems
in computer vision and pattern recognition. Instead of segmented points or
straight lines we could also use, for instance, gray{level based object recog-
nition algorithms or embed relational dependencies of features. The method
and the software modules can also be used for speech processing applications
[5]. Hidden Markov models are derived from (1), if statistically dependent as-
signments of �rst order are assumed and the feature transform is omitted [5].
Extended hidden Markov models including feature transforms result from the
theoretical framework as well as standard mixture densities [5].

Segmentation algorithms are often evaluated by simple visual inspection. We
argue that by a uniform object{oriented interface { as provided by our sys-
tem { we can easily exchange individual parts in the sequence of operation
steps or vary parameters in one module, and then judge the overall system's
performance. This opens a wide range of still challenging and still unsolved
optimization problems for computer vision. Future research should concen-
trate on the development of methods which allow the selection the optimal
features, the best model density, and the most e�cient algorithms for solving
a given vision task. An object{oriented framework seems to be a necessary
precondition to obtain these techniques.
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