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Abstract

The distribution of color values in color
images depends on the illumination which
varies widely under real-world conditions. We
present a new approach for color normalization
or color constancy which adjusts the statistical
properties of the distribution to predefined val-
ues. Such algorithms play an important role
for image retrival from image databases. Model
based computer vision using color images also
depends on standardized data.

Our new method differs from existing
neural-based approaches wused for color con-
stancy and also from the whitening transform
which is introduced to normalize distributions
for numerical classification. The new color ro-
tation algorithm is tested on some natural and
synthetic images.
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Kivonat

Szines képeken a szinértékek eloszldsa a
meguildgitdstol fiigg, amely valds korilmények
kozitt erdsen ingadozhat. A szinnormalizdcidra
vagy szindllandésdgra eqy 1ij megkozelitést mu-
tatunk be, amely az eloszlds statisztikai tulaj-
donsdgait elére meghatdrozott értékekre dllitja
be. Az ilyen algoritmusoknak fontos szerepe
van akkor, amikor képi adatbdzisokban foly-
tatunk kereséseket. A modell alapi szines
szdmitdgépes ldtds szintén standardizdlt ada-
toktél fiigg. Az 1j mddszerink kilénbdzik
a szindllanddsdggal foglalkozé neurdlis elvi
megkdzelitésektdl, valamint az un. whitening
transzformdcidtol is, melyet numerikus klassz-
ifikdcidra szolgdld eloszldsok mormalizdcidjdra
vezettek be. Az uj szinforgatdsi algoritmust eg-
yardnt teszteltiik szines és szintetikus képeken.

1 Motivation

The importance of color for computer vision is currently increasing, as can be seen from

the contributions in [8] or from [4]. Although illumination of a scene may change, the human
observer perceives the color of the objects in the scene almost independently from the illumination
variations. The study of such kind of adaptation is an important topic of color machine vision
[9].

Many color spaces exist and are used in different applications. For computer vision, mostly
RGB is used since it is directly technically available and most cameras supply RGB signals.

In this contribution we present a new approach, whose results are similar to those of [9],
but no neural algorithm is used and all computations are done in RG B rather than in some other
color space.

In Sect. 6 we investigate the effect of our normalization algorithms on natural and synthetic
images. First results of ongoing research on object localization using histogram backprojection
[11] in combination with color normalization are presented as well.

IThis work of the first author was funded partially by the German Research Foundation (DFG) under grant
number SFB 182.
2The work of the second author was funded by the Hungarian State E6tvés Fellowship, grant no. 59.079/1996.



2 Color Normalization Algorithms

One of the most frequently cited papers in the area of color normalization algorithms is [11]
to develop visual skills for robots that allow them to interact with a dynamic, realistic environment.
In order to identify color objects in a scene color histograms are used. However, a disadvantage
of their color indexing method is the sensitivity to illumination changes. This can be helped by
preprocessing with a color constancy algorithm (e.g. [5]).

Pomierski and Gross [9] propose to use an artificial neural network (ANN) to compute
principal components of color cluster with a technique described in [6]. The color space used in
this work is (RG, BY, W B) (red—green, blue—yellow, white—black) which is motivated by neuro—
physiology.. After finding the principal component, i.e. the direction of the eigenvector belonging
to the greatest eigenvalue, the cluster is rotated such that this vector points to the W B direction of
the (RG, BY, W B)—cube. The last step is a nonlinear streching so that the cluster is distributed
along this axis. The major advantage of this idea is that no reference image or calibration is
required in order to transform an arbitrary image to normalized colors. _

The color space transformations from a color vector f in RGB to a vector f in RG, BY, W B

are:
_ RG R
f= BY =T| G =Tf
WB B
where

6.9012 —13.9416 7.0404
T=| —12.4116 .0048 12.4068
20.9968 21.1423  20.8609

The steps marked with@and@in Fig. 1 are the color space transformations by T' and
T, respectively. @ stands for the search of the principal component and the neural-based
rotation to the W B—axis of the (RG, BY, W B)-space. The basic question now is whether we
can yield similar results and effects for computer vision, as [9] demonstrates for human vision,
without an explicit transformation to (RG, BY, W B). This is depicted as@in Fig. 1.
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Fig. 1: Conversion of Pomierski (partially from [9])

3 Color Cluster Analysis

Our approach starts with color cluster analysis of a color image [f;;] in the following steps
which are common to the two algorithms described in Sect. 4 and Sect. 5:

1. Assume that m = E{f,;} is the vector pointing to the centre of gravity. Translate each
color vector f,;; < f;; —m.

2. Let C be the (3 x 3)-matrix defined by
C= E{fz'jfijT}



(1,1,1)"
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Fig. 2: Color rotation in RGB

whose eigenvalues A1, A2, A3 and eigenvectors are simply computed directly (e.g. by the
Jacobi method).

3. Denote the eigenvector belonging to the largest eigenvalue by (a, b, c)T.

Now two approaches have been tried, an idea which we called color rotation in RGB (Sect. 4)
and the adaptation of the whitening transform (Sect. 5, [1]).

4 Color Rotation in RGB

From geometric considerations we proceed as follows in order to rotate the cluster to the
main diagonal (Fig. 2):

4. Find the normal n' through the origin on the plane defined by the main diagonal in the
RGB-cube and the principal component of the cluster: n' = (a,b, c)T X \/ig(l, 1, l)T, i.e.,
n' = \/Lg(b —c,c—a,a— b)T, where x denotes the vectorial product in IR®. The rotation

angle cos ¢’ is computed from the dot product of eigenvector and the diagonal:
T T
cos ¢’ = (a,b,c) -%(1,1,1) .
In order to rotate with ¢, we use the Rodrigues formula for the rotation by an angle ¢
around an axis expressed as a vector m :

R;3(¢,n) = Ids —sing U(n) + (1 — cos p)U?(n)
where U*(n) = nn™ — Ids and ||n|| = 1.

The matrix Ids is the identity matrix. The matrix U for an axis n = (ng, n,, nz)T is

0 —n; Ny
Un)= N, 0 —ng
—Ny  Ng 0
Here:
0 b—a c—a
U(n’):% a-b 0 c-b
a—c b-c 0

The rotation matrix R3(¢',n') resulting from this formula for this particular case is given
in Appendix A.



5. Translate each pixel in the rotated image with a parameter along the axis (1,1, 1)T

_ lml| T
m = 1,1,1
cosgb’( 1,1)

6. Scaling by a variable factor is allowed (default is no scaling). The overflows above 255 and
the underflows under 0 are clipped to 255 and 0, respectively.

The result is a color image which has a normalized color distribution; the mean of the color
vectors is on the main diagonal of the RG B—cube; the first principal component of the cluster is
on the same diagonal.

5 Whitening transform

In Fukunaga [1] the whitening transform is introduced, which is an orthonormal transform
mapping the principal components of the color cluster into the (orthogonal) eigenvectors, and at
the same time a scaling is done with \/17 In this section we examine whether the above transform
can be used for image normalization and we compare the results with those of section 4

We first perform steps 1-3 as described in Sect. 3 and then proceed as follows:

4. Compute the eigenvector matrix V' of C, and denote

255
VA1 0 0
A= 0 255 0
VA1
0 0 255
VA1

where A; is the greatest eigenvalue of C. We note that 255 appears in the nominator of
the above fractions instead of 1 since 255 is the scale in which R, G and B may vary. We
also note that here we modified the original transform not wanting to scale each principal
component with the corresponding fraction involving its eigenvalue, as this would change
the shape of the cluster more than it is desirable.

5. Let us form
" T
Tij = AV f,

6. Rotate the cluster along the R axis by 45 degrees in the positive direction, and then rotate
the image along the B axis with 45 degrees again and shift the image along the main axis
of the RGB-cube by (128,128,128) . After clipping the values by 255 (so that they should
not point outside the RG B-cube) we get the result.

The result again is a color image which has a normalized color distribution; the mean of the color
vectors is on the main diagonal of the RGB—cube; the first principal component of the cluster
is on the same diagonal. In addition, the second axis of the cluster is rotated to the diagonal
(0,1,1)T in the RGB—-cube.

6 Experiments

We integrated both algorithms in our image analysis system [7] and made experiments
with both synthetic and real images. Fig. 3 shows one scene as captured from the camera.’

The results of a conversion with our first algorithm (Sect. 4) is shown in Fig. 4.2 Fig. 5
illustrates the results of the modified whitening transform (Sect. 5). The corresponding color
clusters are visualized in Fig. 6, 7, and 8.

Two experiments on synthetic images are shown in Fig. 9, proving that the algorithms
work on principal components which are furthest away from the main diagonal in the RGB cube,
and for eigenvalues which are zero.

A red object (Fig. 10 (left)) and a blue object (Fig. 10 (right)) are both captured with a high
focal length setting for a zoom camera. These objects are present in two scences (Fig. 11 (left) and
Fig. 11 (right)) captured with different settings of the zoom lens and different lighting conditions.



Fig. 3: Input image Fig. 4: Algorithm of Sect. 4  Fig. 5: Algorithm of Sect. 5
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Fig. 6: Cluster of Fig. 3 Fig. 7: Cluster of Fig. 4 Fig. 8: Cluster of Fig. 5

The results of the two proposed color normalization algorithms on the scenes in Fig. 11
are shown in Fig. 12. Even in the gray-level print, the changes are visible in comparison to the
original images. The mean intensity of the images is higher than the original. For the whitening
transformed images, the white was shifted in the red direction, such that the table in the center
of the image now is light pink. This effect is due to the normalization of the second principal
component and could be observed in most of our experiments.

The effects of color normalization on object localization based on color backprojection
[11] are presented in Fig. 13 and Fig. 14. The results are rather disappointing for the first object
(Fig. 10 (left)). No advantage of color normalization can be seen for the backprojection algorithm,
since the general shift of colors to red increases the number of red pixels and thus deteriorates
the backprojection of a red object. The results for the second object (Fig. 10 (right) are shown
in Fig. 14. Here, the modified whitening transform improves the results of backprojection, since
the rotation of the second principal component helps discriminating blue color from the others.

7 Conclusion

We presented two new approaches to color normalization. One is based on an extensions of
the whitening transform [1]. The other was inspired by [9]. Normalization does not make images
look better. We claim that color normalization can facilitate more reliable object localization
under changing lighting conditions. The best choice for the proposed normalization algorithms,
however, depends on the object to be localized. Further investigations will be done here in order to
optimize object localization using backprojection as in [11, 10] in combination with our algorithms
for color normalization and with other correction algorithms and strategies which compensate for
color changes, such as [2].
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Fig. 9: Color normalization on synthetic images: Input image (left), color rotation (middle),
whitening (right). First row: Two constant color values. Second row: Gaussian color noise

Fig. 10: Two objects captured from the camera with high focal length.
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Fig. 11: Two scenes containing the objects shown in Fig. 10



Fig. 12: Normalization of the images shown in Fig. 10 and Fig. 11 with color rotatation (Sect. 4)
(top), and with the modified whitening transform (Sect. 5) (bottom)

Fig. 13: Backprojection of the object in Fig. 10 (left) to the scenes in Fig. 11. Left: without nor-
malization; middle: with color rotatation (Sect. 4); right: using the modified whitening transform
(Sect. 5) (bottom)
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Fig. 14: Backprojection of the object in Fig. 10 (right) to the scenes in Fig. 11. Left: with-
out normalization; middle: with color rotatation (Sect. 4); right: using the modified whitening
transform (Sect. 5)
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A Rotation Matrix

R3(¢,an,) = [R3(¢Ian,)]m,n (m,n € {1a2a3})
[R3(¢',m")],, = 1 —H(-2a® + 2ab — b* — ¢* + 2ca)
[Rs(¢',n")],, = —VG(b-a)+Ha-c)(b-c)
[Rs(¢',n)],s = —VG(c—a)—H(@a-b)(b-c)
[Rs(¢',n)],; = —VG(a—b)+H(a—c)(b~-c)
[R3(¢',n)],, = 1-— H(—a? 4 2ab — 2b* + 2bc — ¢?)
[Rs(¢',n')],5 = —VG(c—b)+H(a-b)(a-c)
[Rs(¢',m")];, = —VG(a—c¢)—H(a-b)b-0),
[Rs(¢',m")];, = —VG(b—c)+H(a-b)(a—c)
[R3(¢',n')]3s = 1—-H(-2 > + 2ca — a® — b% + 2bc)

H = 1- \/?5 (a+b+c)
G = % (b=c)?+ (c—a)® + (a—b)?)



