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On color normalizationA sz��nnormaliz�aci�or�olD. Paulus1 and L. Csink2Universit�at Erlangen{N�urnbergLehrstuhl f�ur Mustererkennung (Informatik 5)Martensstr. 3, D{91058 Erlangen, GermanyTel.: +49{9131{85-7775, FAX: +49{9131{303811paulus@informatik.uni-erlangen.dehttp://www5.informatik.uni-erlangen.de Kand�o Polytechnic of TechnologyInstitute of InformaticsPOB 112, H-1431 Budapest, HungaryTel.: +36{1{3684610, FAX: +36{1{1689632csink@novserv.obuda.kando.huhttp://www.kando.huAbstractThe distribution of color values in colorimages depends on the illumination whichvaries widely under real{world conditions. Wepresent a new approach for color normalizationor color constancy which adjusts the statisticalproperties of the distribution to prede�ned val-ues. Such algorithms play an important rolefor image retrival from image databases. Modelbased computer vision using color images alsodepends on standardized data.Our new method di�ers from existingneural-based approaches used for color con-stancy and also from the whitening transformwhich is introduced to normalize distributionsfor numerical classi�cation. The new color ro-tation algorithm is tested on some natural andsynthetic images.

KivonatSz��nes k�epeken a sz��n�ert�ekek eloszl�asa amegvil�ag��t�ast�ol f�ugg, amely val�os k�or�ulm�enyekk�oz�ott er}osen ingadozhat. A sz��nnormaliz�aci�oravagy sz��n�alland�os�agra egy �uj megk�ozel��t�est mu-tatunk be, amely az eloszl�as statisztikai tulaj-dons�agait el}ore meghat�arozott �ert�ekekre �all��tjabe. Az ilyen algoritmusoknak fontos szerepevan akkor, amikor k�epi adatb�azisokban foly-tatunk keres�eseket. A modell alap�u sz��nessz�am��t�og�epes l�at�as szint�en standardiz�alt ada-tokt�ol f�ugg. Az �uj m�odszer�unk k�ul�onb�ozika sz��n�alland�os�aggal foglalkoz�o neur�alis elv}umegk�ozel��t�esekt}ol, valamint az �un. whiteningtranszform�aci�ot�ol is, melyet numerikus klassz-i�k�aci�ora szolg�al�o eloszl�asok normaliz�aci�oj�aravezettek be. Az �uj sz��nforgat�asi algoritmust eg-yar�ant tesztelt�uk sz��nes �es szintetikus k�epeken.1 MotivationThe importance of color for computer vision is currently increasing, as can be seen fromthe contributions in [8] or from [4]. Although illumination of a scene may change, the humanobserver perceives the color of the objects in the scene almost independently from the illuminationvariations. The study of such kind of adaptation is an important topic of color machine vision[9]. Many color spaces exist and are used in di�erent applications. For computer vision, mostlyRGB is used since it is directly technically available and most cameras supply RGB signals.In this contribution we present a new approach, whose results are similar to those of [9],but no neural algorithm is used and all computations are done in RGB rather than in some othercolor space.In Sect. 6 we investigate the e�ect of our normalization algorithms on natural and syntheticimages. First results of ongoing research on object localization using histogram backprojection[11] in combination with color normalization are presented as well.1This work of the �rst author was funded partially by the German Research Foundation (DFG) under grantnumber SFB 182.2The work of the second author was funded by the Hungarian State E�otv�os Fellowship, grant no. 59.079/1996.
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2 Color Normalization AlgorithmsOne of the most frequently cited papers in the area of color normalization algorithms is [11]to develop visual skills for robots that allow them to interact with a dynamic, realistic environment.In order to identify color objects in a scene color histograms are used. However, a disadvantageof their color indexing method is the sensitivity to illumination changes. This can be helped bypreprocessing with a color constancy algorithm (e.g. [5]).Pomierski and Gross [9] propose to use an arti�cial neural network (ANN) to computeprincipal components of color cluster with a technique described in [6]. The color space used inthis work is (RG;BY;WB) (red{green, blue{yellow, white{black) which is motivated by neuro{physiology.. After �nding the principal component, i.e. the direction of the eigenvector belongingto the greatest eigenvalue, the cluster is rotated such that this vector points to theWB direction ofthe (RG;BY;WB)�cube. The last step is a nonlinear streching so that the cluster is distributedalong this axis. The major advantage of this idea is that no reference image or calibration isrequired in order to transform an arbitrary image to normalized colors.The color space transformations from a color vector f inRGB to a vector ef inRG;BY;WBare: ef = 0@ RGBYWB 1A = T0@ RGB 1A = Tfwhere T = 0@ 6:9012 �13:9416 7:0404�12:4116 :0048 12:406820:9968 21:1423 20:8609 1AThe steps marked with 1 and 3 in Fig. 1 are the color space transformations by T andT�1, respectively. 2 stands for the search of the principal component and the neural-basedrotation to the WB{axis of the (RG;BY;WB){space. The basic question now is whether wecan yield similar results and e�ects for computer vision, as [9] demonstrates for human vision,without an explicit transformation to (RG;BY;WB). This is depicted as 4 in Fig. 1.RGBYWB
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Fig. 1: Conversion of Pomierski (partially from [9])3 Color Cluster AnalysisOur approach starts with color cluster analysis of a color image [f ij ] in the following stepswhich are common to the two algorithms described in Sect. 4 and Sect. 5:1. Assume that m = Eff ijg is the vector pointing to the centre of gravity. Translate eachcolor vector f ij  f ij �m.2. Let C be the (3� 3){matrix de�ned byC = Eff ijf ijTg
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Fig. 2: Color rotation in RGBwhose eigenvalues �1; �2; �3 and eigenvectors are simply computed directly (e.g. by theJacobi method).3. Denote the eigenvector belonging to the largest eigenvalue by (a; b; c)T.Now two approaches have been tried, an idea which we called color rotation in RGB (Sect. 4)and the adaptation of the whitening transform (Sect. 5, [1]).4 Color Rotation in RGBFrom geometric considerations we proceed as follows in order to rotate the cluster to themain diagonal (Fig. 2):4. Find the normal n0 through the origin on the plane de�ned by the main diagonal in theRGB{cube and the principal component of the cluster: n0 = (a; b; c)T � 1p3 (1; 1; 1)T, i.e.,n0 = 1p3 (b� c; c� a; a� b)T, where � denotes the vectorial product in IR3. The rotationangle cos�0 is computed from the dot product of eigenvector and the diagonal:cos�0 = (a; b; c)T � 1p3 (1; 1; 1)T.In order to rotate with �, we use the Rodrigues formula for the rotation by an angle �around an axis expressed as a vector n :R3(�;n) = Id3 � sin� U (n) + (1� cos�)U 2(n)where U 2(n) = nnT � Id3 and knk = 1.The matrix Id3 is the identity matrix. The matrix U for an axis n = (nx; ny; nz)T isU (n) = 0@ 0 �nz nynz 0 �nx�ny nx 0 1A :Here:U (n0) = p33 0@ 0 b� a c� aa� b 0 c� ba� c b� c 0 1AThe rotation matrix R3(�0;n0) resulting from this formula for this particular case is givenin Appendix A.



5. Translate each pixel in the rotated image with a parameter along the axis (1; 1; 1)Tm0 = kmkcos�0 (1; 1; 1)T6. Scaling by a variable factor is allowed (default is no scaling). The overows above 255 andthe underows under 0 are clipped to 255 and 0, respectively.The result is a color image which has a normalized color distribution; the mean of the colorvectors is on the main diagonal of the RGB{cube; the �rst principal component of the cluster ison the same diagonal. 5 Whitening transformIn Fukunaga [1] the whitening transform is introduced, which is an orthonormal transformmapping the principal components of the color cluster into the (orthogonal) eigenvectors, and atthe same time a scaling is done with 1p�i . In this section we examine whether the above transformcan be used for image normalization and we compare the results with those of section 4We �rst perform steps 1{3 as described in Sect. 3 and then proceed as follows:4. Compute the eigenvector matrix V of C, and denote� = 0B@ 255p�1 0 00 255p�1 00 0 255p�1 1CAwhere �1 is the greatest eigenvalue of C. We note that 255 appears in the nominator ofthe above fractions instead of 1 since 255 is the scale in which R, G and B may vary. Wealso note that here we modi�ed the original transform not wanting to scale each principalcomponent with the corresponding fraction involving its eigenvalue, as this would changethe shape of the cluster more than it is desirable.5. Let us form f 0ij = �V Tf ij6. Rotate the cluster along the R axis by 45 degrees in the positive direction, and then rotatethe image along the B axis with 45 degrees again and shift the image along the main axisof the RGB-cube by (128; 128; 128)T. After clipping the values by 255 (so that they shouldnot point outside the RGB-cube) we get the result.The result again is a color image which has a normalized color distribution; the mean of the colorvectors is on the main diagonal of the RGB{cube; the �rst principal component of the clusteris on the same diagonal. In addition, the second axis of the cluster is rotated to the diagonal(0; 1; 1)T in the RGB{cube. 6 ExperimentsWe integrated both algorithms in our image analysis system [7] and made experimentswith both synthetic and real images. Fig. 3 shows one scene as captured from the camera.1The results of a conversion with our �rst algorithm (Sect. 4) is shown in Fig. 4.2 Fig. 5illustrates the results of the modi�ed whitening transform (Sect. 5). The corresponding colorclusters are visualized in Fig. 6, 7, and 8.Two experiments on synthetic images are shown in Fig. 9, proving that the algorithmswork on principal components which are furthest away from the main diagonal in the RGB cube,and for eigenvalues which are zero.A red object (Fig. 10 (left)) and a blue object (Fig. 10 (right)) are both captured with a highfocal length setting for a zoom camera. These objects are present in two scences (Fig. 11 (left) andFig. 11 (right)) captured with di�erent settings of the zoom lens and di�erent lighting conditions.



Fig. 3: Input image Fig. 4: Algorithm of Sect. 4 Fig. 5: Algorithm of Sect. 5
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Fig. 6: Cluster of Fig. 3 0
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Fig. 7: Cluster of Fig. 4 0
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Fig. 8: Cluster of Fig. 5The results of the two proposed color normalization algorithms on the scenes in Fig. 11are shown in Fig. 12. Even in the gray{level print, the changes are visible in comparison to theoriginal images. The mean intensity of the images is higher than the original. For the whiteningtransformed images, the white was shifted in the red direction, such that the table in the centerof the image now is light pink. This e�ect is due to the normalization of the second principalcomponent and could be observed in most of our experiments.The e�ects of color normalization on object localization based on color backprojection[11] are presented in Fig. 13 and Fig. 14. The results are rather disappointing for the �rst object(Fig. 10 (left)). No advantage of color normalization can be seen for the backprojection algorithm,since the general shift of colors to red increases the number of red pixels and thus deterioratesthe backprojection of a red object. The results for the second object (Fig. 10 (right) are shownin Fig. 14. Here, the modi�ed whitening transform improves the results of backprojection, sincethe rotation of the second principal component helps discriminating blue color from the others.7 ConclusionWe presented two new approaches to color normalization. One is based on an extensions ofthe whitening transform [1]. The other was inspired by [9]. Normalization does not make imageslook better. We claim that color normalization can facilitate more reliable object localizationunder changing lighting conditions. The best choice for the proposed normalization algorithms,however, depends on the object to be localized. Further investigations will be done here in order tooptimize object localization using backprojection as in [11, 10] in combination with our algorithmsfor color normalization and with other correction algorithms and strategies which compensate forcolor changes, such as [2]. References[1] K. Fukunaga: Introduction to Statistical Pattern Recognition, Academic Press, Boston, 1990.[2] B. V. Funt, G. D. Finlayson: Color Constant Color Indexing, IEEE Transactions on PatternAnalysis and Machine Intelligence (PAMI), Bd. 17, Nr. 5, 1995, S. 522{529.1The color images are available in PostScript version of the paper which can be found in the world wide webin the section Publications in http://www5.informatik.uni-erlangen.de.2All color images are vector quantized to 32 colors using the median cut algorithm [3].



Fig. 9: Color normalization on synthetic images: Input image (left), color rotation (middle),whitening (right). First row: Two constant color values. Second row: Gaussian color noise

Fig. 10: Two objects captured from the camera with high focal length.

Fig. 11: Two scenes containing the objects shown in Fig. 10



Fig. 12: Normalization of the images shown in Fig. 10 and Fig. 11 with color rotatation (Sect. 4)(top), and with the modi�ed whitening transform (Sect. 5) (bottom)

Fig. 13: Backprojection of the object in Fig. 10 (left) to the scenes in Fig. 11. Left: without nor-malization; middle: with color rotatation (Sect. 4); right: using the modi�ed whitening transform(Sect. 5) (bottom)[3] P. Heckbert: Color Image Quantization for Frame Bu�er Display, Computer Graphics,Bd. 16, Nr. 3, July 1982, S. 297{307.[4] Q.-T. Luong: Color in Computer Vision, in C. H. Chen, L. F. Pau, P. S. P. Wang (Hrsg.):Handbook of Pattern Recognition & Computer Vision, World Scienti�c Publishing, Singapore,1993, S. 311{369.[5] U. Mahlmeister, H. Pahl, G. Sommer: Color{Orientation Indexing, in B. J�ahne, P. Gei�ler,H. Hau�ecker, F. Hering (Hrsg.): Mustererkennung 1996, Springer, Heidelberg, September1996, S. 3{10.[6] E. Oja, J. Parkkinen: On Subspace Clustering, in Proc. Int. Conf. on Acoustics, Speech, andSignal Processing, San Diego, 1984, S. 692{695.[7] D. Paulus, J. Hornegger: Pattern Recognition of Images and Speech in C++, AdvancedStudies in Computer Science, Vieweg, Braunschweig, 1997.[8] D. Paulus, T. Wagner (Hrsg.): Dritter Workshop Farbbildverarbeitung, IRB-Verlag,



Fig. 14: Backprojection of the object in Fig. 10 (right) to the scenes in Fig. 11. Left: with-out normalization; middle: with color rotatation (Sect. 4); right: using the modi�ed whiteningtransform (Sect. 5)Stuttgart, 1997.[9] T. Pomierski, H. Gro�: Verfahren zur emp�ndungsgem�a�en Farbumstimmung, in G. Sagerer,S. Posch, F. Kummert (Hrsg.): Mustererkennung 1995, Springer, Berlin, September 1995, S.473{480.[10] H. S. Sawhney, J. L. Hafner: 1995.[11] M. J. Swain, D. H. Ballard: Color Indexing, International Journal of Computer Vision,Bd. 7, Nr. 1, November 1991, S. 11{32.A Rotation MatrixR3(�0;n0) = [R3(�0;n0)]m;n (m;n 2 f1; 2; 3g)[R3(�0;n0)]1;1 = 1�H(�2a2 + 2ab� b2 � c2 + 2ca)[R3(�0;n0)]1;2 = �pG(b� a) + H(a� c)(b� c)[R3(�0;n0)]1;3 = �pG(c� a)�H(a� b)(b� c)[R3(�0;n0)]2;1 = �pG(a� b) + H(a� c)(b� c)[R3(�0;n0)]2;2 = 1�H(�a2 + 2ab� 2b2 + 2bc� c2)[R3(�0;n0)]2;3 = �pG(c� b) + H(a� b)(a� c)[R3(�0;n0)]3;1 = �pG(a� c)�H(a� b)(b� c);[R3(�0;n0)]3;2 = �pG(b� c) + H(a� b)(a� c)[R3(�0;n0)]3;3 = 1�H(�2c2 + 2ca� a2 � b2 + 2bc)H := 1� p33 (a+ b+ c)G := 13 �(b� c)2 + (c� a)2 + (a� b)2�


