
Statistical 3{D Object Localization Without SegmentationUsing Wavelet AnalysisJosef P�osl and Heinrich NiemannLehrstuhl f�ur Mustererkennung (Informatik 5)Universit�at Erlangen{N�urnbergMartensstr. 3, D{91058 Erlangen, Germanyemail: fpoesl,niemanng@informatik.uni-erlangen.deAbstract. This paper presents a new approach for statistical object lo-calization. The localization scheme is directely based on local features,which are extracted for all image positions, in contrast to segmentationin classical schemes. Hierarchical Gabor �lters are used to extract lo-cal features. With these features statistical object models are built forthe di�erent scale levels of the Gabor �lters. The localization is thenperformed by a maximum likelihood estimation on the di�erent scalessuccessively. Results for the localization of real images of 2{D and 3{Dobjects are shown.1 Introduction and MotivationWhen analysing a 2{D gray{level image with multiple 3{D objects two majorproblems have to be solved: The pose estimation and classi�cation of each objectin the scene. In this paper we focus on the localization of one individual object.All other objects are considered as belonging to the background. We de�ne astatistical density function for pose estimation.Recognition results in speech understanding were strongly enhanced by theidea of incorporating statistical methods in the recognition task. Despite theobvious success in this area a statistical framework for image object recognitionhas not been investigated widely up to now. Nevertheless, recent results provethis approach as promising [3].Most publications in the �eld of statistical object modeling use geometricinformation of segmentation results as random variables. Lines or vertices, forexample, can be used for the construction of statistical models. There are twomajor disadvantages of using solely segmentation results. When restricting therecognition process to this level of abstraction a lot of information contained inan image is lost. Another disadvantage are the errors made by the segmentation.One way to cope with the problem is to avoid segmentation. Instead of thatthe gray{level information of an image can be used. Correlation is the simplestmethod of doing this. Another approach focuses in singular value decompositionsof vector spaces composed of the gray{level data of several images (appearancebased modeling) [1, 8]. Maximization of the mutual information between an ob-ject model and an object in a scene is a further possibility [10]. A similar tech-nique is described in [5]. [6] describes a method based on mixture densities of



the gray level values of object images. With a focus on the distributions of im-age pixel values rather than object location values and without an hierarchicalsolution this approach tends to be very complex.The cited papers either use only probabilistically chosen model points formatching [10] or use pose restrictions [5] to reduce the complexity of the estima-tion. In this paper a new approach for the localization of 3{D objects in singlegray{level images is presented. The pose of the object is not restricted and thecomplete image data is considered after hierarchical �ltering. Local features aremodeled statistically. We demonstrate a new way of formulating a statisticalmodel with a functional basis decomposition of probability density parameters.2 System overviewThe aim of the presented system is the pose estimation of a rigid 3{D object in asingle 2{D gray{level image. The parameter space is six-dimensional for this task.Let Rx,Ry and Rz denote the 3D{rotation matrices with rotation angle �x, �yand �z round the x{, y{ and z{axis respectively. The 3D{transformation consistsof the rotationR = RzRyRx 2 IR3�3 and the translation t = (tx; ty; tz)T 2 IR3.The parameter space can be split into a rotationRz with angle �int = (�z) and atranslation tint = (tx; ty; 0)T inside the image plane and orthogonal componentsRyRx (�ext = (�y ; �x)) and text = (0; 0; tz)T for the transformations outside.For this work it is assumed that the object does not vary in scale: t = tint.In a �rst step of the localization process a multiresolution analysis of theimage is used to derive feature values on di�erent scales s 2 ZZ and resolu-tions (sampling rates) �xs = �ys = rs 2 IR+ at the locations of rectangu-lar sampling grids (rs;q+1 < rs;q). The image f(x; y) is transformed to signalshs = (hs;0; : : : ; hs;N�1)T by local transformations Ts;n for scale s: hs;n(x; y) =Ts;nffg(x; y). Feature vectors cs;k;l = (cs;k;l;0; : : : ; cs;k;l;N�1)T at discrete loca-tions are obtained by subsampling: cs;k;l;n = Ts;nffg(krs; lrs). Possible de�ni-tions of this transformation are described in section 3.We de�ne a statistical measure for the probability of those features under theassumption of an object transformation. The complexity of the pose estimationis high if all features on the di�erent scale levels are combined into one measurefunction. Therefore, a hierarchical solution is used. Measures are de�ned for eachscale. The analysis starts on a low scale and a rough resolution. The resolutionis then decreased step by step. The transformation estimation becomes moreexact with each step. Let ~cs be the vector of the concatenated feature vectorsdetected in an image on scale s, Bs the model parameters of an object classand R; t be parameters for rotation and translation. The model parametersBs consist of geometric information like probability density locations and otherdensity parameters. The density p(~csjBs;R; t) is then used for localization. Themaximum likelihood estimation results in (bRs;bts) = argmax(R; t) p(~csjBs;R; t).Given a descending sequence (sq)q=0;:::;Ns�1 of scales, the analysis beginswith the roughest scale s0. The parameter space is searched completely at this



level. The best H transformation hypotheses on scale level sq are then usedto perform a search with restricted parameter range on scale level sq+1. Theoptimum search on all levels consists of a combination of a grid search for thegiven parameter range and a successive local search. The grid search on level s0is a global search of the full parameter range while the grid search on each otherlevel evaluates the optimum only in the neighbourhood of the previous localoptimum. The grid resolution thereby decreases with the scale levels (Fig. 1).Image ! Multiresolutionhierarchy ! Maximum{Likelihoodestimationargmax(R; t) p(~cs0 jBs0 ;R; t)#argmax(R; t) p(~cs1 jBs1 ;R; t)#argmax(R; t) p(~cs2 jBs2 ;R; t)Fig. 1. System overview: Probability density maximization on multiresolution hierar-chy of images.3 FeaturesFeatures used for object recognition and localizationmust have at least two prop-erties. First, they should be robust with respect to noise and di�erent lightingconditions in a scene. Second, they should be invariant to the transformationsof the object in the image plane. The feature values at certain object locationsshould not change if the object is translated or rotated in the image plane.We de�ne local features derived from Gabor �lters which ful�l the require-ments of robustness and invariance. By suppressing high frequencies at di�erentscales Gabor �lters are a means to compensate for noise. Gabor functions areGaussians modulated by complex sinusoids. The 2{D Gabor function can bewritten as: g(x;!) = exp��� x22�x2 + y22�y2 �+ 2�i�!Tx�� :� = (�x; �y)T de�nes the width of the Gaussian in the spatial domain and! is the frequency of the complex sinusoid. These functions achieve the mi-nimum possible joint resolution in space and frequency [2]. They furthermoreform a complete but nonorthogonal basis for the set of two-dimensional func-tions. In order to derive suitable features from the �lter results, Gabor wavelets



are de�ned [9]. They allow the analysis of the signal at di�erent scale levels andvary spatial and frequency windows accordingly. The basic wavelet of the Gaborwavelet transform with circular spatial windows (�x = �y) is de�ned as:g(x; �) = exp ��x2 + p�ix0� ;where � is the orientation and x0 = (x0; y0)T = R�x.R� denotes the 2{D rotationmatrix with angle �. The constant p which speci�es the ratio of spatial extentand period of the functions is chosen as p = 1 according to [7]. With thesede�nitions the wavelet transform of a 2{D function f on the scale s 2 ZZ is:ws(x; �) = Z f(x0)�g �d�s(x� x0); �� dx0;with d 2 IR, d > 1, s 2 ZZ and � 2 f�l = l�Nl gl=0;:::;Nl�1. �g is the conjugate ofg. A feature vector cs = (cs;0; : : : ; cs;N�1)T = cs(x) can now be de�ned for thelocations x on di�erent scales s:cs;n = ��FTk=1:::N�1 fjFTl=0::N�1 flog jws(x; �l)jgkjgn�� ; N = �Nl + 12 �;where FTk=k0:::k1ffkgl = Xk=k0 :::k1 fk exp��2�iklN �is the discrete Fourier transform. It is approximately (asymtotically forN !1)rotationally invariant and robust to changes in lighting conditions.As already stated in Sect. 2 the localization is performed hierarchically ondi�erent scale levels. The resolution rs (sampling distance) of the analysis onscale s is connected to the spatial �lter width by a constant �: rs = �ds.4 Statistical model4.1 Model formulationThis section shows the de�nition of a probability density function on each of thescale levels of the analysis. To simplify the notation the index s indicating thescale level is omitted.The model object is covered with a rectangular grid of local feature vectors(see Fig. 2). The grid resolution is the same as the image resolution on theactual scale. Let A � X be a small region (e.g. rectangular) which containsthe object projection onto the image plane for all possible rotations �ext andconstant �int and t (see Fig. 2). Let X = fxmgm=0;:::;M�1, xm 2 IR2 denote thegrid locations and c(x) the observed feature vector at location x = (x; y)T. Inthis paper we choose the grid locations as the sampling locations of the imagetransformation: X = nxm = (krs; lrs)To. The local features cn(xm) are thecomponents of the image feature vector ~c if the object is not transformed in theimage plane: cn(xm) = cn(krs; lrs) = ck;l;n = cm;n.
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Fig. 2. Object covered with grid for feature extraction.The local features cm;n are interpreted as random variables. The randomnessthereby is, among others, the consequence of noise in the image sampling processand complex changes in environment (e.g. lighting) conditions. Assuming thedensities p(cm) of the local features as stochastically independent leads to:p(~c) =Yxm p(c(xm)) = Yxm2A p(c(x)jx = xm) Yxm =2A p(c(x)jx = xm):If a uniform distribution for the features outside the model area A (which belongto background) is assumed the second product in the above equation is constant.So it is su�cient to considerp(cA) = Yxm2A p(c(x)jx = xm);where cA is the subvector of ~c which belongs to A, for pose estimation.We will �rst derive the density for the two-dimensional case. We use linearinterpolation for reconstruction of cn(x) from the image feature vector ~c.The grid positions and A are part of the model parameters B. If the modelis transformed by (�int; t) in the image plane the density can be written as:p(cAjB;�int; t) = Yxm2A p(c(x)jx = R (�z)xm + t2D); t2D = (tx; ty)T:The feature vectors are assumed to be normally distributed with independentcomponents. Let N (cj�m;�m) denote the normal densities, where �m is themean vector and �m the covariance matrix of the feature vector cm. In the caseof independence, �m is a diagonal matrix diag ��2m;0; : : : ; �2m;N�1�. This resultsin: p(cAjB;�int; tint) = Yxm2AN (c(R (�z)xm + t2D)j�m;�m):For 3{D objects there are two additional degrees of freedom. They allow anobject rotation �ext = (�y; �x) perpendicular to the image plane. With the samedensity model for all possible rotations �ext the density parameters are functionsof these additional parameters, so that:p(cAjB;R; t) = Yxm2AN (c(R (�z)xm + t2D)j�m(�y; �x);�m(�y ; �x)):



Assuming continuous functions �m(�y ; �x);�m(�y ; �x), they can be rewrittenusing a basis set for the domain of two-dimensional functions fvrgr=0;:::;1 on thedomain of (�y; �x) with appropriate coordinates am;n;r; bm;n;r 2 IR (r = 0; : : :):�m;n = 1Xr=0 am;n;rvr; ��2m;n = 1Xr=0 bm;n;rvr:Possible basis functions are vr = vst(�y ; �x) = �sx�ty with the enumerationr = 12 (s+ t)(s+ t+1)+ t. The functions can be approximated by using only partof the complete basis set fvrgr=0;:::;L�1. The approximation error can be madeas small as possible by choosing L large enough. If �x is constant, as in ourexperiments, the vr are only one-dimensional polynomial basis functions �ry.4.2 Parameter estimationThe model parameters are estimated by a maximum likelihood estimation. Underthe assumption of N� independent observations �cA this leads to the estimationn(bam;n;bbm;n)o = argmaxf(am;n;bm;n)gY� p(�cAjxm; f(am;n; bm;n)g ; �R; �t);with the assumption of known transformation parameters �R; �t and a prede-�ned number L of basis functions.The optimization of this function is rather complex. In order to reduce thecomplexity by providing an analytical solution, �m;n is assumed to be constant.Solving the equations for the parameters to be estimated results in:bam;n = Q�1 X� �cm;nv(��ext)! ; b�m;n = 1N� X� (�cm;n � b�m;n(��ext))2 ;with Q =X� v(��ext)vT(��ext);�cm;n = �cn(R (��z)xm + �tint) and v = (v0; : : : ; vL�1)T.5 ResultsFig. 3 shows the objects used in this work. The images are 256 pixels in square.Several real images containing one object at di�erent positions have been used forexperiments. The localization was performed on two scale levels: s0 = 4, s1 = 3(d = 2 pixels) with resolution rs = 0:5ds (rs0 = 8, rs1 = 4 pixels) and constant�m;n. The Gabor �lters were calculated for 16 equidistant angles from 0o to 180o,resulting in nine-dimensional feature vectors. Only the best localization result oflevel s0 was used for further re�nement at s1. The Downhill Simplex algorithmwas used for the local parameter search following the global grid search. The



block car pig car3DFig. 3. Examples for objects used for 2{D (left) and 3{D (right) experiments.computation time on a SGI Impact is about 45 seconds for feature extractionon both scale levels and 30 seconds for localization of object pig with its four-dimensional parameter space (level s0: 100 grid locations, s1: 400).Training and test sets are disjoint. For each of the 2{D objects halfcircle,car and plug one image sequence with a complete object rotation in the imageplane in 36 equidistant steps was available. The correct object positions weredetermined manually with two reference points. The average accuracy of theobject positions available for training and testing is about half a pixel withrespect to translation and half a degree with repect to rotation. Object blockwas available in three such sequences with di�erent lighting conditions. Trainingimages were taken out of two sequences, the rest was used for testing. Thecorrect positions for block were determined by the algorithm described in [3]. Thesequences of the 3{D objects pig and car3D are taken from the Columbia ObjectImage Library (COIL). They consist of images for di�erent object positions ofone rotation axis �y of �ext and �xed �x,�z ,t. The range of �ext was treated asone-dimensional in the experiments. The range of �z ; t was searched completely,resulting in a four-dimensional search. Tables 1 and 2 show the results of thetests. Experiments with a translation error of more than ten image pixels werecategorized as failure.Object Number ErrorTrain Test Transl. (Pix) Rot. (o)mean max mean maxblock 40 66 0.3 1.4 0.5 1.6halfcircle 18 18 0.8 1.8 0.5 1.6car 18 18 1.3 3.8 1.7 4.0plug 18 18 0.9 2.0 0.9 1.7Table 1. Localization results for 2{D objects.6 ConclusionA new approach for object localization using statistical models was presented.The localization scheme works without segmentation of the input images. Gabor�lters are used to extract local features. The local features are transformed inorder to be rotationally invariant and robust to changes in lighting conditions.



Object Number L Fail ErrorTrain Test Transl. (Pix) int.Rot. (o) ext.Rot. (o)mean max mean max mean maxpig 36 36 6 2 1.2 2.9 1.5 4.7 4.8 16car3D 36 36 4 1.5 7.4 3.0 9.4 6.6 22pig 36 36 8 0 1.1 2.1 1.5 5.6 3.7 14car3D 36 36 2 1.7 9.9 2.7 9.4 5.4 16Table 2. Localization results for 3{D objects.The positions of the local features with respect to the object provide the in-formation for localization. The object model consists of the distributions of thelocal feature vectors. Assuming stochastic independence the densities are com-bined to a complete model for the object. The localization itself is performed ondi�erent scale levels to reduce the computational complexity.Several experiments with real images of 2{D and 3{D objects were carriedout. The results show that the approach is capable of localizing objects. Futureresearch will focus on the investigation of alternative and rotationally variantfeatures. Statistical dependence will be considered to a certain degree.References1. M. Black and A. Jepson. Eigentracking: Robust matching and tracking of artic-ulated objects using a view-based representation. In B. Buxton and R. Cipolla,editors, Computer Vision | ECCV '96, volume I of Lecture Notes in ComputerScience, pages 329{341, Heidelberg, 1996. Springer.2. J. G. Daugman. Uncertainty relation for resolution in space, spatial frequency,and orientation optimized by two-dimensional visual cortical �lters. Journal of theOptical Society of America A, 2(7):1160{1169, 1985.3. J. Hornegger and H. Niemann. Statistical learning, localization, and identi�cationof objects. In ICCV 95 [4], pages 914{919.4. Proceedings of the 5th International Conference on Computer Vision (ICCV),Boston, June 1995. IEEE Computer Society Press.5. H. Kollnig and H.-H. Nagel. 3D pose estimation by �tting gradients directly topolyhedral models. In ICCV 95 [4], pages 569{574.6. V. Kumar and E. S. Manolakos. Unsupervised model{based object recognitionby parameter estimation of hierarchical mixtures. In Proceedings of the Interna-tional Conference on Image Processing (ICIP), pages 967{970, Lausanne, Schweiz,September 1996. IEEE Computer Society Press.7. B. S. Manjunath, C. Shekhar, and R. Chellappa. A new approach to image featuredetection with applications. Pattern Recognition, 29(4):627{640, 1996.8. H. Murase and S. K. Nayar. Visual learning and recognition of 3{D objects fromappearance. International Journal of Computer Vision, 14(1):5{24, January 1995.9. A. Shustorovich. Scale speci�c and robust edge/line encoding with linear combi-nations of gabor wavelets. Pattern Recognition, 27(5):713{725, 1994.10. P. Viola and W. Wells III. Alignment by maximization of mutual information. InICCV 95 [4], pages 16{23.This article was processed using the LaTEX macro package with LLNCS style


