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Abstract. This paper presents a new approach for statistical object lo-
calization. The localization scheme is directely based on local features,
which are extracted for all image positions, in contrast to segmentation
in classical schemes. Hierarchical Gabor filters are used to extract lo-
cal features. With these features statistical object models are built for
the different scale levels of the Gabor filters. The localization is then
performed by a maximum likelihood estimation on the different scales
successively. Results for the localization of real images of 2-D and 3-D
objects are shown.

1 Introduction and Motivation

When analysing a 2-D gray—level image with multiple 3-D objects two major
problems have to be solved: The pose estimation and classification of each object
in the scene. In this paper we focus on the localization of one individual object.
All other objects are considered as belonging to the background. We define a
statistical density function for pose estimation.

Recognition results in speech understanding were strongly enhanced by the
idea of incorporating statistical methods in the recognition task. Despite the
obvious success in this area a statistical framework for image object recognition
has not been investigated widely up to now. Nevertheless, recent results prove
this approach as promising [3].

Most publications in the field of statistical object modeling use geometric
information of segmentation results as random variables. Lines or vertices, for
example, can be used for the construction of statistical models. There are two
major disadvantages of using solely segmentation results. When restricting the
recognition process to this level of abstraction a lot of information contained in
an image is lost. Another disadvantage are the errors made by the segmentation.

One way to cope with the problem is to avoid segmentation. Instead of that
the gray-level information of an image can be used. Correlation is the simplest
method of doing this. Another approach focuses in singular value decompositions
of vector spaces composed of the gray—level data of several images (appearance
based modeling) [1, 8]. Maximization of the mutual information between an ob-
ject model and an object in a scene is a further possibility [10]. A similar tech-
nique is described in [5]. [6] describes a method based on mixture densities of



the gray level values of object images. With a focus on the distributions of im-
age pixel values rather than object location values and without an hierarchical
solution this approach tends to be very complex.

The cited papers either use only probabilistically chosen model points for
matching [10] or use pose restrictions [5] to reduce the complexity of the estima-
tion. In this paper a new approach for the localization of 3-D objects in single
gray—level images is presented. The pose of the object is not restricted and the
complete image data is considered after hierarchical filtering. Local features are
modeled statistically. We demonstrate a new way of formulating a statistical
model with a functional basis decomposition of probability density parameters.

2 System overview

The aim of the presented system is the pose estimation of a rigid 3-D object in a
single 2-D gray-level image. The parameter space is six-dimensional for this task.
Let R;,R, and R, denote the 3D-rotation matrices with rotation angle ¢,, ¢,
and ¢, round the z—, y— and z—axis respectively. The 3D—transformation consists
of the rotation R = R, R R, € IR3*? and the translation t = (tzsty, tz)T e R3.
The parameter space can be split into a rotation R, with angle ¢,,,;, = (¢.) and a
translation tin: = (¢, ¢y, O)T inside the image plane and orthogonal components
R R, (¢.ps = (¢y,¢2)) and tezp = (0,0,£,)" for the transformations outside.
For this work it is assumed that the object does not vary in scale: t = ¢;,;.

In a first step of the localization process a multiresolution analysis of the
image is used to derive feature values on different scales s € 7Z and resolu-
tions (sampling rates) Az, = Ay, = r, € IRT at the locations of rectangu-
lar sampling grids (rsq+1 < 7s,4). The image f(z,y) is transformed to signals
hs = (hso,.- .,hs,N,l)T by local transformations 7, for scale s: hs ,(z,y) =
Tsn{f}(z,y). Feature vectors ¢sx,; = (Cs,k,1,05 - - .,cs,k,l,N_l)T at discrete loca-
tions are obtained by subsampling: ¢ k1,0 = Tsn{f}(k7s,lrs). Possible defini-
tions of this transformation are described in section 3.

We define a statistical measure for the probability of those features under the
assumption of an object transformation. The complexity of the pose estimation
is high if all features on the different scale levels are combined into one measure
function. Therefore, a hierarchical solution is used. Measures are defined for each
scale. The analysis starts on a low scale and a rough resolution. The resolution
is then decreased step by step. The transformation estimation becomes more
exact with each step. Let &5 be the vector of the concatenated feature vectors
detected in an image on scale s, B the model parameters of an object class
and R,t be parameters for rotation and translation. The model parameters
B, consist of geometric information like probability density locations and other
density parameters. The density p(¢s| Bs, R, t) is then used for localization. The
maximum likelihood estimation results in (Rs,%;) = argmax g 4 P(€s|Bs, R, t).

Given a descending sequence (Sq)q:o,...,qu of scales, the analysis begins
with the roughest scale so. The parameter space is searched completely at this



level. The best H transformation hypotheses on scale level s, are then used
to perform a search with restricted parameter range on scale level s;y;. The
optimum search on all levels consists of a combination of a grid search for the
given parameter range and a successive local search. The grid search on level sq
is a global search of the full parameter range while the grid search on each other
level evaluates the optimum only in the neighbourhood of the previous local
optimum. The grid resolution thereby decreases with the scale levels (Fig. 1).

Multiresolution . Maximum-Likelihood
hierarchy estimation

Image

n argmax(g, 4 P(€s,|Bs,, R, 1)

n argmax(p 4 P(€s,|Bs;, R, 1)

argmaxp 4) P(Cs, | Bs,, R, t)

Fig. 1. System overview: Probability density maximization on multiresolution hierar-
chy of images.

3 Features

Features used for object recognition and localization must have at least two prop-
erties. First, they should be robust with respect to noise and different lighting
conditions in a scene. Second, they should be invariant to the transformations
of the object in the image plane. The feature values at certain object locations
should not change if the object is translated or rotated in the image plane.

We define local features derived from Gabor filters which fulfil the require-
ments of robustness and invariance. By suppressing high frequencies at different
scales Gabor filters are a means to compensate for noise. Gabor functions are
Gaussians modulated by complex sinusoids. The 2-D Gabor function can be

written as:
22 y? -
g(z,w) =exp<—[ + ] + 2mi [w ]) )

20,2 20,2

o = (az,ay)T defines the width of the Gaussian in the spatial domain and
w is the frequency of the complex sinusoid. These functions achieve the mi-
nimum possible joint resolution in space and frequency [2]. They furthermore
form a complete but nonorthogonal basis for the set of two-dimensional func-
tions. In order to derive suitable features from the filter results, Gabor wavelets



are defined [9]. They allow the analysis of the signal at different scale levels and
vary spatial and frequency windows accordingly. The basic wavelet of the Gabor
wavelet transform with circular spatial windows (o, = o) is defined as:
g(z,0) = exp (—z? + pmiz') ,

where 6 is the orientation and ' = (z',y')" = Rex. Ry denotes the 2-D rotation
matrix with angle 8. The constant p which specifies the ratio of spatial extent
and period of the functions is chosen as p = 1 according to [7]. With these
definitions the wavelet transform of a 2-D function f on the scale s € ZZ is:

ws(x, 6) = /f(a:o)g (d*(@ - z0), 6) dzo,

withd e R,d >1,s€ Z and § € {6, = lﬁﬂ;}l:O,...,Nl—l- g is the conjugate of

g. A feature vector ¢; = (¢s,0,- .-, cS,N,l)T = ¢s(x) can now be defined for the
locations  on different scales s:

2

Ny +1
cs,n=|FTk:1...N1{|F:n:o..N1{1ogws(m,az)|}k}n|,N={ : J

where

FTicky. it {fili= > frexp <_27erfkl>

k=ko...k1

is the discrete Fourier transform. It is approximately (asymtotically for N — oo)
rotationally invariant and robust to changes in lighting conditions.

As already stated in Sect. 2 the localization is performed hierarchically on
different scale levels. The resolution r; (sampling distance) of the analysis on
scale s is connected to the spatial filter width by a constant A: r; = Ad®.

4 Statistical model

4.1 Model formulation

This section shows the definition of a probability density function on each of the
scale levels of the analysis. To simplify the notation the index s indicating the
scale level is omitted.

The model object is covered with a rectangular grid of local feature vectors
(see Fig.2). The grid resolution is the same as the image resolution on the
actual scale. Let A C X be a small region (e.g. rectangular) which contains
the object projection onto the image plane for all possible rotations ¢,,; and
constant ¢;,,, and ¢ (see Fig.2). Let X = {@m},,_o 11, ®m € R? denote the

grid locations and ¢(x) the observed feature vector at location & = (z, y)T. In
this paper we choose the grid locations as the sampling locations of the image
T
)

transformation: X = {:L'm = (krg,lrs } The local features c,(x,,) are the

components of the image feature vector ¢ if the object is not transformed in the
image plane: ¢y () = cn(krs,Irs) = Crin = Cmyn-
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Fig. 2. Object covered with grid for feature extraction.

The local features cy,,, are interpreted as random variables. The randomness
thereby is, among others, the consequence of noise in the image sampling process
and complex changes in environment (e.g. lighting) conditions. Assuming the
densities p(c,,) of the local features as stochastically independent leads to:

= [Ire@n) = I ple@)z=2n) [ plc@)z==mn).

TmeA T.¢A

If a uniform distribution for the features outside the model area A (which belong
to background) is assumed the second product in the above equation is constant.
So it is sufficient to consider

II ple(@)z =),

TmEA

where ¢4 is the subvector of & which belongs to A, for pose estimation.

We will first derive the density for the two-dimensional case. We use linear
interpolation for reconstruction of ¢, () from the image feature vector ¢.

The grid positions and A are part of the model parameters B. If the model

is transformed by (¢;,,;,t) in the image plane the density can be written as:

T
p(cA‘Ba(pinta I I p ‘:I: - (¢z) T, + t2D)a t2D = (tzaty)
TncA

The feature vectors are assumed to be normally distributed with independent
components. Let N (e|p,,,, ¥m) denote the normal densities, where p,, is the
mean vector and X, the covariance matrix of the feature vector ¢,,. In the case
of independence, X, is a diagonal matrix diag (o2 . afn’Nfl). This results
in:

mO’

(CA|B ¢znt’ znt H N ¢Z)mm +t2D)‘p’m’ )
L.,,cA
For 3-D objects there are two additional degrees of freedom. They allow an
object rotation ¢,,; = (¢, ¢,) perpendicular to the image plane. With the same
density model for all possible rotations ¢,,, the density parameters are functions
of these additional parameters, so that:

plcalB,R,t) = [[ N(c(R(6:)@m + t20) |t (by: b2), Zm(dys ba))-

TmEA



Assuming continuous functions p,,(¢y, ¢z), Xm(dy, =), they can be rewritten
using a basis set for the domain of two-dimensional functions {v, },_, ., onthe
domain of (¢y, ¢) with appropriate coordinates am n,r,bm,n,r € R (r =0,...):

oo oo
— § -2 _ §
Mm,n - am,n,rvra O'm,n - bm,n,rvr-
r=0 r=0

Possible basis functions are v, = vs¢(dy,ds) = @54} with the enumeration
r = (s+t)(s+t+1)+t. The functions can be approximated by using only part
of the complete basis set {v,},_o ;- The approximation error can be made
as small as possible by choosing L large enough. If ¢, is constant, as in our
experiments, the v, are only one-dimensional polynomial basis functions ¢j,.

4.2 Parameter estimation

The model parameters are estimated by a maximum likelihood estimation. Under
the assumption of IV, independent observations *c4 this leads to the estimation

{(am,nagm,n)} = argmax p(PcA‘mma{(am,nabm,n)}apRaPt)a
L

{(amnsbm.n

with the assumption of known transformation parameters »R,”t and a prede-
fined number L of basis functions.
The optimization of this function is rather complex. In order to reduce the
complexity by providing an analytical solution, oy, is assumed to be constant.
Solving the equations for the parameters to be estimated results in:

~ - ~ 1 ~
Amn = Q ! (Z pcm,nv(p¢ezt)> y Om,n = Fp Z (pcm,n - Mm,n(p¢ezt))2 )
P o

with
Q = Zv(p¢ezt)vT(p¢ezt)a
p
Pemm = Pen(R(P,) Tm + Ptint) and v = (vg, ... ,UL,I)T.
5 Results

Fig.3 shows the objects used in this work. The images are 256 pixels in square.
Several real images containing one object at different positions have been used for
experiments. The localization was performed on two scale levels: sg = 4, s = 3
(d = 2 pixels) with resolution rs = 0.5d° (rs;, = 8, rs, = 4 pixels) and constant
Om,n- The Gabor filters were calculated for 16 equidistant angles from 0° to 180°,
resulting in nine-dimensional feature vectors. Only the best localization result of
level sg was used for further refinement at s;. The Downhill Simplex algorithm
was used for the local parameter search following the global grid search. The



block car pig car3D
Fig. 3. Examples for objects used for 2-D (left) and 3-D (right) experiments.

computation time on a SGI Impact is about 45 seconds for feature extraction
on both scale levels and 30 seconds for localization of object pig with its four-
dimensional parameter space (level so: 100 grid locations, s1: 400).

Training and test sets are disjoint. For each of the 2-D objects halfcircle,
car and plug one image sequence with a complete object rotation in the image
plane in 36 equidistant steps was available. The correct object positions were
determined manually with two reference points. The average accuracy of the
object positions available for training and testing is about half a pixel with
respect to translation and half a degree with repect to rotation. Object block
was available in three such sequences with different lighting conditions. Training
images were taken out of two sequences, the rest was used for testing. The
correct positions for block were determined by the algorithm described in [3]. The
sequences of the 3-D objects pig and car3D are taken from the Columbia Object
Image Library (COIL). They consist of images for different object positions of
one rotation axis ¢, of ¢,,, and fixed ¢;,¢,t. The range of ¢,,, was treated as
one-dimensional in the experiments. The range of ¢,, ¢ was searched completely,
resulting in a four-dimensional search. Tables 1 and 2 show the results of the
tests. Experiments with a translation error of more than ten image pixels were
categorized as failure.

Object | Number Error
Train|Test|Transl. (Pix)| Rot. (°)
mean| max |mean|max

block 40 | 66 | 0.3 1.4 0.5 | 1.6
halfcircle] 18 | 18 | 0.8 1.8 0.5 | 1.6
car 18 18 | 1.3 3.8 1.7 [ 4.0
plug 18 | 18 | 0.9 2.0 0.9 | 1.7

Table 1. Localization results for 2-D objects.

6 Conclusion

A new approach for object localization using statistical models was presented.
The localization scheme works without segmentation of the input images. Gabor
filters are used to extract local features. The local features are transformed in
order to be rotationally invariant and robust to changes in lighting conditions.



Object| Number |L|Fail Error

Train|Test Transl. (Pix)|int.Rot. (°)|ext.Rot. (°)

mean| max |mean| max |mean| max
1.2 2.9 1.5 | 4.7 | 4.8 16
1.5 7.4 3.0 94 | 6.6 22
1.1 2.1 1.5 | 5.6 | 3.7 14
1.7 9.9 27194 | 54 16

pig 36 | 36 |6
car3D| 36 | 36
pig 36 | 36 |8
car3D| 36 | 36

N Ok N

Table 2. Localization results for 3-D objects.

The positions of the local features with respect to the object provide the in-
formation for localization. The object model consists of the distributions of the
local feature vectors. Assuming stochastic independence the densities are com-
bined to a complete model for the object. The localization itself is performed on
different scale levels to reduce the computational complexity.

Several experiments with real images of 2-D and 3-D objects were carried

out. The results show that the approach is capable of localizing objects. Future
research will focus on the investigation of alternative and rotationally variant
features. Statistical dependence will be considered to a certain degree.
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