
Statistical Pose Estimation with Local DependenciesJosef P�osl �Lehrstuhl f�ur Mustererkennung (Informatik 5)Universit�at Erlangen{N�urnbergMartensstr. 3, D{91058 Erlangen, Germanyemail: fpoesl,niemanng@informatik.uni-erlangen.deAbstractThis paper shows how the use of partial depen-dencies can improve statistical pose estimation.The pose estimation is hierarchically performedon di�erent scale levels. We de�ne a density forlocal features, which are extracted for all imagepositions. The presented theory allows arbitrarydependency structures in the context of Bayesnets. We show how the density parameters canbe estimated and how the global pose search onthe starting level of the hierarchy can be com-puted e�ciently by a couple of �lter banks. Thepaper presents the results of 2{D as well as 3{Dexperiments.1 Introduction and MotivationStatistical object modeling without segmentationis motivated by speech understanding. Recogni-tion results were strongly enhanced by the idea ofincorporating statistical methods in the recogni-tion task [11]. Recent publications [2, 12, 7] show,that a statistical framework can also successfullybe established in image object recognition.Most of the publications construct statisticalmodels based on segmentation results. They usethe geometric information provided by results,like lines or vertices, as random variables. Thereare two major disadvantages of using solely seg-mentation results. When restricting the recogni-tion process to this level of abstraction a lot of in-formation contained in an image is lost. Anotherdisadvantage are the errors made by the segmen-tation. Segmentation results may be incompleteor located incorrectly.�The author is member of the Center of Excellence 3-DImage Analysis and Synthesis sponsored by the "DeutscheForschungsgemeinschaft\.

One way to cope with the problem is to avoidsegmentation. Instead of that the gray{level in-formation of an image can be used. Variouspublications (see e.g. [8, 12, 5, 13, 7, 6]) dealwith gray{level based object recognition. A shortoverview can be found in [9, 10]. Most of them ei-ther restrict the pose of the object, consider onlypart of the image information or are computa-tionally expensive. We describe a pose estimationtechnique based on a functional basis decomposi-tion of probability density parameters in [9, 10].Local features are the basis for the recognitionprocess. They can be extracted from wavelet de-compositions [1] for example. In our previouspapers the feature vectors were treated as inde-pendent random variables. This publication willshow how the consideration of partial dependen-cies can enhance the recognition results and pro-vide the necessary theory. The focus thereby ison the de�nition of local dependencies. Completeobject dependencies as introduced for example byeigenvector decompositions lack the possibility tohandle object occlusions easily and compute thedensity values e�ciently.2 System overviewThe aim of the presented system is the pose esti-mation of a rigid 3{D object in a single 2{D gray{level image. We assume that the object does notvary in scale.In a �rst step of the localization process a mul-tiresolution analysis of the image is used to de-rive feature values on di�erent scales s 2 ZZ andresolutions (sampling rates) rs 2 IR+ at the lo-cations of rectangular sampling grids. Given animage f(x; y) with x 2 f0; 1; : : : ;Dx � 1g andy 2 f0; 1; : : : ;Dy � 1g, the observed feature val-



ues at scale level s are denoted by cs(x; y) =(cs;0; : : : ; cs;N�1)T (x 2 f0; rs; : : : ; rsDx � 1g, y 2f0; rs; : : : ; rsDy � 1g). In the experiments of thispaper the features cs are chosen as the loga-rithmic coe�cients of the scaling functions |that are the low pass coe�cients | of a discretewavelet transform (N = 1). We use the symme-tric Johnston 8{TAP wavelet.With those features a statistical measure fortheir probability under the assumption of an ob-ject transformation can be de�ned. The comple-xity of the pose estimation is high if all featureson the di�erent scale levels are combined into onemeasure function. Therefore, a hierarchical solu-tion is used (Figure 1). Measures are de�ned foreach scale and the localization is performed foreach level successively. Let ~cs be the vector ofthe concatenated feature values detected in animage on scale s, Bs the model parameters of anobject class and R; t be the 3{D rotation matrixand translation vector. The rotation R is de�nedby the rotation angles �x, �y and �z round thex{, y{ and z{axis respectively.The model parameters Bs consist of geo-metric information like probability density loca-tions and other density parameters. The den-sity p(~csjBs;R; t) is then used for localization.The maximum likelihood estimation results in( bRs;bts) = argmax(R; t) p(csjBs;R; t).3 Statistical model3.1 Model formulationThis section shows the de�nition of a probabilitydensity function on each of the scale levels of theanalysis. To simplify the notation the index s isomitted.The model object is covered with a rectangulargrid of local feature vectors (see Figure 2). Thegrid resolution is the same as the image resolu-tion on the actual scale. Let A � IR2 be a smallregion (e.g. rectangular) which contains the ob-ject projection to the image plane for all possi-ble rotations �ext = (�y; �x) outside the imageplane and constant �int and t (see Figure 2). LetX = fxmgm=0;:::;M�1, xm 2 IR2 denote the gridlocations and c(x) the feature vector at locationx. In this paper we choose the grid locations asthe sampling locations of the image transforma-tion: X = nxm = (krs; lrs)To. The local fea-

tures cn(xm) are the components of the imagefeature vector ~c if the object is not transformed inthe image plane: cn(xm) = cn(krs; lrs) = ck;l;n =cm;n. The local features cm;n are interpreted asrandom variables. The randomness thereby is,among others, the consequence of noise in theimage sampling process and complex changes inenvironment (e.g. lighting) conditions. Assum-ing the background features as independent ofthemselves and independent of the object fea-tures leads top(~cjB) = p(cAjB) Yxm =2A p(c(x)jx = xm)where cA is the subset of c which is covered by A.If a uniform distribution for the features outsidethe model area A (which belong to background) isassumed, the second product in the above equa-tion is constant. So it is su�cient to considerp(cAjB).The grid positions and the model area A arepart of the model parameters B.The feature vectors are assumed to be nor-mally distributed. Let N (cj�;�) denote thenormal densities, where � is the mean vectorwith concatenated local feature mean vectors �mand � is the covariance matrix with elements�m; �m;n = cov(cm; c �m).The density parameters are a function of therotation parameters �y; �x for 3{D object rota-tions perpendicular to the image plane., so that:p(cAjB;R; t)= p(cAj(�(�y; �x);�(�y; �x));R; t)= N(cA(�z ; t2D)j�(�y; �x);�(�y; �x));with cA(R (�z) ; t2D) as the concatenated featurevectors c(R (�z)xm+t2D), the 2{D rotation ma-trix R (�z) for the rotation and the translationt2D in the image plane. The image feature vec-tors at the transformed 2{D locations are cal-culated by linear interpolation. Assuming con-tinuous functions �m, �m they can be rewrit-ten using a basis set for the domain of two-dimensional functions fvrgr=0;:::;1 with coordi-nates am;n;r; bm;n;r 2 IR (r = 0; : : :) and the el-ements ~�m; �m;n of the inverse covariance matrix��1:�m;n = 1Xr=0 am;n;rvr; ~�m; �m;n = 1Xr=0 bm; �m;n;rvr:The functions are approximated by using onlypart of the complete basis set fvrgr=0;:::;L�1. The



Image ! Multiresolutionhierarchy ! Maximum{Likelihoodestimationargmax(R; t) p(~cs0 jBs0 ;R; t)#argmax(R; t) p(~cs1 jBs1 ;R; t)#argmax(R; t) p(~cs2 jBs2 ;R; t)Figure 1: System overview.
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Figure 2: Object covered with grid for feature extraction.Taylor decomposition shows, that the approxima-tion error can be made as small as possible bychoosing L large enough. With this approxima-tion a fast computation of the density functionand a maximum likelihood estimation of the ba-sis coe�cients is possible. The estimation resultsin closed estimation terms if �m; �m is assumed asconstant (�m; �m;n = bm; �m;n;0, see also Sect. 3.2) asin the rest of this paper. The value of L is limitedmainly by the computation time for the densityand the size of the training set for estimation.3.2 Parameter estimationThe model parameters are estimated by a maxi-mum likelihood estimation. Under the assump-tion of N� independent observations �cA this

leads to the estimationn(bam;n; bbm; �m;n)o =argmaxf(am;n;bm; �m;n)gY� p(�cAjxm;f(am;n; bm; �m;n)g;�R; �t);with the assumption of known transformation pa-rameters �R; �t and a prede�ned number L ofbasis functions.The optimization of this function is rather com-plex. In order to reduce the complexity by pro-viding an analytical solution, �m;n is assumed tobe constant.Solving the equations for the parameters to beestimated results in:bam;n = Q�1 X� �cm;nv(��ext)! ;



Figure 3: Location row dependencies.b�m; �m;n = 1N� X� (�cm;n � b�m;n(��ext))(�c �m;n � b� �m;n(��ext)) ;with Q =X� v(��ext)vT(��ext);�cm;n = �cn(R (��z)xm + �tint) andv = (v0; : : : ; vL�1)T.3.3 Partial covariancesFor each of the N feature vector componentsthere areMA = jAj feature vector locations whichhave to be considered when calculating the prob-ability of an observation. If the complete covari-ance matrix is used for this calculation the timecomplexity of one probability calculation is of or-der O(M2ALN). Compared with a complete inde-pendence assumption the time complexity is MAtimes higher. In the experiments, MA is greaterthan 50 already on the �rst scale level and greaterthan 200 on the second. Pose estimation with thecomplete covariance therefore would be too timeconsuming.The complexity of the normal density compu-tation is mainly determined by the argument ofthe exponential term: (c� �)T��1(c � �). If��1 is chosen as sparse matrix the complexitycan be reduced signi�cantly. One possibility arethree{band matrices, which, for example, onlyhave nonzero elements ~�m; �m;n for neighbour lo-cations xm = xk;l and x �m = xk;l+1 of one row(see Figure 3).The parameter estimation is performed by amaximum likelihood estimation with the addi-tional restriction, that some of the matrix ele-ments have to be zero. Let X00 be the set of

location pairs (xm;x �m) with zero matrix entriesin ��1: ~�m; �m;n = 0.Then we get the termX� log(p(�cAjxm; f(am;n; �m; �m;n)g ; �R; �t)+ X(xm;x �m)2X00Xn �m; �m;n~�m; �m;nto be maximized with respect to �m;n and ~�m; �m;nunder the additional restriction ~�m; �m;n = 0 for(xm;x �m) 2 X00. �m; �m;n are Lagrange Multipli-ers. It is obvious, that the solution to this opti-mization is the same as for the general case de-scribed in Sect.3.2 except for the covariance ma-trix elements f�m; �m;nj(xm;x �m) 2 X00g which aredetermined solely by the additional restriction ofzero matrix elements in ��1.As a consequence, in the parameter estima-tion the mean feature vectors and the covariances�m; �m;n ((xm;x �m) 2 X00) have to be computedout of the training data �rst. Then the remain-ing covariance elements have to be chosen in away, that the inverse covariance matrix becomesthe sparse matrix as desired.For three{band matrices there exists a recur-rence relation to calculate the remaining elementsbeginning with a known three{band of the covari-ance:�m; �m;n=� �m;m;n= �m+1; �m;n�m; �m�1;n�m+1; �m�1;n ( �m>m+1)This allows the parameter estimation for rowneighbourhood dependencies if the locations xmare ordered by m in each row: xm+1 = xk;l+1.We will not prove this relation as we will showa more general estimation method in the nextsection. Furthermore the inverse covariance hasto be calculated here. This is time consumingand prone to numerical errors for large matrices.3.4 Bayes netsThe formalism of Bayes nets (see [4]) providesa way to represent the dependencies of randomvariables in graph structures and convert thosegraphs to a formula for the overall density com-posed of the conditional densities of the variables.Without loosing generality we consider only one-dimensional feature vectors cm = cm;0 and omitthe component index n = 0 in this section. Wefurthermore omit rotation and translation para-meters.



In the context of Bayes nets the dependenciesof row neighbours, column neighbours or bothare depicted as shown in Figure 4. Let P(xm)denote the ordered set of predecessors of xm inthis dependency graph. Then the overall densityis de�ned by the following formula:p(cA) = Yxm2A p�cmj(c �m)x �m2P(xm)�= Yxm2A p�cm; (c �m)x �m2P(xm)�p�(c �m)x �m2P(xm)�Because the overall density is assumed as nor-mal, the feature vector parts are also normallydistributed. Substituting the de�nition of thedensities yields the following relation of the nor-mal density parameters:~�m; �m = Xf ~mjfm; �mg�P(x ~m)[fx ~mgg ~�P(x ~m)[fx ~mg;m; �m� Xf ~mjfm; �mg�P(x ~m)g ~�P(x ~m);m; �m;where ~�M;m; �m are the elements of the inverse co-variance matrix of p(M).In the case of row dependencies (see Figure 4)only 2{D matrices have to be inverted. The calcu-lation is, on the other hand, not restricted to suchsimple dependencies. Structures, which have de-pendency edges only between strongly correlatedvariables are also possible.3.5 E�cient pose estimationThe pose estimation consists | at least on theroughest resolution level | of a global posesearch and succeeding local search. The globalpose search evaluates the function p(cAjB;R; t)for grid positions covering the possible parameterrange. Let DR; t denote the number of evaluatedtransformation parameters. The time complexityof the grid search is then of order O(jAjLNDR; t)if only neighbour dependencies are considered.For pose estimation the functionp(cAjB;R; t) = 1pdet (2��)exp0@�12 Xm; �m;n~�m; �m;n(cm;n(�z ; t2D)��m;n(�ext))(c �m;n(�z ; t2D)�� �m;n(�ext))�;

with �m;n(�ext) = aTm;nv(�ext) and cm;n(�z; t2D)= cn(R (�z)xm+t2D) has to be maximized withrespect to R; t.Applying the logarithm yields the following func-tion to be minimized:h(�; t)=Xm; �m;n~�m; �m;n�cm;n(�z; t2D)�aTm;nv(�ext)��c �m;n(�z; t2D)�aT�m;nv(�ext)� :With � = (�x; �y; �z) and the functionsh1(�; t)=Xm; �m;n cm;n(�z; t2D)c �m;n(�z; t2D)~�m; �m;nh2;r(�; t)=Xm; �m;n cm;n(�z; t2D)a �m;n;r~�m; �m;nh3(�; t)=Xm; �m;n�aTm;nv(�ext)��aT�m;nv(�ext)�~�m; �m;n;the sum (h1 � v(�ext)Th2 + h3)(�; t) has to beminimized. The global search has to calculatethe function values for all grid positions whichresults in the mentioned complexity, dependingon the number of object feature positions.h1 and h2;r are of the form~h(t2D) =Xn Xm; �m fn(x0m + t2D;x0�m + t2D)wm; �m;n;with x0m = R (�z)xm and for �xed �. Letthe successors of the grid locations be uniformlyde�ned by the set S of o�set vectors, so thatP(xm) = nx(k;l)�sjs 2 So with x0m = x0k;l. Forsingle row dependencies S is: S = f(1; 0)g (seeFigure 4).The second sum in the above equation there-fore can be written as:�h(t2D) = Xs2S0Xm �fs;n(x0m + t2D)wm;s(m);n;for s (xm) = x(k;l)+s. Of course the summationhas to be performed only for the valid rangesof neigbour locations. If the evaluation grid(�; t2D) 2 n(�i;j;q; t2D;q;k;l)o for the transforma-tion parameters is chosen as extension of X 0 =�R (�z;q)X to the possible parameter range, sothat�i;j;q = (�x;0+i��x; �y;0+j��y; �z;0+q��z)= (�x;i; �y;j; �z ;q)t2D;q;k;l = �R (�z;q) (tx;0 + k�tx; ty;0 + l�ty)T= �R (�z;q) (t0x;k; t0y;l)TX 0 = f�R (�z;q)xmg � ft2D;q;k;lg ;



S = f(0; 1); (1; 0)gS = f(0; 1)g S = f(1; 0)g

Figure 4: Bayes net with row dependencies, column dependencies and both of local feature vectors.the evaluation of the second sum on X 0 can beinterpreted as convolution. This is, because�h(t2D;q;k;l)= Xs2S0Xm fs;n(R (�z;q)xm + t2D;q;k;l)wm;s(m);n= Xs2S0Xm�fs;n(R (�z;q) (t02D;k;l� xm))wm;s(m);n= Xs2S0Xm ~fq;s;n(t02D;k;l � xm)wm;s(m);nand Xm ~fq;n (t02D;k;l � xm)wm;n=X�k;�l ~fq;n(xk;l � x�k;�l)w�k;�l;n=X�k;�l ~fq;k��k;l��l;nw�k;�l;nfor xm = x�k;�l = t02D;�k;�l.Using FFT allows the computation of this con-volution in O(Dt log(Dtx) log(Dty)) time. Thecalculation of each of the L + 1 func-tions h1 and h2;r is therefore of comple-xity O(NDt log(Dtx) log(Dty)). h3 has com-plexity O(D�ext). This results in a comple-xity of order O(LNDR; t log(Dtx) log(Dty)) forthe complete search, where the computationof h out of the simpler functions can be per-formed very fast. With respect to the typeof neighbourhood considered, the complexityfor the global search based on the calculationof each indidual density is O(jS0j jAjLNDR; t)and O(jS0jLNDR; t log(Dtx) log(Dty)) for the op-timized search based on �lter banks.

4 ResultsFigure 5 and 6 show the objects used in this work.The images are 256 pixels in square. The local-isation was performed on two scale levels s0; s1with resolution rs0 = 8 and rs1 = 4 pixels forthe 2{D objects. 3{D experiments were carriedout only on the �rst scale level and with constant�. Only the best localization result of level s0was used for further re�nement at s1. The Down-hill Simplex algorithm was used for the local pa-rameter search following the global grid search.The computation time on a SGI O2 (R10000) wasabout 10 seconds for feature extraction and loca-lization of 2{D object box with complete featureindepencence and 11 seconds with row dependen-cies. The time for 3{D object gar�eld was 12 sec-onds (13 with dependencies) on one scale levelwith restricted search space for the parameters�ext according to their availability for training asdescribed below.For the 2{D objects box and car 20 training im-ages were available. 10 of them contain the objectat the same position but di�erent lighting condi-tions. In the other 10 the object position is ar-bitrary and the background is homogeneous butdi�erent. The density was �rst trained with the�rst ten images with known position. Then thisdensity was used to iteratively locate the objectin the remaining images and train together withthe additional data. 10 other images with het-erogeneous background (see Figure 5) were thenused for experiments under bad conditions.In the 2{D, experiments 5 images (of 10) ofobject box were located incorrectly with indepen-dence assumption and none with row dependen-cies. The pose of object match was correct forall images with independence and wrong for 2



images with dependencies. Figure 7 and Figure 8show the logarithmic density values for the objectimages of the training set. It can be seen thatthe variance of the density is less, if dependen-cies are considered. Obviously the density bettercaptures the object appearance in this case. Theexperiments for box con�rm this observation. Inthe 2 images of match, which were located incor-rectely when using depencencies, a small part ofthe object was occluded. This shows that localityof the density measurement is lost partially.The 3{D object gar�eld was available in twoimage sequences with 256 images each. Thetransformation parameters were known. Theexternal rotation parameters were restricted to�13� < �x < 13� and �14� < �y < 14�. One se-quence was used for training, the other for test-ing. The images in the training sequence weredisturbed arti�cially by gaussian noise and theobject was shifted, resulting in two addtionaltraining sequences.The position of 28 test images (out of 256)was determined incorrectely with independenceassumption. Together with the training set, 29images were handled wrong. With row depen-dencies the number of incorrect images is 20 and24 respectively. Figure 9 shows the logarithmicdensity values for the undisturbed images of thetraining set. Though the experiments also showan advantage of using dependencies, it is not soobvious as for the 2{D objects. This may be aconsequence of the restriction to a constant �with respect to the external rotation. The conse-quence of this constancy assumption is, that theestimated covariance parameters are only meanvalues of the real covariances over the completeparameter range. Future work will investigatethe inuence of the type of covariance estimationon the pose estimation results.References[1] A. Rieder A. K. Louis, P. Maass. Wavelets.Teubner, Stuttgart, 1994.[2] J. Hornegger and H. Niemann. Statisticallearning, localization, and identi�cation ofobjects. In ICCV 95 [3], pages 914{919.[3] Fifth International Conference on ComputerVision (ICCV), Cambridge, MA, June 1995.IEEE Computer Society Press.

Figure 5: 2{D objects box and match for training(top) and test (bottom).

Figure 6: 3{D object gar�eld.
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Figure 7: Optimum of logarithmic density fortraining set of box.
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Figure 8: Optimum of logarithmic density fortraining set of match.
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Figure 9: Optimum of logarithmic density forundistrubed part of training set of gar�eld.
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