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Abstract

This paper shows how the use of partial depen-
dencies can improve statistical pose estimation.
The pose estimation is hierarchically performed
on different scale levels. We define a density for
local features, which are extracted for all image
positions. The presented theory allows arbitrary
dependency structures in the context of Bayes
nets. We show how the density parameters can
be estimated and how the global pose search on
the starting level of the hierarchy can be com-
puted efficiently by a couple of filter banks. The
paper presents the results of 2-D as well as 3-D
experiments.

1 Introduction and Motivation

Statistical object modeling without segmentation
is motivated by speech understanding. Recogni-
tion results were strongly enhanced by the idea of
incorporating statistical methods in the recogni-
tion task [11]. Recent publications [2, 12, 7] show,
that a statistical framework can also successfully
be established in image object recognition.

Most of the publications construct statistical
models based on segmentation results. They use
the geometric information provided by results,
like lines or vertices, as random variables. There
are two major disadvantages of using solely seg-
mentation results. When restricting the recogni-
tion process to this level of abstraction a lot of in-
formation contained in an image is lost. Another
disadvantage are the errors made by the segmen-
tation. Segmentation results may be incomplete
or located incorrectly.
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One way to cope with the problem is to avoid
segmentation. Instead of that the gray-level in-
formation of an image can be used. Various
publications (see e.g. [8, 12, 5, 13, 7, 6]) deal
with gray—level based object recognition. A short
overview can be found in [9, 10]. Most of them ei-
ther restrict the pose of the object, consider only
part of the image information or are computa-
tionally expensive. We describe a pose estimation
technique based on a functional basis decomposi-
tion of probability density parameters in [9, 10].
Local features are the basis for the recognition
process. They can be extracted from wavelet de-
compositions [1] for example. In our previous
papers the feature vectors were treated as inde-
pendent random variables. This publication will
show how the consideration of partial dependen-
cies can enhance the recognition results and pro-
vide the necessary theory. The focus thereby is
on the definition of local dependencies. Complete
object dependencies as introduced for example by
eigenvector decompositions lack the possibility to
handle object occlusions easily and compute the
density values efficiently.

2 System overview

The aim of the presented system is the pose esti-
mation of a rigid 3-D object in a single 2-D gray—
level image. We assume that the object does not
vary in scale.

In a first step of the localization process a mul-
tiresolution analysis of the image is used to de-
rive feature values on different scales s € Z and
resolutions (sampling rates) rs € R' at the lo-
cations of rectangular sampling grids. Given an
image f(z,y) with z € {0,1,...,D, — 1} and
y € {0,1,...,Dy — 1}, the observed feature val-



ues at scale level s are denoted by cs(z,y) =
(Cs,O’ cee acs,Nfl)T (x € {0,7'3, e ’Tst - 1}) Y€
{0,7,...,7sDy — 1}). In the experiments of this
paper the features ¢, are chosen as the loga-
rithmic coefficients of the scaling functions —
that are the low pass coefficients — of a discrete
wavelet transform (N = 1). We use the symme-
tric Johnston 8-TAP wavelet.

With those features a statistical measure for
their probability under the assumption of an ob-
ject transformation can be defined. The comple-
xity of the pose estimation is high if all features
on the different scale levels are combined into one
measure function. Therefore, a hierarchical solu-
tion is used (Figure 1). Measures are defined for
each scale and the localization is performed for
each level successively. Let ¢; be the vector of
the concatenated feature values detected in an
image on scale s, B, the model parameters of an
object class and R, t be the 3-D rotation matrix
and translation vector. The rotation R is defined
by the rotation angles ¢,, ¢, and ¢, round the
x—, y— and z—axis respectively.

The model parameters B, consist of geo-
metric information like probability density loca-
tions and other density parameters. The den-
sity p(és|Bs, R,t) is then used for localization.
TAhe Enaximum likelihood estimation results in
(Rs,ts) = argmax g 4 p(cs| Bs, R, t).

3 Statistical model

3.1 Model formulation

This section shows the definition of a probability
density function on each of the scale levels of the
analysis. To simplify the notation the index s is
omitted.

The model object is covered with a rectangular
grid of local feature vectors (see Figure 2). The
grid resolution is the same as the image resolu-
tion on the actual scale. Let A C IR? be a small
region (e.g. rectangular) which contains the ob-
ject projection to the image plane for all possi-
ble rotations ¢,,; = (¢y,¢,) outside the image
plane and constant ¢,,, and ¢ (see Figure 2). Let
X ={&m},,—0 11> Tm € R? denote the grid
locations and c(a:) the feature vector at location
x. In this paper we choose the grid locations as
the sampling locations of the image transforma-
tion: X = {:cm = (krs,lrs)T}. The local fea-

tures c,(@,,) are the components of the image
feature vector ¢ if the object is not transformed in
the image plane: c,(xp) = cp(krs,lrs) = cpin =
¢mmn- The local features ¢, , are interpreted as
random variables. The randomness thereby is,
among others, the consequence of noise in the
image sampling process and complex changes in
environment (e.g. lighting) conditions. Assum-
ing the background features as independent of
themselves and independent of the object fea-
tures leads to

p(E|B) =plea|B) [ »le(@)|z = m)
T dA

where c4 is the subset of ¢ which is covered by A.
If a uniform distribution for the features outside
the model area A (which belong to background) is
assumed, the second product in the above equa-
tion is constant. So it is sufficient to consider
p(calB).

The grid positions and the model area A are
part of the model parameters B.

The feature vectors are assumed to be nor-
mally distributed. Let N(c|u,X¥) denote the
normal densities, where p is the mean vector
with concatenated local feature mean vectors p,,
and X is the covariance matrix with elements
Om,m,n = cov(Cm, Cm)-

The density parameters are a function of the
rotation parameters ¢, ¢, for 3-D object rota-
tions perpendicular to the image plane., so that:

p(cA‘Ba Rat)
P(CA‘(H(QSy, ¢:L')’ 2(¢ya ¢m))a R’t)
= N(CA(QSZatQD)‘N(QSya bz 2(¢y, bz)),

with e4(R (¢,) ,tap) as the concatenated feature
vectors ¢(R (¢,) ©m +tap), the 2-D rotation ma-
trix R (¢,) for the rotation and the translation
top in the image plane. The image feature vec-
tors at the transformed 2-D locations are cal-
culated by linear interpolation. Assuming con-
tinuous functions u,,, X,, they can be rewrit-
ten using a basis set for the domain of two-
dimensional functions {v,},_, ., with coordi-
nates amnr,bmn, € R (r = 0,) and the el-
ements 0y, mn Of the inverse covariance matrix
>

00 00
Hmmn = E Ammn,rVr;, Ommn = § bm,m,n,rvr-
r=0 r=0

The functions are approximated by using only
part of the complete basis set {v,},_o ;. The
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Figure 1: System overview.
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Figure 2: Object covered with grid for feature extraction.

Taylor decomposition shows, that the approxima-
tion error can be made as small as possible by
choosing L large enough. With this approxima-
tion a fast computation of the density function
and a maximum likelihood estimation of the ba-
sis coefficients is possible. The estimation results
in closed estimation terms if oy, m is assumed as
constant (. m.n = bmm no0, see also Sect. 3.2) as
in the rest of this paper. The value of L is limited
mainly by the computation time for the density
and the size of the training set for estimation.

3.2 Parameter estimation

The model parameters are estimated by a maxi-
mum likelihood estimation. Under the assump-
tion of N, independent observations Pc4 this

leads to the estimation

{(am,naam,ﬁz,n)} -
argmax Hp(pcA\ﬂSm,{(am,n, bmmn)}f R, t),

{(am,n:bm,m,n P

with the assumption of known transformation pa-
rameters PR,”t and a predefined number L of
basis functions.

The optimization of this function is rather com-
plex. In order to reduce the complexity by pro-
viding an analytical solution, o, 5, is assumed to
be constant.

Solving the equations for the parameters to be
estimated results in:

am,n = Qil (chm,nv(pd)ezt))’
p



am,m n = Z Cm O ﬂm,n(pd)ezt))
(pcﬁl - ﬁm,n (pd)emt)) 9
with
Q Z ¢ewt (»bezt)
Pemmn = Pen(R (p¢2) Ty + Ptin:) and
v = (vg,...,vL,l)T.

3.3 Partial covariances

For each of the N feature vector components
there are M4 = | A| feature vector locations which
have to be considered when calculating the prob-
ability of an observation. If the complete covari-
ance matrix is used for this calculation the time
complexity of one probability calculation is of or-
der O(M3LN). Compared with a complete inde-
pendence assumption the time complexity is M4
times higher. In the experiments, M4 is greater
than 50 already on the first scale level and greater
than 200 on the second. Pose estimation with the
complete covariance therefore would be too time
consuming.

The complexity of the normal density compu-
tation is mainly determined by the argument of
the exponential term: (¢ — p) "X~ (ec — p). If
X1 is chosen as sparse matrix the complexity
can be reduced significantly. One possibility are
three-band matrices, which, for example, only
have nonzero elements Gy, 5, for neighbour lo-
cations &, = ®i; and &y = @k 41 of one row
(see Figure 3).

The parameter estimation is performed by a
maximum likelihood estimation with the addi-
tional restriction, that some of the matrix ele-

ments have to be zero. Let Xyg be the set of

location pairs (&, ®;) with zero matrix entries
in ¥ Gpmn = 0.
Then we get the term

> log(p(
p
+ Z Z Am,ﬁz,n&m,m,n

(T, m)EXgy M

CA‘mma {(am,na Um,m,n)} ) pR’ pt)

to be maximized with respect to pum pn and om mn
under the additional restriction 6y myn = 0 for
(®m,xm) € Xoo- Am,m,n are Lagrange Multipli-
ers. It is obvious, that the solution to this opti-
mization is the same as for the general case de-
scribed in Sect.3.2 except for the covariance ma-
trix elements {0 m n|(®m, Tm) € Xoo} which are
determined solely by the additional restriction of
zero matrix elements in X 1.

As a consequence, in the parameter estima-
tion the mean feature vectors and the covariances
Ommn ((®m,xm) € Xoo) have to be computed
out of the training data first. Then the remain-
ing covariance elements have to be chosen in a
way, that the inverse covariance matrix becomes
the sparse matrix as desired.

For three-band matrices there exists a recur-
rence relation to calculate the remaining elements
beginning with a known three-band of the covari-
ance:

_ Om+41,mnOm,m—1,n

(m>m+1)

Om,m,n=0mm,n =
Om+1,m—1,n
This allows the parameter estimation for row
neighbourhood dependencies if the locations @,
are ordered by m in each row: ®,, 11 = Ty 1.
We will not prove this relation as we will show
a more general estimation method in the next
section. Furthermore the inverse covariance has
to be calculated here. This is time consuming
and prone to numerical errors for large matrices.

3.4 Bayes nets

The formalism of Bayes nets (see [4]) provides
a way to represent the dependencies of random
variables in graph structures and convert those
graphs to a formula for the overall density com-
posed of the conditional densities of the variables.
Without loosing generality we consider only one-
dimensional feature vectors ¢,;, = c;,0 and omit
the component index n = 0 in this section. We
furthermore omit rotation and translation para-
meters.



In the context of Bayes nets the dependencies
of row neighbours, column neighbours or both
are depicted as shown in Figure 4. Let P(x,)
denote the ordered set of predecessors of @, in
this dependency graph. Then the overall density
is defined by the following formula:

H p (Cm | (Cm):cme’P(:cm))

r,cA

= 1I

TncA P ((Cm):cmep(mm))

plea) =

p (Cm, (Cm)mmeP(wm))

Because the overall density is assumed as nor-
mal, the feature vector parts are also normally
distributed. Substituting the definition of the
densities yields the following relation of the nor-
mal density parameters:

&m,ﬁ% = Z Up(
{m[{m,m}CP(Lpm){Tnm}}

- > op(x

{m{m,m}CP ()}

wm)u{wm},m,m
ﬁl):m:m7

where G a¢,m m are the elements of the inverse co-
variance matrix of p(M).

In the case of row dependencies (see Figure 4)
only 2-D matrices have to be inverted. The calcu-
lation is, on the other hand, not restricted to such
simple dependencies. Structures, which have de-
pendency edges only between strongly correlated
variables are also possible.

3.5 [Efficient pose estimation

The pose estimation consists — at least on the
roughest resolution level — of a global pose
search and succeeding local search. The global
pose search evaluates the function p(c4|B, R, 1)
for grid positions covering the possible parameter
range. Let Dp s denote the number of evaluated
transformation parameters. The time complexity
of the grid search is then of order O(|A| LNDg ;)
if only neighbour dependencies are considered.
For pose estimation the function

p(CA‘B,R,t) =

exp (

det (27 X0)

Z Om,m n(cm n(¢za tZD) Um,n(d)ezt))

mmn

(cm,nwz,tw)—um,n(%))),

With pmn(@ezt) = @m n0(Pegt) and cmn(dz; t2n)
= cp(R(¢,) m+tap) has to be maximized with

respect to R, t.
Applying the logarithm yields the following func-
tion to be minimized:

h(¢,t)= Z Om,im,n (Cm,n(¢Za tap)— Ay n v

m,m,n

(eat))

(emn($2stan)—af 10 (beat)) -
With ¢ = (¢2, ¢y, ¢-) and the functions

h1 (d)a t) :Z Cm,n(¢z7 t2D)Cm,n(¢za t2D)5'm,m,n

m,m,n

h2,r(¢a t) :Z Cm,n((ﬁz, tZD)am,n,r&m,ﬁz,n

m,m,n

ha(,8) =3 (a0

m,m,n

((»bemt)) (a;z n?¥ (d)ezt)) &m,ﬁz,na
the sum (hy — v(Pey) ho + h3)(¢,t) has to be
minimized. The global search has to calculate
the function values for all grid positions which
results in the mentioned complexity, depending
on the number of object feature positions.

hi and hy, are of the form

h(toap) =3 fal@h, + top, Ty + t20) Wi s
with @, = R(¢,)xy, and for fixed ¢. Let

the successors of the grid locations be uniformly

defined by the set S of offset vectors, so that
Plem) = { (k,1) s|sES} w1th ®,, = x},;. For
single row dependencies S is: S = {(1,0)} (see
Figure 4).

The second sum in the above equation there-
fore can be written as:

t2D ZZfsnw + tap)w Wi, s(m),n>

SESy M

for s (®m) = ®(1)+s. Of course the summation
has to be performed only for the valid ranges
of neigbour locations. If the evaluation grid

(d),th) € {(gbi’j’q,tQD’q’k,l)} for the transforma-
tion parameters is chosen as extension of X' =
—R (¢, ,4) X to the possible parameter range, so
that

Dijg = (b20+i0¢s, by 0+iAdy, ¢z 0+9A¢;)
= (¢Z,i7 ¢y,j7 ¢z,q)
tszqyk:l = _R (¢qu) (t$70 + kAt-’L‘) ty,O + lAty)T

= —R(dsg) (toprtys)”
X'={~R($sq) Tm} C {tap g1},



Figure 4: Bayes net with row dependencies, column dependencies and both of local feature vectors.

the evaluation of the second sum on X' can be
interpreted as convolution. This is, because

h(tap gk1)

=22 fun(R

SESy M

=2 2 fealR

s€Sy m

= Z Z fq,s,n(tl2D,k,l - mm)wm,s(m),n

SESy M

(#2,q) ®m + t2D g.5,1) W 5(m) n

¢Z,q (tIZDykil - mm))wm,s(m),n

and

(tIQD,k,l - mm)wm,n

=>" fon(@ry
il
=N fok ki TnWRin

kil

> fan

— TR WE I

for Ty = ml::,l_ = tIZD,]E,[-

Using FFT allows the computation of this con-
volution in O(Dylog(Dy,)log(Dy,)) time. The
calculation of each of the L + 1 func-
tions h; and hy, is therefore of comple-
xity O(NDylog(Dy,)log(D;,)). hs has com-
plexity O(Dg, ). This results in a comple-
xity of order O(LNDg ¢log(D;,)log(D;,)) for
the complete search, where the computation
of h out of the simpler functions can be per-
formed very fast. With respect to the type
of neighbourhood considered, the complexity
for the global search based on the calculation
of each indidual density is O(|So||A|LNDg, )
and O(|So| LN Dp,¢log(Dy,) log(Dy,)) for the op-
timized search based on filter banks.

4 Results

Figure b and 6 show the objects used in this work.
The images are 256 pixels in square. The local-
isation was performed on two scale levels sg, s1
with resolution ry, = 8 and ry, = 4 pixels for
the 2-D objects. 3-D experiments were carried
out only on the first scale level and with constant
Y. Only the best localization result of level sq
was used for further refinement at s;. The Down-
hill Simplex algorithm was used for the local pa-
rameter search following the global grid search.
The computation time on a SGI O2 (R10000) was
about 10 seconds for feature extraction and loca-
lization of 2-D object boz with complete feature
indepencence and 11 seconds with row dependen-
cies. The time for 3-D object garfield was 12 sec-
onds (13 with dependencies) on one scale level
with restricted search space for the parameters
¢, according to their availability for training as
described below.

For the 2-D objects boz and car 20 training im-
ages were available. 10 of them contain the object
at the same position but different lighting condi-
tions. In the other 10 the object position is ar-
bitrary and the background is homogeneous but
different. The density was first trained with the
first ten images with known position. Then this
density was used to iteratively locate the object
in the remaining images and train together with
the additional data. 10 other images with het-
erogeneous background (see Figure 5) were then
used for experiments under bad conditions.

In the 2-D, experiments 5 images (of 10) of
object box were located incorrectly with indepen-
dence assumption and none with row dependen-
cies. The pose of object match was correct for
all images with independence and wrong for 2



images with dependencies. Figure 7 and Figure 8
show the logarithmic density values for the object
images of the training set. It can be seen that
the variance of the density is less, if dependen-
cies are considered. Obviously the density better
captures the object appearance in this case. The
experiments for boz confirm this observation. In
the 2 images of match, which were located incor-
rectely when using depencencies, a small part of
the object was occluded. This shows that locality
of the density measurement is lost partially.

The 3-D object garfield was available in two
image sequences with 256 images each. The
transformation parameters were known. The
external rotation parameters were restricted to
—%71' < @y < %ﬂ' and —%ﬂ' < @y < %71'. One se-
quence was used for training, the other for test-
ing. The images in the training sequence were
disturbed artificially by gaussian noise and the
object was shifted, resulting in two addtional
training sequences.

The position of 28 test images (out of 256)
was determined incorrectely with independence
assumption. Together with the training set, 29
images were handled wrong. With row depen-
dencies the number of incorrect images is 20 and
24 respectively. Figure 9 shows the logarithmic
density values for the undisturbed images of the
training set. Though the experiments also show
an advantage of using dependencies, it is not so
obvious as for the 2-D objects. This may be a
consequence of the restriction to a constant X
with respect to the external rotation. The conse-
quence of this constancy assumption is, that the
estimated covariance parameters are only mean
values of the real covariances over the complete
parameter range. Future work will investigate
the influence of the type of covariance estimation
on the pose estimation results.
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