
Wavelet Features for Statistical Object Localization WithoutSegmentationJosef P�osl� and Heinrich NiemannLehrstuhl f�ur Mustererkennung (Informatik 5)Universit�at Erlangen{N�urnbergMartensstr. 3, D{91058 Erlangen, Germanyemail: fpoesl,niemanng@informatik.uni-erlangen.deAbstractThis paper describes a new technique for statisti-cal 3{D object localization. Local feature vectors areextracted for all image positions, in contrast to seg-mentation in classical schemes. We de�ne a densityfunction for those features and describe a hierarchicalpose estimation scheme for the localization of a singleobject in a scene with arbitrary background. We showhow the global pose search on the starting level of thehierarchy can be computed e�ciently. The paper com-pares di�erent wavelet transformations used for fea-ture extraction.1 Introduction and MotivationStatistical object modeling without segmentationis motivated by speech understanding. Recognitionresults were strongly enhanced by the idea of incorpo-rating statistical methods in the recognition task [8]there. Recent publications [2, 9, 5] show, that a sta-tistical framework can also successfully be establishedin image object recognition.Most of the publications construct statistical mo-dels based on segmentation results. They use thegeometric information provided by results, like linesor vertices, as random variables. There are two ma-jor disadvantages of using solely segmentation results.When restricting the recognition process to this levelof abstraction a lot of information contained in an im-age is lost. Another disadvantage are the errors madeby the segmentation. Segmentation results may beincomplete or located incorrectly.One way to cope with the problem is to avoid seg-mentation. Instead of that the gray{level informationof an image can be used. [6] describe a recognitionmethod based on singular value decompositions of vec-tor spaces composed of the gray{level data of severalimages (appearance based modeling). Thereby a largenumber of images is approximately encoded by a smallnumber of basis images. The projection parameters ofan image into this eigenspace can be used for recog-nition. Maximization of the mutual information be-tween an object model and an object in a scene is a�The author is member of the Center of Excellence 3-DImage Analysis and Synthesis sponsored by the `"DeutscheForschungsgemeinschaft\.

further possibility [9]. A similar technique is describedin [4], where the gradient of object models is matcheddirectly to gray-level image sequences of tra�c scenesin order to track vehicles. [10] uses the multichanneloutput of Gabor wavelets to detect and locate 3{D ob-jects in infrared images. [5] describes a method basedon mixture densities of the gray level values of ob-ject images. With a focus on the distributions ofimage pixel values rather than object location valuesand without an hierarchical solution, this approachtends to be very complex. The referenced papers ei-ther use only probabilisticaly chosen model points formatching [9] or use pose restrictions [4] to reduce thecomplexity of the estimation. In this paper a newapproach for the localization of 3{D objects in singlegray{level images is presented. The pose of the objectis not restricted and the complete image data is con-sidered after hierarchical �ltering. We demonstratea new way of formulating a statistical model with afunctional basis decomposition of probability densityparameters. A more detailed description of this modelcan be found in [7]. Local features are the basis forthe recognition process. We compare features derivedof di�erent wavelet transformations [1].2 System overviewThe aim of the presented system is the pose esti-mation of a rigid 3{D object in a single 2{D gray{levelimage. We assume that the object does not vary inscale.In a �rst step of the localization process a multires-olution analysis of the image is used to derive featurevalues on di�erent scales s 2 ZZ and resolutions (sam-pling rates) rs 2 IR+ at the locations of rectangu-lar sampling grids. Given an image f(x; y) with x 2f0; 1; : : : ; Dx � 1g, y 2 f0; 1; : : : ; Dy � 1g the observedfeature values at scale s are denoted by cs(x; y) =(cs;0; : : : ; cs;N�1)T (x 2 f0; rs; : : : ; rsDx � 1g, y 2f0; rs; : : : ; rsDy � 1g). In the experiments of this pa-per the features cs are chosen as the logarithmic coe�-cients of the scaling functions | that are the low passcoe�cients | of a discrete wavelet transform (N = 1).We use tensor product wavelets. Only almost symmet-ric wavelets are chosen to get local features which arerobust to object rotations in the image plane.



Figure 1: Objects for experiments: block, car, pig,car3D (top left to bottom right).With those features a statistical measure for theirprobability under the assumption of an object trans-formation can be de�ned. The complexity of the poseestimation is high if all features on the di�erent scalelevels are combined into one measure function. There-fore, a hierarchical solution is used (Figure 2). Mea-sures are de�ned for each scale and the localization isperformed for each level successively. Let ~cs be thevector of the concatenated feature values detected inan image on scale s, Bs the model parameters of anobject class and R; t be the 3{D rotation matrix andtranslation vector. The rotation R is de�ned by therotation angles �x, �y and �z round the x{, y{ andz{axis respectively.The model parameters Bs consist of geometric in-formation like probability density locations and otherdensity parameters. The density p(~csjBs;R; t) is thenused for localization. The maximum likelihood estima-tion results in (bRs;bts) = argmax(R; t) p(csjBs;R; t).3 Statistical model3.1 Model formulationThis section shows the de�nition of a probabilitydensity function on each of the scale levels of the ana-lysis. To simplify the notation the index s is omitted.The model object is covered with a rectangular gridof local feature vectors. The grid resolution is thesame as the image resolution on the actual scale. LetA � IR2 be a small region (e.g. rectangular) whichcontains the object projection to the image plane forall possible rotations �ext = (�y ; �x) outside the im-age plane. Let X = fxmgm=0;:::;M�1, xm 2 IR2 de-note the grid locations and c(x) the feature vector atlocation x. Assuming the densities p(c(xm)) of thelocal features as stochastically independent leads top(cAjB;R; t) = Yxm2A p(cjxm;R; t);where cA is the subset of c which is covered by A.The grid positions and the model area A are part ofthe model parameters B.

The feature vectors are assumed to be nor-mally distributed with independent components. LetN (cj�m;�m) denote the normal densities. In thecase of independence, �m is a diagonal matrixdiag ��2m;0; : : : ; �2m;N�1�.The density parameters are a function of the rota-tion parameters �y ; �x for 3{D objects, so that:p ( cAjB;R; t)=Yxm2Ap(cjxm; (�m(�y ; �x);�m(�y ; �x));R; t)=Yxm2AN(c(R (�z)xm+t2D)j�m(�y ; �x);�m(�y; �x));with the 2{D rotation matrix R (�z) for the rotationand the translation t2D in the image plane. The imagefeature vectors at the transformed 2{D locations arecalculated by linear interpolation. Assuming contin-uous functions �m, �m they can be rewritten usinga basis set for the domain of two-dimensional func-tions fvrgr=0;:::;1 with coordinates am;n;r; bm;n;r 2 IR(r = 0; : : :):�m;n = 1Xr=0 am;n;rvr; ��2m;n = 1Xr=0 bm;n;rvr:The functions are approximated by using only partof the complete basis set fvrgr=0;:::;L�1. The Tay-lor decomposition shows, that the approximation errorcan be made as small as possible by choosing L largeenough. With this approximation a fast computationof the density function and a maximum likelihood es-timation of the basis coe�cients is possible. The es-timation results in closed estimation terms if ��2m isassumed as constant (see [7]). The value of L is lim-ited mainly by the computation time for the densityand the size of the training set for estimation.3.2 E�cient pose estimationThe pose estimation consists | at least on theroughest resolution level | of a global pose searchand succeeding local search. The global pose searchevaluates the function p(cAjB;R; t) for grid positionscovering the possible parameter range. Let DR; t de-note the number of evaluated transformation param-eters. The time complexity of the grid search is thenof order O(jAjLNDR; t).For pose estimation with constant ��2 the functionp ( cAjB;R; t)=Ym;n 1q�2��2m;n� exp� �12�2m;n (cn(R (�z)xm+t2D)� aTm;nv(�ext))2�;has to be maximized with respect to R; t.Applying the logarithm yields the following functionto be minimized:h(�; t)=Xm;n 1�2m;n �cn(R (�z)xm+ t2D)�aTm;nv(�ext)�2:



Image ! Multiresolutionhierarchy ! Maximum{Likelihoodestimationargmax(R; t) p(~cs0 jBs0 ;R; t)#argmax(R; t) p(~cs1 jBs1 ;R; t)#argmax(R; t) p(~cs2 jBs2 ;R; t)Figure 2: System overview.With � = (�x; �y; �z) and the functionsh1(�; t) = Xm;n cn(R (�z)xm + t2D)2��2m;nh2;r(�; t) = Xm;n cn(R (�z)xm + t2D)am;n;r�2m;nh3(�; t) = Xm;n �aTm;nv(�ext)�2 ��2m;n;the sum (h1�2v(�ext)Th2+h3)(�; t) has to be mini-mized. The global search has to calculate the functionvalues for all grid positions which results in the men-tioned complexity, depending on the number of objectfeature positions.h1 and h2;r are of the form~h(t2D) =Xn Xm fn(x0m + t2D)wm;n;with x0m = R (�z)xm and for �xed �. If the evalua-tion grid (�; t2D) 2 �(�i;j;q ; t2D;q;k;l)	 for the trans-formation parameters is chosen as extension of X 0 =�R (�z;q)X to the possible parameter range, so that�i;j;q = (�x;0 + i��x; �y;0 + j��y; �z;0 + q��z)= (�x;i; �y;j ; �z;q)t2D;q;k;l = �R (�z;q) (tx;0 + k�tx; ty;0 + l�ty)T= �R (�z;q) (t0x;k; t0y;l)TX 0 = f�R (�z;q)xmg � ft2D;q;k;lg ;the evaluation of the second sum on X 0 can be inter-

preted as convolution. This is, because~h(t2D;q;k;l) =Xn Xm fn(R (�z;q)xm + t2D;q;k;l)wm;n=Xn Xm�fn(R (�z;q) (t02D;k;l� xm))wm;n=Xn Xm ~fq;n(t02D;k;l � xm)wm;nandXm ~fq;n(t02D;k;l�xm)wm;n=X�k;�l ~fq;n(xk;l � x�k;�l)w�k;�l;n=X�k;�l ~fq;k��k;l��l;nw�k;�l;nfor xm = x�k;�l = t02D;�k;�l.Using FFT allows the computation of this convolu-tion in O(Dt log(Dtx) log(Dty)) time. The calculationof each of the L+ 1 functions h1 and h2;r is thereforeof complexity O(NDt log(Dtx) log(Dty)). h3 has com-plexity O(D�ext). This results in a complexity of orderO(LNDR; t log(Dtx) log(Dty)) for the complete search,where the computation of h out of the simpler func-tions can be performed very fast.4 ResultsFigure 1 shows the objects used in this work. Theimages are 256 pixels in square. The localisation wasperformed on two scale levels s0; s1 with resolutionrs0 = 8 and rs1 = 4 pixels and constant �m;n. Onlythe best localization result of level s0 was used forfurther re�nement at s1. The Downhill Simplex al-gorithm was used for the local parameter search fol-lowing the global grid search. The computation time



Wavelet L Fail Error q�;�0Transl. (Pix) int.Rot. (o) ext.Rot. (o)mean max mean max mean maxJohnston 8 6 0 0.8 3.4 1.9 5.4 6.3 14 145Haar 0 0.8 2.1 1.8 3.6 6.2 13 183Daub. Lapl. 0 0.8 2.1 1.5 3.8 6.4 14 153Zhu 3 1 2.7 1.9 5.5 6.9 14 84Johnston 8 8 0 0.7 2.1 1.5 3.2 2.8 7.9 203Haar 0 0.7 1.8 1.3 3 2.5 7.4 245Daub. Lapl. 0 0.8 2.1 1.3 3.2 2.6 8.3 201Zhu 0 1 3.4 1.4 4.8 2.9 10 115Table 2: Results for object car3D (
�) with reference pig (
�0)Wavelet Fail ErrorTransl. (Pix) Rot. (o) q�;�0mean max mean maxJohnston 8 0 0.6 2.8 0.6 1.7 82.3Haar 0 0.6 2.6 0.7 1.5 81.7Daub.Lapl. 0 1.3 4.5 1.3 4.1 79.9Zhu 12 1.0 3.3 1.1 3.2 42.0Table 1: Results for object car (
�) with referenceblock (
�0)on a SGI O2 (R10000) is about 20 seconds for fea-ture extraction and localization of object pig withinthe four-dimensional parameter space on both scales.Training and test sets are disjoint. For the 2{Dobjects car one image sequence with a complete ob-ject rotation in the image plane in 36 equidistant stepswas available. Object block was available in three suchsequences with di�erent lighting conditions. The se-quences of the 3{D objects pig and car3D are takenfrom the Columbia Object Image Library (COIL).They consist of images for di�erent object positionsof one rotation axis �y of �ext and �xed �x,�z,t. Therange of �ext was treated as one-dimensional in theexperiments. The range of �z; t was searched com-pletely, resulting in a four-dimensional search.LetB� denote the model parameters of object class
� and L�(c) = log(maxR;t p(cAjB�;R; t))the logarithmic density value of the maximum like-lihood estimation for an observed feature vector c.With a reference object class 
�0 for a di�erent ob-ject and observations f�cg, f�c0g the quality measureq�;�0 is de�ned asq�;�0 = �L f�cg � �L f�c0gpvar (L) f�cg�L = 1N� X� L(�c); var (L) = 1N� X� �L(�c)� �L�2 ;where jf�cgj = N�. The measure appraises the selec-tivity of an objects density function with respect to an

alternative reference object and its variance. Table 1and 2 show experimental results for 2{D and 3{D ob-jects respectively. The Zhu wavelet is a representativeof a group of wavelets which are not suitable for ob-ject localization. The best wavelets are the Johnston8 and the simple Haar wavelet.References[1] A. Rieder A. K. Louis, P. Maass. Wavelets. Teub-ner, Stuttgart, 1994.[2] J. Hornegger and H. Niemann. Statistical learn-ing, localization, and identi�cation of objects. InICCV 95 [3], pages 914{919.[3] Fifth International Conference on Computer Vi-sion (ICCV), Cambridge, MA, June 1995. IEEEComputer Society Press.[4] H. Kollnig and H.-H. Nagel. 3D pose estimationby �tting gradients directly to polyhedral models.In ICCV 95 [3], pages 569{574.[5] V. Kumar and E. S. Manolakos. Unsuper-vised model{based object recognition by param-eter estimation of hierarchical mixtures. In Pro-ceedings of the International Conference on Im-age Processing (ICIP), pages 967{970, Lausanne,Switzerland, September 1996. IEEE ComputerSociety Press.[6] H. Murase and S. K. Nayar. Visual learning andrecognition of 3{D objects from appearance. In-ternational Journal of Computer Vision, 14(1):5{24, January 1995.[7] J. P�osl and H. Niemann. Statistical 3{D objectlocalization without segmentation using waveletanalysis. In Proceedings of the 7th InternationalConference on Computer Analysis of Imagesand Patterns (CAIP), Kiel, Germany, September1997, to appear.[8] L. Rabiner and B. H. Juang. Fundamentals ofSpeech Recognition. Prentice Hall, EnglewoodCli�s, NJ, 1993.[9] P. Viola and W. Wells III. Alignment by maxi-mization of mutual information. In ICCV 95 [3],pages 16{23.[10] X. Wu and B. Bhanu. Gabor wavelets for 3Dobject recognition. In ICCV 95 [3], pages 537{542.


