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Abstract

This paper describes o mew technique for statisti-
cal 3-D object localization. Local feature vectors are
ectracted for all image positions, in contrast to seg-
mentation in classical schemes. We define a density
function for those features and describe a hierarchical
pose estimation scheme for the localization of a single
object in a scene with arbitrary background. We show
how the global pose search on the starting level of the
hierarchy can be computed efficiently. The paper com-
pares different wavelet transformations used for fea-
ture extraction.

1 Introduction and Motivation

Statistical object modeling without segmentation
is motivated by speech understanding. Recognition
results were strongly enhanced by the idea of incorpo-
rating statistical methods in the recognition task [8]
there. Recent publications [2, 9, 5] show, that a sta-
tistical framework can also successfully be established
in image object recognition.

Most of the publications construct statistical mo-
dels based on segmentation results. They use the
geometric information provided by results, like lines
or vertices, as random variables. There are two ma-
jor disadvantages of using solely segmentation results.
When restricting the recognition process to this level
of abstraction a lot of information contained in an im-
age is lost. Another disadvantage are the errors made
by the segmentation. Segmentation results may be
incomplete or located incorrectly.

One way to cope with the problem is to avoid seg-
mentation. Instead of that the gray—level information
of an image can be used. [6] describe a recognition
method based on singular value decompositions of vec-
tor spaces composed of the gray—level data of several
images (appearance based modeling). Thereby a large
number of images is approximately encoded by a small
number of basis images. The projection parameters of
an image into this eigenspace can be used for recog-
nition. Maximization of the mutual information be-
tween an object model and an object in a scene is a
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further possibility [9]. A similar technique is described
in [4], where the gradient of object models is matched
directly to gray-level image sequences of traffic scenes
in order to track vehicles. [10] uses the multichannel
output of Gabor wavelets to detect and locate 3—D ob-
jects in infrared images. [5] describes a method based
on mixture densities of the gray level values of ob-
ject images.  With a focus on the distributions of
image pixel values rather than object location values
and without an hierarchical solution, this approach
tends to be very complex. The referenced papers ei-
ther use only probabilisticaly chosen model points for
matching [9] or use pose restrictions [4] to reduce the
complexity of the estimation. In this paper a new
approach for the localization of 3-D objects in single
gray-level images is presented. The pose of the object
is not restricted and the complete image data is con-
sidered after hierarchical filtering. We demonstrate
a new way of formulating a statistical model with a
functional basis decomposition of probability density
parameters. A more detailed description of this model
can be found in [7]. Local features are the basis for
the recognition process. We compare features derived
of different wavelet transformations [1].

2 System overview

The aim of the presented system is the pose esti-
mation of a rigid 3-D object in a single 2-D gray-level
image. We assume that the object does not vary in
scale.

In a first step of the localization process a multires-
olution analysis of the image is used to derive feature
values on different scales s € Z and resolutions (sam-
pling rates) r, € IR at the locations of rectangu-
lar sampling grids. Given an image f(z,y) with z €
{0,1,...,D, —1},y € {0,1,..., D, — 1} the observed
feature values at scale s are denoted by cs(z,y) =

(Cs,05-+s cs,N—l)T (z € {0,rs,...,7sDy— 1}, y €
{0,75,...,7sD, — 1}). In the experiments of this pa-
per the features ¢, are chosen as the logarithmic coeffi-
cients of the scaling functions — that are the low pass
coefficients — of a discrete wavelet transform (N = 1).
We use tensor product wavelets. Only almost symmet-
ric wavelets are chosen to get local features which are
robust to object rotations in the image plane.
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Figure 1: Objects for experiments:
car8D (top left to bottom right).

With those features a statistical measure for their
probability under the assumption of an object trans-
formation can be defined. The complexity of the pose
estimation is high if all features on the different scale
levels are combined into one measure function. There-
fore, a hierarchical solution is used (Figure 2). Mea-
sures are defined for each scale and the localization is
performed for each level successively. Let ¢; be the
vector of the concatenated feature values detected in
an image on scale s, B, the model parameters of an
object class and R,t be the 3-D rotation matrix and
translation vector. The rotation R is defined by the
rotation angles ¢, ¢, and ¢, round the z—, y— and
z—axis respectively.

The model parameters B consist of geometric in-
formation like probability density locations and other
density parameters. The density p(¢;s|Bs, R, t) is then
used for localization, The maximum likelihood estima-
tion results in (Rs, ;) = argmax g 4 p(cs| Bs, R, 1).

3 Statistical model

3.1 Model formulation

This section shows the definition of a probability
density function on each of the scale levels of the ana-
lysis. To simplify the notation the index s is omitted.

The model object is covered with a rectangular grid
of local feature vectors. The grid resolution is the
same as the image resolution on the actual scale. Let
A C R? be a small region (e.g. rectangular) which
contains the object projection to the image plane for
all possible rotations ¢,,; = (¢y, #2) outside the im-

age plane. Let X = {@m},,—o. 1 10 Tm € R? de-
note the grid locations and c(x) the feature vector at

location ®. Assuming the densities p(c(x,,)) of the
local features as stochastically independent leads to

plcalB,R,t)= [] plclzm, R,1),
TmcA
where c4 is the subset of ¢ which is covered by A.
The grid positions and the model area A are part of
the model parameters B.

N(c|p,y,,

The feature vectors are assumed to be nor-
mally distributed with independent components. Let
¥,.) denote the normal densities. In the
case of independence, X,, is a diagonal matrix

diag (o2 0% 0ree ,aﬁmN_l).
The den51ty parameters are a function of the rota-
tion parameters ¢, ¢, for 3-D objects, so that:

p(CA‘B,R,t)
:Hp(c|mm’ (um(¢ya¢z)a Sm
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with the 2-D rotation matrix R (¢,) for the rotation
and the translation ¢;p in the image plane. The image
feature vectors at the transformed 2-D locations are
calculated by linear interpolation. Assuming contin-
uous functions u,,, ¥, they can be rewritten using
a basis set for the domain of two-dimensional func-
tions {vr}r:mmm with coordinates am, n,ry bm,n,r € R

(r=0,...):
menrvr

Hm,n = Z Am,n,rUr, Um n

The functions are approximated by using only part
of the complete basis set {v,},_, ;. The Tay-
lor decomposition shows, that the approximation error
can be made as small as possible by choosing L large
enough. With this approximation a fast computation
of the density function and a maximum likelihood es-
timation of the basis coefficients is possible. The es-
timation results in closed estimation terms if 0,2 is
assumed as constant (see [7]). The value of L is lim-
ited mainly by the computation time for the density
and the size of the training set for estimation.

3.2 Efficient pose estimation

The pose estimation consists — at least on the
roughest resolution level — of a global pose search
and succeeding local search. The global pose search
evaluates the function p(ca|B, R, t) for grid positions
covering the possible parameter range. Let Dpg ; de-
note the number of evaluated transformation param-
eters. The time complexity of the grid search is then
of order O(|/A| LNDg,+).

For pose estimation with constant ¢—2 the function
p(ca|B,R t)

-1
= ex cn(R
H (271-0-2 ) b <20.2 ( (

(6y, ¢2)), R, )
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has to be maximized with respect to R, t.
Applying the logarithm yields the following function
to be minimized:

h$,1)=Y 5 (ca(R

myn . N

(¢2) Tm+ t2p)— nv(¢e:tt))2'
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Figure 2: System overview.

With ¢ = (¢z, ¢y, ¢.) and the functions
hi(dt) = D ca(R(4:)@m +t2p) 0,0
hor(¢,t) = Z cn(R (¢2) Tm + tw)%
hs(¢,t) = i(aﬁ,nv(¢ezt))2ﬂ;?n,
the sum (hy —2v(¢,,,)" ha + hs)(¢,t) has to be mini-

mized. The global search has to calculate the function
values for all grid positions which results in the men-
tioned complexity, depending on the number of object
feature positions.

hi and hs , are of the form

Zz.fnm +t2D wmna

with @, = R(¢,) ,, and for fixed ¢. If the evalua-
tion grid (¢, t2p) € {(@; 41 t2p.q,k,)} for the trans-

formation parameters is chosen as extension of X' =
R (¢,,q) X to the possible parameter range, so that

h(tap)

Dijg = (Pz0+iA¢s, Py 0+ jAPy, d.0 + qAP,)
= (Pz,isby,j,Pz,q)
2D g k. R (42 ) (ta0 + kAty, ty o + 1AL,)T
= —R(¢:0) (topsty)”
X' = {-R(¢:,0) ®m} C{taD gk}

the evaluation of the second sum on X' can be inter-

preted as convolution. This is, because

t2D,q,kl Zz.fn ¢)z q) Tm +t2D,q,kl)wmn
= Z Z .fn ¢z,q t2D,k,l_ wm))wm,n
= Z Z .fq,n t2D,k,l - wm)wm,n
n m
and
qu, (t2D k)i —®m ) Wi = qu, Tii — TEDWE T
E,J
:Z fa b=k -T,nWE 0
EJ
for ., = xy ;= tI2D,I_e,l_-

Using FFT allows the computation of this convolu-
tion in O(Dylog(Dy,) log(D;,)) time. The calculation
of each of the L + 1 functions h; and hy,, is therefore
of complexity O(N Dylog(Dy,)log(Dy,)). hs has com-
plexity O(Dgy,_,). This results in a complexity of order
O(LNDg,¢log(D;,)log(D;,)) for the complete search,
where the computation of h out of the simpler func-
tions can be performed very fast.

4 Results

Figure 1 shows the objects used in this work. The
images are 256 pixels in square. The localisation was
performed on two scale levels sg,s; with resolution
rs, = 8 and r,, = 4 pixels and constant o, . Only
the best localization result of level sq was used for
further refinement at s;. The Downhill Simplex al-
gorithm was used for the local parameter search fol-
lowing the global grid search. The computation time



Wavelet L | Fail Error Qi

Transl. (Pix) | int.Rot. (°) | ext.Rot. (°)

mean | max | mean | max | mean | max
Johnston 8 6 0 0.8 34 1.9 5.4 6.3 14 145
Haar 0 0.8 2.1 1.8 3.6 6.2 13 183
Daub. Lapl. 0 0.8 2.1 1.5 3.8 6.4 14 153
Zhu 3 1 2.7 1.9 5.5 6.9 14 84
Johnston 8 8 0 0.7 2.1 1.5 3.2 2.8 7.9 203
Haar 0 0.7 1.8 1.3 3 2.5 7.4 245
Daub. Lapl. 0 0.8 2.1 1.3 3.2 2.6 8.3 201
Zhu 0 1 34 1.4 4.8 2.9 10 115

Table 2: Results for object car3D () with reference pig (Qx')

Wavelet Fail Error
Transl. (Pix)

mean | max

Rot. (°) k., k'
mean | max

Johnston 8 | 0 0.6 2.8 0.6 1.7 ] 82.3
Haar 0 0.6 2.6 0.7 1.5 | 81.7
DaubLapl. | 0 1.3 4.5 1.3 | 41| 799
Zhu 12 1.0 3.3 1.1 3.2 | 42.0

Table 1: Results for object car () with reference
block (Qy1)

on a SGI 02 (R10000) is about 20 seconds for fea-
ture extraction and localization of object pig within
the four-dimensional parameter space on both scales.

Training and test sets are disjoint. For the 2-D
objects car one image sequence with a complete ob-
ject rotation in the image plane in 36 equidistant steps
was available. Object block was available in three such
sequences with different lighting conditions. The se-
quences of the 3-D objects pig and car3D are taken
from the Columbia Object Image Library (COIL).
They consist of images for different object positions
of one rotation axis ¢, of ¢.,; and fixed ¢,,¢.,t. The
range of ¢,,, was treated as one-dimensional in the
experiments. The range of ¢,,t was searched com-
pletely, resulting in a four-dimensional search.

Let B, denote the model parameters of object class
Q, and

Ly(e) = log(maxp(ca| By, B, 1))

the logarithmic density value of the maximum like-
lihood estimation for an observed feature vector c.
With a reference object class Q. for a different ob-
ject and observations {?c}, {*c'} the quality measure
x,r is defined as

o = L{rc} - L{*c'}
var (L) {*c}

7 1 p _ 1 Pp) _ T2
L:EZ’;L( c), var(L)_FpZPj(L( c)-I1)°,

where [{#c}| = N,. The measure appraises the selec-
tivity of an objects density function with respect to an

alternative reference object and its variance. Table 1
and 2 show experimental results for 2-D and 3-D ob-
jects respectively. The Zhu wavelet is a representative
of a group of wavelets which are not suitable for ob-
ject localization. The best wavelets are the Johnston
8 and the simple Haar wavelet.
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