
A FAST ALGORITHM FOR UNSUPERVISED INCREMENTALSPEAKER ADAPTATIONMichael Sch�u�ler1 Florian Gallwitz2 Stefan Harbeck21 Bayerisches Forschungszentrum f�ur wissensbasierte Systeme (FORWISS)Forschungsgruppe WissensverarbeitungAm Weichselgarten 7, 91058 Erlangen{Tennenlohe, GermanyE-mail: schuess@forwiss.uni-erlangen.de2 Universit�at Erlangen-N�urnberg,Lehrstuhl f�ur Mustererkennung (Informatik 5)Martensstra�e 3, 91058 Erlangen, GermanyABSTRACTSpeaker adaptation algorithms often require a rather largeamount of adaptation data in order to estimate the new pa-rameters reliably. In this paper, we investigate how adap-tation can be performed in real{time applications with onlya few seconds of speech from each user. We propose a mod-i�ed Bayesian codebook reestimation which does not needthe computationally intensive evaluation of normal densi-ties and thus speeds up the adaptation remarkably, e.g. bya factor of 18 for 24{dimensional feature vectors. We per-formed experiments in two real{time applications with verysmall amounts of adaptation data, and achieved a word er-ror reduction of up to 11%.1 INTRODUCTIONSpeaker adaptation has been a �eld of intensive researchfor several years. Great progress has been made in the de-velopment of theoretically well{founded algorithms as wellas in the achieved experimental results. Approaches basedon optimality criteria such as Maximum Likelihood (ML)and Maximum a posteriori (MAP) have received the mostattention in the last few years.Motivated by this progress we investigated the perfor-mance of these methods under di�cult conditions, wherethe system is only used for a short time (e.g. one dialog) byeach speaker and where no enrollment speech can be col-lected o�{line. A typical example for this situation is thetrain timetable information system EVAR developed at ourinstitute [3], which is accessible via public telephone linesince January 1994. In this task, the best use of speaker in-formation is certainly made by applying incremental adap-tation after each utterance. Adaptation methods can onlyuse the results of an automatic labeling of the previous ut-terance(s); thus we are dealing with unsupervised adapta-tion. Since our speech recognition system is based on semi{continuous Hidden Markov Models (SCHMM), we concen-trate on adaptation of the codebook parameters which o�ergood possibilities for fast adaptation.A number of investigations [6, 8] have shown that withlittle adaptation data, good results are achieved by MAPreestimation of the codebook mean vectors. Also, a combi-nation of a linear codebook transform with the MAP rees-timation has proven to perform better than either of theThe work presented in this paper was partly supported bythe DFG (German Research Foundation) under contract number810 830-0.

two approaches alone [12, 8]. Therefore, we chose to inves-tigate each approach separately �rst, and then to combinethe optimized methods.A common problem of both ML and MAP adaptationapproaches is that the resulting estimation formulas have arelatively high computational cost due to the evaluation ofhigh{dimensional Gaussian densities. We therefore investi-gated how the estimation could be simpli�ed and found amodi�cation, which is based on a theoretical considerationand at the same time speeds up the computation rapidly.The rest of this paper is organized as follows: In sec-tion 2 we shortly review the ML estimation of linear code-book transforms. In section 3 we introduce a modi�edBayesian estimation which will be called conservative esti-mation. Section 4 treats the issues related to the combina-tion of the two adaptation schemes in the scenario of unsu-pervised and incremental adaptation. Experimental resultsare presented in section 5.2 ACOUSTIC ADAPTATIONAcoustic adaptation methods attempt to compensate forexternal inuences on the speech signal by performing atransformation of the feature space, or accordingly, of thecodebook densities. The idea to perform acoustic adap-tation by estimating a codebook transformation with aMaximum{Likelihood (ML) approach was �rst presented by[1] and has been applied to several kinds of transformations[2, 7, 12]. The transformation parameters � are obtainedby maximizing the likelihood of observing the adaptationsample X: �̂ML = argmax� p(Xj�): (1)The most general transformation which has been investi-gated so far is a linear transformation of the codebook den-sities (means and covariances). However, there is no closedform solution for the estimation unless the HMM{systemworks with diagonal covariance matrices [2].Yet a solution is possible if only the means are trans-formed. The goal is to estimate a transformation matrixA and a translation vector b which transform the meansof the K codebook densities N (xjmk; Sk) according tom̂k = Amk + b. This analysis has been carried out by[7]; the estimation requires solving the following system ofN linear equations, where N is the number of coe�cientsthat make up the codebook transformation:KXk=1 nkS�1k Amkm>k + nkS�1k bm>k = KXk=1 nkS�1k �km>k



KXk=1 nkS�1k Amk + nkS�1k b = KXk=1 nkS�1k �k: (2)Although a more compact notation was used in [7], we pre-fer to write the linear equations in the form of a matrix anda vector equation, since it visualizes the structure of theequation system. The variables nk and �k are calculatedas in [2] from the observation sequence via Baum{Welch orViterbi algorithm.This method for acoustic adaptation has the advantagethat the transformation matrix can be restricted to anynumber of coe�cients according to the expected amountof adaptation data and the allowed computation time. Wehave developed an e�cient computation scheme for the co-e�cients of the linear equation system which guaranteesthat no computation is done more than once.3 PHONE SPECIFIC ADAPTATION USINGMODIFIED BAYESIAN ESTIMATIONIn contrast to acoustic adaptation, phone speci�c adapta-tion methods perform an individual reestimation of code-book densities or even HMM parameters. Bayesian adapta-tion has received a great deal of attention since Gauvain andLee [5] developed formulas to adapt all parameters of con-tinuous density HMMs. This is certainly the case becausethe method has optimal properties and leads to signi�cantimprovements. In cases where adaptation data is sparse,usually only the codebook mean vectors are adapted bybmk = �kmk +PTt=1 �t(k)xt�k +PTt=1 �t(k) (3)This reestimation formula is very intuitive, because it isbasically an interpolation between a weighted mean of theobservations xt and an a priori vector mk, which can bechosen as the mean vector from the speaker independentcodebook. The parameter �k controls the adaptation speed,while �t(k) is computed via�t(k) = p(!t = kjx; �) = cikN (xtjmk; Sk)PKl=1 cilN (xtjml; Sl) ; (4)if the optimal state sequence with states i is computed bythe Viterbi algorithm. Here, cik denotes the output proba-bility for codebook class k in state i. It is easy to see thatthe evaluation of the high dimensional normal densities forevery observation vector is computationally very demand-ing.An issue that has not been addressed yet in the con-text of Bayesian (MAP) adaptation for SCHMM is thatthe optimality of the codebook{HMM combination is vio-lated when adapting the codebook alone while leaving theHMM state output probabilities unchanged. This has beenreported for Maximum Likelihood (ML) adaptation [9], butas the di�erence between ML and MAP estimation lies onlyin the chosen a priori distribution, the same problem arisesin the MAP case. The estimation according to equations(3) and (4), which we will call conventional estimation inthe following, has the e�ect that the "'phonetic meaning"'of the codebook classes for the HMM is changed. This ef-fect is best illustrated by the following example: Consider aspeaker who typically pronounces an /a/ like an /o/. Dueto the evaluation of the Gaussian densities in equation (4),
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1 2 3utterances32 1 2 321Figure 1. Illustration of incremental adapta-tion schemesan observation of this vowel will only give a small contri-bution to the reestimation of the codebook densities thatrepresent the class /a/, but will contribute strongly to thereestimation of the densities that represent the class /o/. Innormal HMM training, this would be compensated by thereestimation of the state output probabilities; however, inadaptation this step is not possible because of the limitedsize of the observation sequence. Thus, the codebook{HMMcombination is no longer optimal.We can avoid these problems by introducing a modi�edestimation �t(k) = cik: (5)By omitting the normal densities, we ensure that the es-timation changes the codebook densities representing theclass /a/ as was intended. This modi�cation was proposedfor ML adaptation in [9], but we can obviously apply it toMAP adaptation with the same desired e�ect. The methodhas been reported to give signi�cantly better results in MLadaptation than the conventional estimation [9].Although we have motivated the modi�ed method froma theoretical point of view, it also o�ers some very desir-able properties for practical use. Most importantly, it needsmuch less computation time than the conventional estima-tion and is therefore much more suited for use in real{timeapplications. A second advantage shows up when it is com-bined with the estimation of a linear codebook transformin an incremental adaptation scenario as shown in Figure2. This is explained in the next section.4 COMBINING ACOUSTIC AND PHONESPECIFIC ADAPTATIONWhile acoustic adaptation attempts to reduce variationsthat have an inuence on the whole feature space, e.g. caus-ing a shift or rotation of all feature vectors, phone spe-ci�c adaptation aims to cover individual pronunciations byadapting each codebook class separately. Thus, combiningboth approaches should lead to a further improvement sincethey handle di�erent sources of speaker variation.In incremental adaptation, we can basically distinguishbetween two ways of using the collected adaptation datawhich are illustrated in Figure 1. One way is to use only thecurrent utterance to reestimate the most recently adaptedcodebook. The drawback of this method is that if an utter-ance is rather short, the estimation is unreliable and maygive bad results.
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Figure 2. Illustration of unsupervised incremental adaptationThe alternative is to always adapt the speaker indepen-dent codebook using the whole adaptation sample collectedso far. Depending on the adaptation method, however,this approach may cause problems if the computation mustbe done for the whole sample every time. This is whathappens when we combine the conventional acoustic andphone speci�c adaptation schemes: the acoustic adaptationcan re{use the values �t(k) computed from previously ob-served samples because the adaptation is always performedbased on the speaker independent codebook. However, thephone speci�c adaptation is then based on the acousticallyadapted codebook, which is di�erent after every new ob-servation. Thus, the values �t(k) have to be recomputedfor the whole sample, which is prohibitive in a real{timeapplication.If we now consider the proposed conservative estimationin the same scenario, we see that the values �t(k) = cik donot depend on the previously adapted codebook. Thus wecan re{use the values �t(k) from the previously observedsamples and need to compute only those of the most recentobservation.5 EXPERIMENTAL RESULTSA series of experiments has been carried out to evaluatethe performance of the suggested methods under realisticconditions. We only give a short description of our speechrecognizer here; a more detailed description can be foundin [4].For the results presented in this paper, a short time anal-ysis of the speech signal was performed every 10 ms, yield-ing a 24{dimensional feature vector that consists of twelvecepstral coe�cients and their �rst order derivatives. Wordrecognition was based on semi{continuous Hidden MarkovModels using polyphone models as subword units [10] anda codebook af 256 classes with full covariance matrices. Weperformed a one-pass recognition using a bigram languagemodel and skipped the second pass that uses higher orderpolygram language models, because our aim was to com-pare the improvement achieved by adapting the acousticmodels.We used two data bases that contain sentences from dif-ferent applications. One test set (T1) is part of the EVARsample collected at our instistute, which contains real di-alogs with our train timetable information system (cf. sec-tion 1). The test set comprises 234 dialogs; an averagedialog consists of ten utterances which amount to a total ofonly some 30 seconds of recorded speech per speaker.The second test set (T2) is taken from the data base ofdialogs in the VERBMOBIL project [11]. These are di-

alogs between two humans who try to arrange an appoint-ment. The test set contains utterances of eight speakerswith a total average length of roughly 1 1/2 minutes, splitinto ten utterances on the average. The word error rate(= 100%�word accuracy) of speaker independent recogni-tion is 24% on T1 and 46% on T2, which means that theautomatic labeling procedure produces a lot of wrong la-bels.We also used a small validation sample V1 to performsome preliminary experiments and to adjust the parametersof the adaptation methods. V1 is taken from the EVARdialogs, but is disjunct from T1. No optimization was doneon the test samples.First, we compare the runtime of the di�erent adapta-tion methods. Both acoustic and phone speci�c adapta-tion comprise an estimation step which is identical for bothadaptation methods, and the computation of the new meanvectors. The estimation step consists basically of a weightedsummation over the observed feature vectorsPTt=1 �t(k)xt;so its computation time depends on the length of the adap-tation sample. We measured the runtimes using a sampleof 1000 frames equalling ten seconds of speech.Table 1 shows the runtimes for the single computationsteps on a HP 9000/735. We see that conventional es-timation requires about 15 seconds of computation time,whereas conservative estimation is 18 times faster, takingless than one second. It is also worth noting that the com-plexity of conventional estimation depends quadratically onthe dimension of the feature space, while conservative esti-mation is independent of it. Comparing the di�erent adap-tation methods, we see that phone speci�c adaptation isvery fast, whereas the estimation of a large transformationmatrix for acoustic adaptation is obviously prohibitive in areal{time application.In a �rst series of experiments we investigated the useof acoustic adaptation by estimation of a linear transform.Since our preliminary experiments showed that estimatinga full 24 � 24 transformation matrix consumes too muchcomputation time, it was necessary to reduce the numberof parameters. The dominating part of the computation isthe solution of a linear equation system with N parameters(equation 2) that has a complexity of O(N3).There are several possible ways of reducing the numberof parameters in the computation. We found that a goodcompromise is to estimate a full linear transformation forthe stationary features, which are the �rst twelve featuresin our feature vectors. For the other features, only thetranslation parameters are estimated. We also applied athresholding rule which keeps the parameter values in a



conventional conservative acoustic acoustic phone speci�cestimation estimation adaptation adaptation adaptation24� 24{dim 12� 12{dimtime in sec 14.4 0.84 105 3.14 0.02Table 1. Runtimes of the di�erent computations. Each adaptation method consistsof an estimation step and an adaptation step.word error rates in % T1 T2no adaptation 22.89 46.03acoustic adaptationconventional estim. 22.01 43.39phone speci�c adaptationconventional estim., � = 5 22.24 41.75phone speci�c adaptationconservative estim., � = 15 22.04 43.99combined acoustic andphone speci�c adaptation 21.90 41.10improvement in % 4.3 10.7Table 2. Experimental results for the di�erentadaptation methods.reasonable range.These constraints were developed in the experiments onthe validation sample V1. They resulted in a 4% reductionof the word error rate on T1 and a 6% reduction on T2.Table 2 shows those results; adaptation was performed onthe whole sample from each speaker.In a second series of experiments, we evaluated the phonespeci�c adaptation scheme for conventional and conserva-tive estimation. An unsatisfactorily solved problem is stillthe choice of the prior parameters in Bayesian adaptation;since we only adapt the codebook means, we need to chooseonly the parameters �k. It is possible to estimate each �kseparately using the method of moments [6], but this is verytime consuming since it requires the training of speaker de-pendent HMMs from large samples. We chose to estimatea common parameter � = �k for all codebook classes usingthe validation sample; we only distinguish between �conventfor conventional and �conserv for conservative estimation.The results (Table 2) show that conservative estimationperformed better than conventional estimation on T1, giv-ing a 4% improvement. On the other hand, conventionalestimation gave better results for T2 with a 10% reductionof error rate. This behaviour may be due to the greaterlength of the adaptation samples in T2; also, the parame-ter value � = 15 may not be optimal for the VERBMOBILapplication since the validation sample is taken from theEVAR dialogs.Finally, we combined the linear codebook transform withthe Bayesian adaptation methods and applied it in the sce-nario of incremental adaptation as illustrated in Figure 2.Note that each adapted codebook is �rst used for the recog-nition of the following utterance, so the �rst utterance ofa speaker is always recognized with the unadapted systemonly. It should be stressed that these are exactly conditionsas they appear in a real{time application. We observed a
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