
RATIONAL INTERPOLATION OF MAXIMUM LIKELIHOOD PREDICTORS INSTOCHASTIC LANGUAGE MODELINGErnst G�unter Schukat-Talamazzini1, Florian Gallwitz2, Stefan Harbeck2, Volker Warnke21Institute for Computer ScienceUniversity of Jena, GermanyErnst-Abbe-Platz 1-4D-07740 Jena, Germanye-mail: schukat@informatik.uni-jena.de 2Chair for Pattern RecognitionUniversity of Erlangen-NurembergMartensstrasse 3D-91058 Erlangen, Germanye-mail: fnameg@informatik.uni-erlangen.deABSTRACTIn our paper, we address the problem of estimatingstochastic language models based on n-gram statistics.We present a novel approach, rational interpolation, forthe combination of a competing set of conditional n-gramword probability predictors, which consistently outper-forms the traditional linear interpolation scheme. The su-periority of rational interpolation is substantiated by ex-perimental results from language modeling, speech recog-nition, dialog act classi�cation, and language identi�ca-tion. 1. INTRODUCTIONIn our paper, we address the problem of estimatingstochastic language models P (w) for sentences w =w1 : : : wT of words wt from a �nite vocabulary V. Thejoint distribution P (w) can be decomposed by the well-known chain ruleP (w) = TYt=1 P (wtjwt�11 ) = TYt=1 P (wt j w1 : : : wt�1) (1)into a product of conditional word probabilities (bywts wedenote the substring ws : : : wt of w). The latter, in turn,are usually approximated by conditional bigram or con-ditional trigram probabilities [5] or are evaluated withoutexplicit history pruning as in the polygram model [16, 8]or Bell Lab's variable n-gram stochastic automata [14].It is straightforward to replace the conditional n-gramprobabilities on the right hand side of Eq. (1) by theirmaximum likelihood estimatesP̂ (wtjwt�1t�n+1) = #(wtt�n+1)#(wt�1t�n+1) (2)where the function #(�) counts the frequency of occur-rence of its argument word sequence in the training cor-pus. Unfortunately, due to the sparse data problem thefrequency ratios of Eq. (2) are far from being reliableprobability estimates even in case of moderate order n.In particular, the quantity P̂ (wtjwt�1t�n+1) degenerates tozero if the n-gram wtt�n+1 was never observed in thetraining data, and what is more: it becomes unde�nedas soon as the denominator #(wt�1t�n+1) of the MLE ex-pression turns to zero.As a consequence, the raw ML estimates have to besmoothed by a suitable backing-o� or interpolation strat-egy. Backing-o� approaches such as Katz' trigram for-mula [7] typically operate on a discounted version of n-gram frequencies, for example based on Je�rey's rule orthe Good-Turing estimate [2] of unseen events, reducingthe occurrence counts of frequent events in favour of therare ones. The probability mass that was saved by deriv-ing the conditional trigram probabilities from discountedfrequencies is then redistributed to the unseen trigramevents according to a lower order (in this case: bigram)language model.

Katz' formula handles the statistics of unseen eventsand leaves the remaining estimates essentially un-changed. In order to fully exploit the information rep-resented in the lower order models, the competing MLestimates should better be combined using a linear inter-polation scheme like the smoothed trigram model [5]~P (wjuv) = �0 1L+�1P̂ (w)+�2P̂ (wjv)+�3P̂ (wjuv) (3)The weights �i of this convex combination of conditionaltrigram, bigram, unigram, and zerogram (1=L) probabili-ties can be optimized with respect to the maximum likeli-hood of an independent cross-validation data set by run-ning an instance of the well-known EM algorithm [3].Both backing-o� and linear interpolation do not pre-cisely distinguish between reliable predictors (i.e.: therelevant word history has a reasonably large # value)and less reliable predictors. Thus, in numerous situa-tions the contributions of ML predictors P̂ (wjv) will notbe weighted in an optimal way. Several authors proposedalternative interpolation schemes [10, 13] incorporatingcertain predictor weights into the model Eq. (3) whichare expected to appropriately re
ect our con�dence inthe component probability estimators.These models, however, abandoned the use of interpo-lation along with its bene�t of (cross-validation-) data-driven adaptation of the smoothing process. In this pa-per we present a novel approach of predictor fusion, ra-tional interpolation, combining the pro�ts of linear inter-polation with the introduction of an explicit reliabilityscoring into the model. Rational interpolation is shownto consistently outperform the linear one in the realmof language modeling and, beyond that, is a promisingcompetitor to EM-based deleted interpolation [6] whentackling smoothing problems in decision tree design andacoustic modeling (interpolation of context-dependentphone HMMs).The remainder of this paper is organized as follows:Section 2 describes our rational probability model as wellas a gradient ascent algorithm designed to optimize its in-terpolation coe�cients. In Section 3 a particular weight-ing function of hyperbolic shape is introduced that servesto score the language model predictors. Finally, Section 4and Section 5 present test set perplexities of linear and ra-tional models achieved on di�erent text corpora as well asresults from application of our novel interpolation tech-nique in speech recognition, dialog act classi�cation, andlanguage identi�cation; Section 6 concludes the paper.2. INTERPOLATION OF WEIGHTEDPREDICTORSIn general, we consider polygram models of the form~P (wjv) = Xi2I �i � P̂i(wjv); (4)where the P̂i predict the actual word w based on some ap-propriate portion of the sentence history v. Consider, forexample, the usual ML estimators of conditional n-gramSubmitted to EUROSPEECH'97, Rhodes 1 c
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probabilities (Eq. (2)) as a possible choice for the P̂i's;similarly, predictors may be conceived as based on non-contiguous statistics of the word history like distance-�bigrams ([11, 15], see also Section 4).2.1. Rational InterpolationNow let us introduce a history-dependent weight func-tion gi(v), scoring the predictor reliability based on thatportion of v which is relevant to P̂i, for instance the pastbigram uv for the trigram predictor P̂ (wjuv) (see Sec-tion 3 for more details on gi). Linear interpolation of theweighted predictors leads to the expressionP 0(wjv) def= Xi2I �i � gi(v) � P̂i(wjv) (5)Due to the violation of the normality condition, P 0(wjv)does not yet represent a probability distribution. Afterdivision by the appropriate renormalization factorP 00(v) def= Xw2V P 0(wjv) = Xi2I �i � gi(v) (6)we obtain the rational interpolation model~P (wjv) def= P 0(wjv)P 00(v) = Xi2I �i � gi(v) � P̂i(wjv)Xi2I �i � gi(v) (7)which is no longer linear in its interpolation coe�cients.2.2. Optimizing the Interpolation Coe�cientsThe optimization of the �i makes use of a cross-validationdata set w = w1 : : : wS; let vs denote the past sentencecontext of word item ws, s = 1; : : : ; S. The desired coe�-cient vector � results from maximizing the log likelihoodfunctioǹw(�) def= log ~P (w) = log SYs=1 ~P (wsjws�11 ) (8)of the validation data w.r.t. �. Note that in contrast tothe linear scheme Eq. (4) the rational model Eq. (7) can-not be interpreted as a doubly stochastic process; con-sequently, the EM algorithm [3, 6] is not applicable inorder to estimate the �i's. However, since the usual nor-mality conditionPi �i = 1 factors out in Eq. (7), the �imay be iteratively optimized by unconstrained gradientascent using the gradient vector r`(�) with components@`@�i = SXs=1 �gi(vs) � P̂i(wsjvs)P 0(wsjvs) � gi(vs)P 00(vs)� (9)The Hessian matrix H = H(�), Hij = @2` = @�i@�j hasthe form H = H0 �H00 where the matrices H 0, H00 withelementsH 0ij = SXs=1 gi(vs) � P̂i(wsjvs) � gj(vs) � P̂j(wsjvs)(P 0(wsjvs))2H 00ij = SXs=1 gi(vs) � gj(vs)(P 00(vs))2 (10)are symmetric and positive-de�nite. Unfortunately,H(�)itself is in general not positive-de�nite, and the Newtoniteration�(k+1) = �(k) + (H(�(k)))�1 � r`(�(k)) (11)

is not applicable here since the eigenvalues of H may turnto zero (no inverse exists!) or turn negative; in the lat-ter case, �(k+1) is no longer guaranteed to increase thelikelihood function `w(�). In our experiments we ran thegradient ascent shown in Eq. (11), replacing the originalHessian H by H 0 which resulted in a fast converging co-e�cient set with monotonical improvement of `w(�) forall data sets under test.3. HYPERBOLIC WEIGHT FUNCTIONSWhat remains to be done is the speci�cation of ourcontext-dependent reliability scores gi(v). Recall thatwe assumed the predictors to be of the form of relativefrequency estimatorsP̂i(wjv) = #i(v; w)Pu#i(v; u) = #i(v; w)#i(v) (12)with appropriately de�ned marginals #i(�) of the basicoccurrence counts #(�). It is reasonable to rate our con-�dence in the estimator P̂i(wjv) by a function gi which ismonotonically increasing with the absolute number #i(v)of events this relative frequency is based upon. Choosinga hyperbolic weight functiongi(v) = #i(v)#i(v) + C (13)(with C > 0), we obtain the rational interpolation model~P (wjv) = Xi2I �i � #i(v; w)#i(v) + CXi2I �i � #i(v)#i(v) + C (14)If the constant C tends to zero, we get gi(v) � 1 andEq. (14) reduces to the well-known linear interpolationof conditional n-gram probabilities; whereas if C ap-proaches in�nity, P̂i(wjv) is computed as the ratio of lin-early interpolated marginals of the statistics #(v; w) and#(v):~P (wjv) = Xi2I �i �#i(v; w) =Xi2I �i �#i(v) (15)
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Figure 1. Hyperbolic weight functions (C = 2; 10; 50)Generally, the values gi(v) vary inside the unit inter-val (see Fig. 1) and serve to emphasize estimates whichproduce their word predictions from contexts with safestatistics. Note that in the rational language model withhyperbolic score gi we don't have to worry about the zerofrequency problem, since all denominators in Eq. (14) arestrictly positive if only C > 0 and at least one marginalcontext count #i(v) is nonzero. A second advantageous2



property of rational models that shall be mentioned hereis the smooth dependence of predictor contribution onthe frequency of the relevant word context, which wasintroduced by our hyperbolic weight function; as a con-sequence, there is no more need in a rational model ar-ti�cially to introduce dependences of the interpolationcoe�cients �i from the word history v (\bucketing").4. EXPERIMENTAL RESULTS IIn order to assess the performance of our rational in-terpolation approach we tested language models withthree di�erent sets of predictors; each of these modelsin turn is scaled by the maximum order n of context con-sidered in estimating the conditional word probabilities(n = 2; : : : ; 6):� [poly]: the nth order polygram model interpolatesthe k-gram predictors P̂k = P̂ (wtjwt�1t�k+1) for k =0; : : : ; n. The poly predictor set of order 3, forinstance, results in the classical trigram model ofEq. (3).� [poly+2]: this model contains the above k-gram pre-dictors augmented by those distance-� conditionalbigrams P̂2=� = P̂ (wtjwt�� ) falling into the givenmaximum context, i.e. � = 1; : : : ; n� 1.� [poly+3]: in excess to k-gram and distance-� bi-gram predictors, this model incorporates addi-tional (n�1)(n�2)=2 distance-�; � conditional trigramsP̂3=�;� = P̂ (wtjwt����; wt�� ), the gap parameter �ranging from 1 to n � 2 and � ranging from 1 ton� � � 1.k = ? � = ? �=� = ?2 3 4 5 1 2 3 4 1=1 1=2 1=3 2=1 2=2 3=1wt�1 � � � � � � � � � � � � � �wt�2 � � � � � � � � � � � � � �wt�3 � � � � � � � � � � � � � �wt�4 � � � � � � � � � � � � � �k-grams � -bigrams �; �-trigramsFigure 2. Predictors of a poly+3 model of order 5The �lled circles in Fig. 2 indicate exactly those wordhistory positions wt�4, wt�3, wt�2, wt�1 which con-tribute to the predictors of a \pentagram" (n = 5) lan-guage model with non-contiguous bigram and trigramestimators.Each one of the 3 � 5 predictor sets described abovehas been tested both with linear and with rational in-terpolation. Whilst setting up one single interpolationcoe�cient per predictor was su�cient in the latter case,the linear interpolation scheme requires a set of separatecoe�cient vectors (see [8]) in order to deal with the prob-lem of pathological ML estimators P̂i occurring as soonas the frequency count in the denominator is vanishing.4.1. Test Set PerplexitiesRunning perplexity evaluations on di�erent text corpora,we found that rational language models consistently out-perform linear ones. We present test set perplexities fortrials with the Intercity train timetable inquiry cor-pus (Fig. 3) and the Verbmobil face-to-face businessappointment dialog corpus (Fig. 4). Each of the two textcorpora had previously been partitioned into three inde-pendent subsets: the training data to obtain the relevantn-gram counts, the cross-validation data to optimize theinterpolation coe�cients, and the test data to computeperplexities as a measure of the model's capability togeneralize from the training data. The sizes of train-ing/validation/test sets were 12921/900/2081 words forthe Intercity inquiries, or 113321/1279/9009 words forthe Verbmobil dialogs, resp.
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Figure 3. Intercity corpusFor both domains a substantial reduction in test setperplexity was achieved: The perplexity of the Inter-city data was reduced by 12.2% (PPX 24:6 ! 21:6),where a 4% improvement was due to rational interpo-lation and about 8% was due to the inclusion of non-contiguous bigram and trigram predictors. The overallperplexity reduction of the Verbmobil data amountedto 10.4% (PPX 103:7 ! 92:9) where rational interpola-tion accounted for about 6% and non-contiguous predic-tors for the remaining 5%. Note that the extension of thepredictor set strides along with a considerable increase ofstorage requirements for the \sparse" bigram and trigramstatistics. The improvement caused by rational interpo-lation, however, was achieved without additional storageor computational cost compared with the linear one.
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Figure 4. Verbmobil corpus5. EXPERIMENTAL RESULTS IIAlthough test set perplexity is widely used as a measureof comparison for language models, perplexity reductionsdo not always result in improved recognition rates. Inthis section we will present experimental results that al-low for a comparison of di�erent interpolation strategiesin three di�erent recognition and classi�cation tasks:� spontaneous speech recognition� dialog act classi�cation based on subword units� language identi�cation based on framewise labeling5.1. Speech RecognitionThe most common goal of improving language modelperplexity is the reduction of word error rates in auto-matic speech recognition. We performed experiments onthe german spontaneous Verbmobil face-to-face busi-ness appointment dialog corpus, using a test set of 268utterances with a total of 5065 reference words. Weused a two{pass HMM word recognizer with a vocab-ulary size of 3833 words, incorporating bigram informa-tion in the �rst pass and polygram information in the3



second pass [4]. The baseline error rate using linearly in-terpolated polygram models with n = 3 is 22.9%. Usingrationally interpolated polygram models with hyperbolicweight functions (Section 3) and n = 3 results in an errorrate of 22.3%. This is an error rate reduction of 2.4%. Al-though this improvement may appear rather small, it isimportant to note that is is achieved with practically nocomputational overhead, neither during language modeltraining nor during decoding.5.2. Dialog Act Classi�cationAlthough mostly used for speech recognition, n-grammodels can be used for a wide range of tasks. One in-teresting application is the classi�cation of dialog actsbased on the recognizer output [9]. This allows for \
atanalysis" of the user utterances, which is useful for keep-ing track of the dialog even when the linguistic analysisfails [1]. The idea is to segment user utterances into di-alog acts using prosodic information. The correspondingparts of the recognized word sequence are then classi-�ed according to a ML{decision using di�erent n-grammodels for a prede�ned set of dialog acts. We performedexperiments on a manually segmented and transcribedsubset of the Verbmobil corpus. We used a set of 18dialog act classes; the test set consisted of a total of 521dialog acts. Using linearly interpolated polygrammodels,we achieved the lowest error rate of 36.4% with a poly-gram order of n = 4. A rationally interpolated polygramof order n = 6 augmented with time warped bigramsproduced an error rate of 34.2%. This is an error ratereduction of 6%. The larger improvement compared tothe word recognition experiments is due to the fact thatdialog act classi�cation is performed only based on lan-guage model information, while word recognition is basedon language model information and acoustic information.5.3. Language Identi�cationAnother application for n-gram models we are investi-gating is language identi�cation. As we cannot alwaysassume to have a word recognizer or a phone recognizerfor all languages of interest, we use a vector quantizerto assign one of 96 labels to each time frame of 30ms.The sequence of frames is then classi�ed according to aML{decision using n-gram models for each language [12].For these experiments we used a set of 13 languages andspeech signals of rather poor quality. The signals in thetest sample are cut into fragments of only 2 seconds.On these fragments, we achieved a recognition rate of37.3% using linearly interpolated polygram models of or-der n = 3; rationally interpolated polygram models aug-mented with time warped bigrams and n = 3 produceda recognition rate of 37.9%. This rather poor improve-ment is due to the fact that the language identi�cation ismostly based on counts of speci�c symbols; the sequenceof symbols contributes much less to the discrimination ofdi�erent languages. This is con�rmed by a recognitionrate of 29% that can be achieved with n = 1 (unigram)models. Besides, the training data consist of a compara-tively large amount of almost 500000 labeled time frameswith only 96 di�erent labels, which makes interpolationless important than with sparse training data.6. CONCLUSIONIn our paper, we addressed the problem of estimatingstochastic language models based on n-gram statistics.We presented a novel approach, rational interpolation, forthe combination of a competing set of conditional n-gramword probability predictors, which consistently outper-forms the traditional linear interpolation scheme. The su-periority of rational interpolation is substantiated by ex-perimental results from language modeling (10{12% per-plexity reduction), speech recognition (2.4% decrease inword error rate), dialog act classi�cation (6% decrease),and language identi�cation (1.6% improvement).The training algorithm and the probability calcula-tions of rational interpolation produce only neglectable
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