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ABSTRACT

In our paper, we address the problem of estimating
stochastic language models based on n-gram statistics.
We present a novel approach, rational interpolation, for
the combination of a competing set of conditional n-gram
word probability predictors, which consistently outper-
forms the traditional linear interpolation scheme. The su-
periority of rational interpolation is substantiated by ex-
perimental results from language modeling, speech recog-
nition, dialog act classification, and language identifica-
tion.

1. INTRODUCTION

In our paper, we address the problem of estimating
stochastic language models P(w) for sentences w =
wi ... wr of words wy from a finite vocabulary V. The
joint distribution P(w) can be decomposed by the well-
known chain rule

T

Pw) = [ Pwlwi™) = ] Plwe | wi .. wi-r) (1)

t=1

into a product of conditional word probabilities (by w’ we
denote the substring ws ... w: of w). The latter, in turn,
are usually approximated by conditional bigram or con-
ditional trigram probabilities [5] or are evaluated without
explicit history pruning as in the polygram model [16, 8]
or Bell Lab’s variable n-gram stochastic automata [14].

It is straightforward to replace the conditional n-gram
probabilities on the right hand side of Eq. (1) by their
maximum likelihood estimates

#(w§—n+1)

#("U:::ﬁl)

where the function #(-) counts the frequency of occur-
rence of its argument word sequence in the training cor-
pus. Unfortunately, due to the sparse data problem the
frequency ratios of Eq. (2) are far from being reliable
probability estimates even in case of moderate order n.

In particular, the quantity T:’(wt|w::,11+1) degenerates to

zero if the nm-gram w:—n-l—l was never observed in the
training data, and what is more: it becomes undefined
as soon as the denominator #(w}j_,,,,) of the MLE ex-
pression turns to zero.

As a consequence, the raw ML estimates have to be
smoothed by a suitable backing-off or interpolation strat-
egy. Backing-off approaches such as Katz’ trigram for-
mula [7] typically operate on a discounted version of n-
gram frequencies, for example based on Jeffrey’s rule or
the Good-Turing estimate [2] of unseen events, reducing
the occurrence counts of frequent events in favour of the
rare ones. The probability mass that was saved by deriv-
ing the conditional trigram probabilities from discounted
frequencies is then redistributed to the unseen trigram
events according to a lower order (in this case: bigram)
language model.

(2)

P(wt‘wtvlw-l) =
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Katz’ formula handles the statistics of unseen events
and leaves the remaining estimates essentially un-
changed. In order to fully exploit the information rep-
resented in the lower order models, the competing ML
estimates should better be combined using a linear inter-
polation scheme like the smoothed trigram model [5]

P(wluv) = )\o%+A115(w)+)\213(w|v)+)\313(w|uv) (3)

The weights A; of this convex combination of conditional
trigram, bigram, unigram, and zerogram ('/) probabili-
ties can be optimized with respect to the maximum likeli-
hood of an independent cross-validation data set by run-
ning an instance of the well-known EM algorithm [3].
Both backing-off and linear interpolation do not pre-
cisely distinguish between reliable predictors (i.e.: the
relevant word history has a reasonably large # value)
and less reliable predictors. Thus, in numerous situa-

tions the contributions of ML predictors P(w|v) will not
be weighted in an optimal way. Several authors proposed
alternative interpolation schemes [10, 13] incorporating
certain predictor weights into the model Eq. (3) which
are expected to appropriately reflect our confidence in
the component probability estimators.

These models, however, abandoned the use of interpo-
lation along with its benefit of (cross-validation-) data-
driven adaptation of the smoothing process. In this pa-
per we present a novel approach of predictor fusion, ra-
tional interpolation, combining the profits of linear inter-
polation with the introduction of an explicit reliability
scoring into the model. Rational interpolation is shown
to consistently outperform the linear one in the realm
of language modeling and, beyond that, is a promising
competitor to EM-based deleted interpolation [6] when
tackling smoothing problems in decision tree design and
acoustic modeling (interpolation of context-dependent
phone HMMs).

The remainder of this paper is organized as follows:
Section 2 describes our rational probability model as well
as a gradient ascent algorithm designed to optimize its in-
terpolation coefficients. In Section 3 a particular weight-
ing function of hyperbolic shape is introduced that serves
to score the language model predictors. Finally, Section 4
and Section 5 present test set perplexities of linear and ra-
tional models achieved on different text corpora as well as
results from application of our novel interpolation tech-
nique in speech recognition, dialog act classification, and
language identification; Section 6 concludes the paper.

2. INTERPOLATION OF WEIGHTED
PREDICTORS

In general, we consider polygram models of the form

Plwly) = Y X+ Pi(wlv), (4)

i€l

where the P; predict the actual word w based on some ap-
propriate portion of the sentence history v. Consider, for
example, the usual ML estimators of conditional n-gram
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probabilities (Eq. (2)) as a possible choice for the Pi’s;
similarly, predictors may be conceived as based on non-
contiguous statistics of the word history like distance-7
bigrams ([11, 15], see also Section 4).

2.1. Rational Interpolation

Now let us introduce a history-dependent weight func-
tion g;(v), scoring the predictor reliability based on that

portion of v which is relevant to Pi, for instance the past

bigram wuv for the trigram predictor P(w|uv) (see Sec-
tion 3 for more details on g;). Linear interpolation of the
weighted predictors leads to the expression

P'(wlv) =Y i gi(v) - Pi(w]v) (5)
iel
Due to the violation of the normality condition, P’ (w|v)

does not yet represent a probability distribution. After
division by the appropriate renormalization factor

P"(v) def ZP (w]v) = Zki-gi(v) (6)
weY i€l

we obtain the rational interpolation model

which is no longer linear in its interpolation coefficients.

2.2. Optimizing the Interpolation Coefficients

The optimization of the A; makes use of a cross-validation
data set w = w1 ... wgs; let v; denote the past sentence
context of word item ws, s = 1,...,S. The desired coeffi-
cient vector A results from maximizing the log likelihood
function

lo(N) ' log P(w :logHPws|w (8)

of the validation data w.r.t. A\. Note that in contrast to
the linear scheme Eq. (4) the rational model Eq. (7) can-
not be interpreted as a doubly stochastic process; con-
sequently, the EM algorithm [3, 6] is not applicable in
order to estimate the \;’s. However, since the usual nor-
mality condition ), A; = 1 factors out in Eq. (7), the \;
may be iteratively optimized by unconstrained gradient
ascent using the gradient vector V,(\) with components

0 _ N~ [ 9i(0) Pi(walvs) _ gi(ws)
6_)\1' = Z{ P’(ws|vs) - P”(’Us)} (9)

s=1

The Hessian matrix H = H()\), H;; = 820 / OX;0); has
the form H = H' — H" where the matrices H', H" with

elements
Pi(ws|vs) - g (vs) - Pj(wslvs)

H. = 9:(vs)
N Z (P (ws |vs))?

gz s
HY = Z o ) (10)

are symmetric and positive-definite. Unfortunately, H())
itself is in general not positive-definite, and the Newton
iteration

AEHD) )\(k)+(H()\(k)))_

bvea™)y

is not applicable here since the eigenvalues of H may turn
to zero (no inverse exists!) or turn negative; in the lat-

ter case, A**1) is no longer guaranteed to increase the
likelihood function £, (-). In our experiments we ran the
gradient ascent shown in Eq. (11), replacing the original
Hessian H by H' which resulted in a fast converging co-
efficient set with monotonical improvement of £, (-) for
all data sets under test.

3. HYPERBOLIC WEIGHT FUNCTIONS

What remains to be done is the specification of our
context-dependent reliability scores g;(v). Recall that
we assumed the predictors to be of the form of relative
frequency estimators

P,(w\v) — #i(’l),’ll)) — # (’U,’LU) (12)

>, #ilv,u) #i(v)

with appropriately defined marginals #;(-) of the basic
occurrence counts #(-). It is reasonable to rate our con-

fidence in the estimator P;(w|v) by a function g; which is
monotonically increasing with the absolute number #;(v)
of events this relative frequency is based upon. Choosing
a hyperbolic weight function

#i(v)

gi(v) = 0+ C (13)

(with C > 0), we obtain the rational interpolation model

(14)

If the constant C' tends to zero, we get g;(v) = 1 and
Eq. (14) reduces to the well-known linear interpolation
of conditional n- gram probabilities; whereas if C' ap-

proaches infinity, P;(w|v) is computed as the ratio of lin-
early interpolated marglnals of the statistics #(v, w) and

#(v):

P(w|v) Z)\ #i(v,w /ZA #i(v (15)

iel icl
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Figure 1. Hyperbolic weight functions (C = 2,10, 50)

Generally, the values g;(v) vary inside the unit inter-
val (see Fig. 1) and serve to emphasize estimates which
produce their word predictions from contexts with safe
statistics. Note that in the rational language model with
hyperbolic score g; we don’t have to worry about the zero
frequency problem, since all denominators in Eq. (14) are
strictly positive if only C' > 0 and at least one marginal
context count #;(v) is nonzero. A second advantageous



property of rational models that shall be mentioned here
is the smooth dependence of predictor contribution on
the frequency of the relevant word context, which was
introduced by our hyperbolic weight function; as a con-
sequence, there is no more need in a rational model ar-
tificially to introduce dependences of the interpolation
coefficients \; from the word history v (“bucketing”).

4. EXPERIMENTAL RESULTS I

In order to assess the performance of our rational in-
terpolation approach we tested language models with
three different sets of predictors; each of these models
in turn is scaled by the maximum order n of context con-
?idered in es;imating the conditional word probabilities
n=2...,6)

e [poly]: the nt" order polygram model interpolates
the k-gram predictors P, = P(wt\wt ,thl) for k =
0,...,n. The poly predictor set of order 3, for
instance, results in the classical trigram model of
Eq. (3).

e [poly+2]: this model contains the above k-gram pre-
dictors augmented by those distance-r conditional
bigrams P2/, = P(wt|wt ) falling into the given
maximum context, i.e. 7=1,...,n— 1.

e [poly+3]: in excess to k-gram and distance-r bi-
gram predictors, this model incorporates addi-
tional (”71)(”72)/2 distance-7, o conditional trigrams
Py, = P(wg|wt—r—o,wt—-), the gap parameter 7
ranging from 1 to n — 2 and o ranging from 1 to
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Figure 2. Predictors of a poly+3 model of order 5

The filled circles in Fig. 2 indicate exactly those word
history positions wi—4, wi—3, wi—2, wi—1 which con-
tribute to the predictors of a “pentagram” (n = 5) lan-
guage model with non-contiguous bigram and trigram
estimators.

Each one of the 3 x 5 predictor sets described above
has been tested both with linear and with rational in-
terpolation. Whilst setting up one single interpolation
coefficient per predictor was sufficient in the latter case,
the linear interpolation scheme requires a set of separate
coefficient vectors (see [8]) in order to deal with the prob-

lem of pathological ML estimators P; occurring as soon
as the frequency count in the denominator is vanishing.

4.1. Test Set Perplexities

Running perplexity evaluations on different text corpora,
we found that rational language models consistently out-
perform linear ones. We present test set perplexities for
trials with the INTERCITY train timetable inquiry cor-
pus (Fig. 3) and the VERBMOBIL face-to-face business
appointment dialog corpus (Fig. 4). Each of the two text
corpora had previously been partitioned into three inde-
pendent subsets: the {raining data to obtain the relevant
n-gram counts, the cross-validation data to optimize the
interpolation coefficients, and the test data to compute
perplexities as a measure of the model’s capability to
generalize from the training data. The sizes of train-
ing/validation/test sets were 12921/900/2081 words for
the INTERCITY inquiries, or 113321/1279/9009 words for
the VERBMOBIL dialogs, resp.
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Figure 3. INTERCITY corpus

For both domains a substantial reduction in test set
perplexity was achieved: The perplexity of the INTER-
cITY data was reduced by 12.2% (PPX 24.6 — 21.6),
where a 4% improvement was due to rational interpo-
lation and about 8% was due to the inclusion of non-
contiguous bigram and trigram predictors. The overall
perplexity reduction of the VERBMOBIL data amounted
to 10.4% (PPX 103.7 — 92.9) where rational interpola-
tion accounted for about 6% and non-contiguous predic-
tors for the remaining 5%. Note that the extension of the
predictor set strides along with a considerable increase of
storage requirements for the “sparse” bigram and trigram
statistics. The improvement caused by rational interpo-
lation, however, was achieved without additional storage
or computational cost compared with the linear one.
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Figure 4. VERBMOBIL corpus

5. EXPERIMENTAL RESULTS II

Although test set perplexity is widely used as a measure
of comparison for language models, perplexity reductions
do not always result in improved recognition rates. In
this section we will present experimental results that al-
low for a comparison of different interpolation strategies
in three different recognition and classification tasks:

e spontaneous speech recognition
o dialog act classification based on subword units
¢ language identification based on framewise labeling

5.1. Speech Recognition

The most common goal of improving language model
perplexity is the reduction of word error rates in auto-
matic speech recognition. We performed experiments on
the german spontaneous VERBMOBIL face-to-face busi-
ness appointment dialog corpus, using a test set of 268
utterances with a total of 5065 reference words. We
used a two—pass HMM word recognizer with a vocab-
ulary size of 3833 words, incorporating bigram informa-
tion in the first pass and polygram information in the



second pass [4]. The baseline error rate using linearly in-
terpolated polygram models with n = 3 is 22.9%. Using
rationally interpolated polygram models with hyperbolic
weight functions (Section 3) and n = 3 results in an error
rate of 22.3%. This is an error rate reduction of 2.4%. Al-
though this improvement may appear rather small, it is
important to note that is is achieved with practically no
computational overhead, neither during language model
training nor during decoding.

5.2. Dialog Act Classification

Although mostly used for speech recognition, n-gram
models can be used for a wide range of tasks. One in-
teresting application is the classification of dialog acts
based on the recognizer output [9]. This allows for “flat
analysis” of the user utterances, which is useful for keep-
ing track of the dialog even when the linguistic analysis
fails [1]. The idea is to segment user utterances into di-
alog acts using prosodic information. The corresponding
parts of the recognized word sequence are then classi-
fied according to a ML-decision using different n-gram
models for a predefined set of dialog acts. We performed
experiments on a manually segmented and transcribed
subset of the VERBMOBIL corpus. We used a set of 18
dialog act classes; the test set consisted of a total of 521
dialog acts. Using linearly interpolated polygram models,
we achieved the lowest error rate of 36.4% with a poly-
gram order of n = 4. A rationally interpolated polygram
of order n = 6 augmented with time warped bigrams
produced an error rate of 34.2%. This is an error rate
reduction of 6%. The larger improvement compared to
the word recognition experiments is due to the fact that
dialog act classification is performed only based on lan-
guage model information, while word recognition is based
on language model information and acoustic information.

5.3. Language Identification

Another application for n-gram models we are investi-
gating is language identification. As we cannot always
assume to have a word recognizer or a phone recognizer
for all languages of interest, we use a vector quantizer
to assign one of 96 labels to each time frame of 30ms.
The sequence of frames is then classified according to a
ML-decision using n-gram models for each language [12].
For these experiments we used a set of 13 languages and
speech signals of rather poor quality. The signals in the
test sample are cut into fragments of only 2 seconds.
On these fragments, we achieved a recognition rate of
37.3% using linearly interpolated polygram models of or-
der n = 3; rationally interpolated polygram models aug-
mented with time warped bigrams and n = 3 produced
a recognition rate of 37.9%. This rather poor improve-
ment is due to the fact that the language identification is
mostly based on counts of specific symbols; the sequence
of symbols contributes much less to the discrimination of
different languages. This is confirmed by a recognition
rate of 29% that can be achieved with n = 1 (unigram)
models. Besides, the training data consist of a compara-
tively large amount of almost 500000 labeled time frames
with only 96 different labels, which makes interpolation
less important than with sparse training data.

6. CONCLUSION

In our paper, we addressed the problem of estimating
stochastic language models based on n-gram statistics.
We presented a novel approach, rational interpolation, for
the combination of a competing set of conditional n-gram
word probability predictors, which consistently outper-
forms the traditional linear interpolation scheme. The su-
periority of rational interpolation is substantiated by ex-
perimental results from language modeling (10-12% per-
plexity reduction), speech recognition (2.4% decrease in
word error rate), dialog act classification (6% decrease),
and language identification (1.6% improvement).

The training algorithm and the probability calcula-
tions of rational interpolation produce only neglectable

additional cost in storage and computation when com-
pared with the linear scheme. Moreover, there is
good reason to suppose that our approach constitutes
a promising alternative to the EM-based deleted inter-
polation algorithm for the tasks of smoothing stochas-
tic decision trees and of interpolating context-dependent
phone HMMs in speech recognizers.
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