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Introduction

Following the most common architecture of spoken dialog systems as shown in
Figure 1, the main task of linguistic processing is to yield a semantic represen-
tation of what the user said.
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Figure 1. Typical dialog system architecture.

These semantic representations are interpreted by the dialog module accord-

ing to the dialog context and the system answer will be generated accordingly.
The system utterance depends on whether the system still needs certain infor-
mation or if all necessary information has been given to accomplish its task.
In order to know, when all required information has been provided, the dialog
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module needs to keep track of the relevant semantic concepts uttered by the
user. Relevance of semantic concepts is predefined according to the respective,
most often closely restricted domain.

Linguistic processing in a dialog system has to cope with the problem of
unrestricted (spoken) text, that most often is ungrammatical e.g. contains hesi-
tations, repetitions, ellipses or corrections. However, to yield a successful dialog
in a restricted domain only the semantically relevant parts of user utterances are
important, e.g. only those concepts, that can/must be interpreted by the dialog
manager. Therefore, it seems to be legal to restrict linguistic analysis to the se-
mantically relevant parts and to skip over the rest. Figure 2 shows an example
for the attachment of concepts to the appropriate parts of an utterance.

Hello, I’d like to go|to Munich|tomorrow.
goal date

Figure 2. Relevant concepts in an utterance.

For example, in the case of a train timetable information system, values
for the semantic slots time, goal, source, and date have to be filled in order to
perform the database query. We therefore suggest that linguistic analysis should
be restricted to these concepts, resulting in several grammar fragments that
cover the concepts’ syntactic surface forms. As a result, the system’s linguistic
database (grammar) will be much smaller and more modular, allowing for easy
maintenance and reuse in other domains. Since parts of the utterances can be
neglected during parsing, the processing time is expected to be much shorter than
for a full covering grammar. The partial concept grammars can be developed by
using corpora of examples of surface structures for the respective concept. In
section 2 we will describe the used grammar formalism and first experiments.

1.1 Introduction of Statistics and Prosody

When restricting the linguistic analysis to few surface forms or semantic con-
cepts, still one question remains to be answered: which concepts does one have
to look for in a given utterance, e.g. which grammar fragment does the parser
have to use for each turn? Most often the expected concepts can be predicted by
the dialog system due to the last system utterance. For example if the system
asked At what time do you want to leave? the answer is expected to contain
a time expression. However, the user not necessarily answers with specifying a
time of departure. He also may correct misunderstandings of information given
before or provide additional information like where he wants to leave from, as
the following examples show:

system: How may I help you?

user: I want to go to Trier.
system: When do you want to leave
to Kiel?

user: I want to go to Trier.



system: How may I help you?

user: I want to go to Munich
system: When do you want to leave?
user: Tomorrow at six from Berlin.

In such cases, a device seems to be useful, that is able to tell the parser which
concepts it has to look for in a given utterance. In order to provide this kind of
information we use statistical methods that take the recognizer output as input
and compute the probabilities of each concept to occur in that utterance. This
kind of predictor is described in section 3.

However, even if the parser knows, which concepts it has to look for, i.e. which
grammar fragment to apply, when dealing with word hypotheses graphs it may
find several competing concept tokens. In order to increase the probability of
detecting the correct user utterance, word hypotheses graphs may contain more
than one path, each of them representing one potential user utterance. The
parser, e.g. when looking for time expressions, has to search the complete graph
to get all alternatives, and must decide which of them to choose as the correct (i.e.
the one that was actually uttered) to be passed on to the dialog module. Usually,
the choice among competing alternatives is driven by the usage of acoustic scores
as delivered by the word recognizer. However, in order to be able to detect the
correct (partial) path through the graph as quickly as possible, analysis should be
started at the correct alternative already. To make this possible, we use prosodic
information that provides plausibility scores, which are merged with the acoustic
scores, thus improving scoring of the hypotheses. Computation of prosodic scores
is described in section 4.

The resulting system, integrating partial parsing, statistic concept prediction
and prosody, is expected to work very efficiently on either word strings or lattices
and can replace the full linguistic analysis as used in our system so far.

2 The Chunky Parser

The parser’s task is to locate and semantically analyze those parts of a user
utterance that have to be interpreted by the dialog module. In this sense, it
behaves like a chunk parser, whose aim is to find all the chunks in a given
sentence without necessarily attaching them to a complete analysis. The main
differences between a chunk parser and our chunky parser is the fact, that in our
case just the relevant parts are located by ignoring the rest of the sentence and
that the chunks we look for are motivated semantically only.

The parser of the system’s linguistic processor is an unification based island
driven chart parser, that can handle either word strings or word hypotheses
graphs. In case of word graphs, the island parsing strategy is applied by start-
ing the analysis at several points in the graph, trying to expand these islands
successively to the left and to the right. In either way, the parser may start at
an arbitrary point in the recognizer output and expand the analysis in both di-
rections. For the detection and analysis of semantic chunks, the possible surface



forms are described by a grammar fragment per semantic concept. The linguis-
tic knowledge base therefore does not contain one full grammar, but several
grammar modules, that may be grouped individually together if the application
changes.

The grammars for the chunky parsers are developed in terms of a context-
free phrase structure grammar that comprises lexica and bundles of context-free
grammar rules. Each linguistic sign (lexical entries as well as complex expres-
sions) is described through a complex feature structure, whose main features
cover morphologic, syntactic, and semantic information. As the aim of linguistic
processing in a dialog system is to yield a semantic representation of user utter-
ances, most emphasis lies on its semantic representation in the feature structure.
Semantic representation is done on the basis of a semantic inheritance network
in which world knowledge can be modeled. Each word or expression is given a
semantic type, that can be further specified by so-called roles. By this way, also
syntactic dependencies can be mirrored in the network, e.g. the dependencies
between verbs and their object. As an example the semantic representation of
the sentence I want to go to Munich. is given in figure 3.

[type : go
type : location
thegoal : thecity : type : city '
value : munich
type : individual
thetheme : | thediscourserole :
[val : speaker]

Figure 3. Full semantic representation.

However, the chunky parser only searches for and analyses semantically rele-
vant parts of an utterance, e.g. the part to Munich as realization of the concept
goal, the resulting representation of I want to go to Munich looks like the one
given in figure 4.

type : location

.| type : city -|
thecity : [mlue : munich

Figure 4. Partial semantic representation.

2.1 Adding Statistics and Prosody

Without any additional knowledge, the parser does not know which concepts
it should look for in an utterance, i.e. which grammar to apply on the input.
As a result, it will try each grammar fragment of the knowledge base, which
would almost be the same as to parse with a full grammar. We therefore use
a statistically trained predictor (see section 3), that provides the parser with
information on which kind of concept it has to look for in the utterance. The



parser then only activates the relevant grammars and fails in case none of them
can be applied to the utterance, i.e. none of the predicted concepts can be found.

In order to guide the search for chunks by the parser, prosodic information
(see section 4) is merged into the acoustic scores delivered by the recognizer.
Prosodic scoring results in better scores for words that belong to one of the rele-
vant concepts that are included in the utterance. Thus, the parser will start with
the best scored word, trying to extend it to the left and to the right according to
the chosen grammar fragment. This strategy is expected to render the parsing
process more efficiently.

2.2 Experiments

The first grammar fragment we developed for the chunky parser covers time
expressions, i.e. the semantic concepts date and time that we merged for the first
prototype. Typical time expressions that occur in a train timetable information
system are hours (e.g. at nine o’clock), dates (e.g. on the first of July), weekdays
(e.g- on Monday), or relative dates (e.g. tomorrow).

Grammar fragments are developed by collecting sample data (e.g. by WOZ
experiments) and choosing some representative examples from it. Based on this,
a first grammar version is defined and tested and extended successively.

First experiments were run on a corpus of utterances that were collected
while our system was available over the public telephone network. A set of 119
utterances was chosen from the corpus covering only time expressions. These
utterances contain 389 words which yield 2618 word hypotheses in the resulting
graphs. Semantic accuracy was measured using the metric of semantic concept
accuracy (CA) following [1]. For comparison we also parsed these utterances
with the full grammar (unification categorial grammar) for train timetable in-
formation used so far in the system. We intend to completely replace the UCG
by grammar fragments in the near future. Experiments were run on the word
hypotheses graphs as well as on the transcriptions of the user utterances (thus
simulating 100 % word recognition). Table 1 shows the resulting figures; results
on the transcriptions are marked with script, results on word graphs are marked
with graph.

# of utterances 119
# of hypotheses 2618

Full Grammar|Fragment
time script 9.2s 4.6 s
CA script 98 % % 89 %
time graph 67.5 s 18.0 s
CA graph 59 % 68 %

Table 1. First experiments with a Grammar Fragment.



The resulting figures for CA on transcriptions show, that the semantic cov-
erage of the full grammar is very good, whereas the time grammar does not yet
achieve the same coverage. CA on the word graphs decreases for the full gram-
mar more than for the fragment. Also the processing time is much higher for
the full grammar especially for word graphs. The reason for these observations
lies in the fact that the chunky parser using a grammar fragment just searches
the hypotheses graph for paths belonging to the expected semantic concept. The
full grammar, on the other hand, has to search the full graph to find a complete
path through it, which also increases the possibility of following the wrong path
resulting in a loss in CA.

3 The Semantic Concept Predictor

We examine a statistical approach using n-gram language models as semantic
concept predictor. The model has to decide about the occurrence of special se-
mantic concepts in word chains. We prove its usability on a corpus collected with
the above mentioned information retrieval system containing the 119 utterances
for the grammar development. The predictor should be able to decide whether
there appears a time expression in an utterance or not. The method then can
be extended to other semantic concepts like goal, source, and date.

3.1 Language Model Predictor

The language model we use computes estimations for the occurrence of a word
w; under the assumption of its predecessor words w;_1,...,Ww;—n4+1 as the linear
interpolation of the n-gram and all smaller n-grams to smooth the probabilities.
Denoting the number of words in the lexicon by L, the factor % describes the
so called zerogram. The interpolation weights p; are used as weighting factors
for the linear interpolation and they are estimated automatically with a cross
validation technique [3]. The probability p(w) for a word chain w ... wy, is given
by the following equation:

=2

m k
p(w) =[] (Po : % +p1-p(w) + Y pi - pws |wk—z’+1---'wk—1)> (1)
k=1

If we now want to use n-gram language models as a semantic concept predic-
tor we have to claim for a word chain w whether the concept we are looking for
is expressed in w or not. For this purpose we build two different language mod-
els. The first one is trained with word chains expressing the semantic concept
and the second one with the utterances not giving this special concept. During
analysis we compute the two scores for the incoming word chain — when using
word graphs we choose the best word chain in the graph — and we decide for the
higher probability.

A more detailed analysis is possible when we split the training data into three
different sets, which are used to train language models. The first set comprises



all word chains where the semantic concept does not appear, the second one all
utterances where only the concept is expressed and no other semantically relevant
information is present and the third set all word chains where the interesting
semantic concept appears along with additional information. The decision rule
again decides for the highest probability of the three scores. If we combine the
second and the third part we have a probability estimation for the same partition
as above.

3.2 Experiments

In the experiments we show that the n-gram language models are able to be
used as predictors for semantic concepts. For training and test purposes we use
10114 sentences collected with the above mentioned system. Here we concentrate
on the detection of time expressions in the examined word chains. Therefore we
mark, based on the transliteration of the utterance, each of the 10114 sentences
whether there is the semantic concept time or not (NO), and if it is there we
mark whether there appears only this time expression (ONLY) or even more task
relevant information (PLUS).

The available data is split 2/3 to 1/3 for training and test purposes. The
number of sentences for each class is presented in Table 2. Since a word sequence
from the test set might have been used by a different speaker from the training set
(i-e. if the system asks where do you want to leave from different users answered
with the same city name expression), the column ’test # train’ gives the number
of sentences from the column ’test’ that were not observed during training.

test # train
train| test|spoken|recog.
ONLY| 92| 45 16 17
PLUS| 1070| 535 313| 375
NO || 5582|2790 874| 1227

Table 2. Number of word chains for training and testing

We train 5-grams for the three different classes and use linear interpolation of
the scores for different length of the history. The 'Semantic Concept Predictor’
results we obtain are reported in Table 3.

We see that our language model approach to the prediction task performs
quite well and could therefore be used as a predictor for the semantic concept
analysis. For the two class problem, where we only want to decide whether a
time expression occurs or not we obtain a recall of 97.6% and a precision of
54.9% for the spoken word chain and 72.4% recall and 49.0% precision for the
recognized.



spoken word chain |recognized word chain

ONLY|PLUS| NO| RR ||ONLY|PLUS| NO| RR
ONLY| 91.1| 8.9| 0.0 71.1| 11.1{17.8
PLUS 8.8| 88.8| 2.4/85.3 6.0| 65.6| 28.4|81.1
NO 7.2| 8.2/84.6 6.9] 8.8/84.3

Table 3. Detection rates with the spoken (left) and recognized (right) word chain

at
<Breathing> well | would one date suggest eighteenth June

<Atmung> also ich w"urde einen Termin vorschlagen achtzehnten Juni
A

Figure 5. A German sentence from VERBMOBIL-database with probability
P(A | w) for each word w and the two estimated focused regions with word
to word translation.

4 Prosodic Scoring

The use of prosodic information for spoken dialog systems becomes more and
more important. In the VERBMOBIL-project [2] prosodic information was suc-
cessfully used in a speech understanding systems for the first time.

Using a neuronal network (NN) with different sets of prosodic features like
pitch-contour, energy-contour and duration of words, syllables and syllables nu-
cleus, phrase boundaries, sentence mood and phrase accent are determined [6].

We want to use this prosodic information to determine the focused regions
in a phrase. These regions are the parts of a sentence, which hold the most
important content words e.g. time expressions and locations. To get information
for the focused regions, we use a NN trained on a part of the VERBMOBIL-
database with a topology of 276 nodes in the input-layer (one node for each
used prosodic feature), a hidden-layer with 60 nodes and an output-layer with
2 nodes (a word is accentuated A or not —A). Using the scores Score(A | w)
and Score(—A | w) from the output-nodes of the NN for each word w we can
estimate the probability P(A | w) by using the simple formula

Score(A | w)

P(A[w) = Score(A | w) + Score(—A | w)’

Now we are able to estimate the probability P(A | w) for each word of an
utterance and can decide for a focused region by using a threshold. In Figure 5
an example is given for a German utterance.



If we are now able to estimate the stressed regions in a given utterance there
are two possible ways to use this knowledge in combination with our parser:

1. we rank the regions by their prosodic scores and offer the ranking list to the
parser, which has to find the best expression for the given context

2. we get a list of possible expressions from the parser and disambiguate them
using the prosodic score from the NN

Both ways can efficiently be used to find the best expression the parser is
searching for in the context the concept predictor has estimated. The first way
may be the better one if we are working on word hypotheses graphs, because
the parser only has to search in the best scored paths and the search effort may
be smaller.

4.1 Experiments

In this section we present results we achieved for determining stressed words
for different dialog acts (see [5]) in the VERBMOBIL-database using the above
described NN. In VERBMOBIL there are 42 illucotionary dialog acts defined which
can be grouped into 18 classes. For these 18 dialog act classes, which are used
for template based translation, we estimated the most frequent stressed words
of a subset of the VERBMOBIL-database using the above described method. For
this approach we only ranked those words, whose stress probability exceeds a
threshold of 0.8 and were seen stressed in more than 80% of their occurrences.
In Table 4 one can see the ten most often seen automatically estimated stressed
words for all dialog act classes together. Table 5 shows the five most often seen
detected stressed words for the most frequent dialog act classes SUGGEST and
ACCEPT. In both tables the words are ranked by their frequency of occurrence
in the observed data set.

P(A|w)>0.8
Rank|% stressed word (translation)
1 88.57|Freitag (Friday)
2 82.69|Wiederhoren (bye)
3 84.31|Donnerstag (Thursday)
4 90.91|Samstag (Saturday)
5 95.35|neunzehnten (19th)
6 81.82|August (August)
7
8
9
0

96.15|vierundzwanzig. (24th)
87.50|achten (8th)

86.96| wunderbar (marvellous)
100.00|sechsundzwanzig. (26th)

1

Table 4. Automatically determined stressed words for all dialog acts.



| | ACCEPT I SUGGEST |

P(A|w)>0.8 P(A|w)>0.8
Rank|% stressed|word (translation) % stressed word (translation)
1 100.00|einverstanden (ok) 82.22|Montag (Monday)
2 100.00|Ordnung (alright) 87.80|Freitag (Friday)
3 100.00| wunderbar (marvellous) 83.33|Donnerstag (Thursday)
4 85.71|Freitag (Friday) 82.76|Mittwoch (Wednesday)
5 85.71|frei (free) 93.10|{Samstag (Saturday)

Table 5. Automatically determined stressed words for dialog act ACCEPT and SUG-
GEST.

The results from tables 4 and 5 show, that we are able to detect the content
words of an utterance if we determine the stressed words. This fact is very
important for the use of this method to estimate the focused regions by only
using acoustic features to decide for semantically important information.

5 Conclusion and Further Work

In our paper we presented a concept for partial semantic parsing in a spoken
dialog system. Syntactic analysis is restricted to those parts of user utterances
that contain semantic concepts necessary for understanding. The parser acts like
a chunk parser in that it looks for subparts in the input string. In our approach,
these subparts correspond to semantic concepts and are not necessarily adjacent
to each other, i.e. parts of the sentence may stay unreviewed. Syntactic analysis
is guided by grammar fragments that are activated by a semantic concept pre-
dictor that can tell which concepts occur in a given utterance. This information
is supported by prosodic scores that assign higher probability to words that be-
long to predicted concepts. Each of the subparts has been tested in preliminary
experiments that show encouraging results.

Next we plan to extend the number of grammar fragments and to integrate
the system in order to verify our assumptions on accuracy and efficiency.
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