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Abstract Tracking the 2D contour of a moving object has widely been used in
the past years. So called active contour models have been proven to be a promising
approach to real–time tracking of deformable objects. Also tracking 2D contours,
which are projections of rigid 3D objects, is reduced to tracking deformable 2D
contours. There, the deformations of the contour are caused by the movement in
3D and the changing perspective to the camera.
In this paper a combination of 2D and 3D shape descriptions is presented, which
can be applied to the prediction of changes in 2D contours, which are caused by
movement in 3D. Only coarse 3D knowledge is provided, which is automatically
acquired in a training step. Then, the reconstructed 3D model of the object is
used to predict the shape of the 2D contour. Thus, limitations of the contour point
search in the image is possible, which reduces the errors in the contour extraction
caused by heterogenous background.
The experimental part shows, that the proposed combination of 2D and 3D shape
descriptions is efficient and accurate with respect to real–time contour extraction
and tracking.

1 Introduction

In the past years a new framework has been established for representing a deformable
object by its contour. Active contours [11] and related models have been developed and
have been widely used in computer vision, for example for medical imaging, vision
aided speech recognition (lip reading), segmentation and tracking [3, 14, 16].

Although active contour models have been used for tracking moving objects, it is
an open question how changes in the contour during tracking can be predicted. Using
the data driven approach of active contours usually no a priori knowledge of the object
is available. Only a few mechanisms have been included providing the possibility for
predicting the deformation of the object’s contour. For this, most researchers concentrate
on the prediction of 2D changes without taking into account the motion of the object
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in 3D. [19] presents a Kalman–Snake combining the principles of active contours and
prediction by a Kalman–Filter. In [1] the motion of the contour in the 2D image plane
is predicted by computing the normal flow at the contour points. In the case of tracking
rigid or elastic objects moving in a 2D plane parallel to the image plane some work
have been presented which learn the possible deformations of the object and limit the
contour point search on certain areas in the image [4, 12].

In the following, we focus on tracking the contours of rigid objects moving in 3D.
Then, the deformation of the contour depends on the 3D shape of the object and is
caused by the changing view to the camera. Without any prediction, problems arise,
when the object moves in front of a heterogeneous background. Strong background
edges often define local minima during the contour extraction process. As a result, the
active contour is caught by the background and the moving object is lost.

One straightforward approach to handle these problems is to predict the motion of
the contour in the 2D image plane. This works very well (see [19]) in the case of tracking
a single patch of the object or tracking an object, whose visible patches do not change.
In contrary, if the visible parts of the object change, new object edges appear near the
object itself (see Figure 1, (a)). Without any coarse knowledge about the 3D shape of
the object these new edges cannot be distinguished from appearing background edges
which have been covered before by the object (Figure 1, (b)).

previous contour part

actual contour part

rotation axis

translation

contour part or background ?background object

(a) (b)

Figure1. Problem of predicting new contour parts: how can an active contour distinguish between
a new contour part and an appearing background edge? (a) rotation of object. (b) translation and
appearing background object.

How can we get a solution for this problem? On the one hand we do not like to give
up the data driven approach allowing a very fast and efficient tracking of moving objects
even in real–time [5]. On the other hand, one needs to introduce knowledge about the
moving object to increase robustness during tracking. Using knowledge can be a time
consuming task which might prevent the use in real–time applications.

In our contribution we concentrate on this trade–off. We present an efficient com-
bination of a 2D data driven contour extraction method and a 3D shape modelling



technique. For 2D modelling of the contour as well as for 3D shape modelling a radial
representation is used. Both representations can easily be mapped on each other, i.e.
having several 2D views of the object the 3D representation can be built; having the 3D
representation the corresponding 2D contour can be predicted. And with a 3D represen-
tation and a single 2D contour corresponding to a unique view of the object the position
of the object in 3D can roughly be estimated. For both the 2D and 3D case, it is possible
to dynamically adjust the accuracy of the representation to the available computation
time. This is an important feature for real–time applications. Thus, possible applications
for our method exist in the field of autonomous mobile systems, where in different
situations different objects need to be tracked: from unknown objects (obstacles) which
need to be identified quickly and tracked without knowledge up to known objects in
visual grasping tasks, where more time can be spent. Finally, the 3D contour prediction
method itself can also be integrated in arbitrary contour tracking algorithms.

In contrast to model based tracking algorithms [9, 10], we are not interested in an
accurate 3D representation of the object. Active contours need only a coarse initialization
near the contour which should be extracted. In our approach, the model of the object
can also be constructed very quickly by presenting a sufficient number of 2D views and
applying shape from contour methods. Finally, the experimental part will prove, that the
2D contour extraction, the 3D model construction as well as the prediction can be done
in real–time on general purpose hardware.

The paper is structured as follows. In Section 2 we shortly summarize the principles
of 2D contour extraction by active rays. Section 3 discusses the basic concepts of shape
from contour which is the key idea for our automatic shape reconstruction step. We focus
on a radial representation of the object’s shape by rays in Section 4, and show how the
accuracy of the shape description can be adjusted dynamically. In Section 5 the basic
concepts of shape from contour, the 2D contour representation, and 3D shape models
are merged together to automatically reconstruct a 3D model by single 2D views. We
also show, how the resulting coarse 3D model can be used to predict the changes in
the 2D contour. In Section 6, experiments show the improvement for tracking objects
moving in 3D. The paper finishes with a discussion in Section 7.

2 A Radial Representation for Contour Extraction

In this section a new approach will be shortly summarized for 2D contour extraction. A
detailed description can be found in [6]. Instead of modelling the elastic contour by a
parametric function in the 2D image plane [11], a different strategy has been developed.

An initial reference point m � �xm� ym�T inside the contour, which should be
extracted, has to be chosen. This is similar to a balloon model [3], where the initial
balloon also needs to be inside the contour of the object. In the next step the 2D image
f�x� y� is sampled along straight lines — so called rays —

�m��� �� � f�xm � � cos���� ym � � sin����� (1)

from the reference point in certain directions. As a result for each ray we get 1D gray
value signals which depend on the chosen reference point m. Usually, for � the range
from �0� 2�� is sampled more or less dense, depending on the necessary accuracy of



the extracted contour. For real–time applications, this can be controlled by the available
computation time.
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Figure2. Representation of a contour point by active rays

Now, for contour extraction the rays �m��� �� are taken. For each 1D gray value
signal, features are computed to identify the position����� � 0 of the object’s boundary
on the ray. One possible criterion, which we call external energy, is the gradient
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of the 1D gray value signal to identify contours by changes in the gray values. Also,
more sophisticated energies have been used, for example changes in the variance of the
gray values to extract textured regions.

Based on these features for direction � the position ����� is identified, which
corresponds to the object boundary

cm��� � �xm � ����� cos���� ym � ����� sin����� (3)

in the 2D image plane, with 0 � � � 2�	 This works well for convex contours,
because then each ray only hits the object contour once. Depending on the position
of the reference point, this is also true for some concave contours. In the general case
of concave contours, a mechanism has been provided, which allows more than one
contour point on each 1D gray value signal. This case will not be discussed in this
paper. A detailed description can be found [6]. In contrast to [18], where also a radial
representation is proposed, but no energy description for the contour extraction, we
force — similar to active contours — the smoothness of the 2D contour cm��� � IR2

by defining an internal energy Ei
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The internal energy is based on the distance of the contour point to the reference point.
Since the derivative of the distance d

d�
���� and the curvature d2

d�2���� describe the
smoothness of the contour, this energy forces coherence of the contour in the image
plane. Now, the contour extraction, i.e. searching for the function����� can be described
as a minimization of the total energy E
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This algorithm has been successfully applied to real–time pedestrian tracking in natural
scenes [8]. More details of the mathematical derivation can be found in [6]. In this
paper we focus on the combination with a 3D prediction step. In the next two sections
we summarize the mathematical preliminaries for 3D object modelling and shape from
contour. In Section 5 we will show, that in a combination with a similar 3D representation
the 2D radial representation has advantages. It is beyond the scope of this paper to make
comparisons to other contour based tracking algorithms, especially active contours.
Such a discussion can be found elsewhere.

3 Concept of 3D Reconstruction from 2D Contours

We are interested in tracking rigid objects moving in 3D. We focus on contour based
methods (see Section 2). Thus, we need to describe formally, how 2D contours of 3D
objects are generated. An important term in this context is the silhouette of an object.
Since the next section describes how to build an object description out of segmented
silhouettes, it is also important to define two further concepts, the visual and outer hull,
which give approximations of 3D objects.

Let the object O be represented by a set of points x � IR3. The points xM � O
are constant within the model coordinate system. In the following we assume, that the
transformation of a point in model coordinates xM to camera coordinates xC is given
by the relation xC � RMCxM � tMC	 In the case of model reconstruction, the rotation
matrix RMC and the translation vector tMC are assumed to be known, either by defining
the viewing angle in a training stage or by estimating the pose of the object from 2D
images.

3.1 Object Silhouettes

A descriptive illustration of an object silhouette is the shadow of an object produced on
a plane by a single light spot. Following [13], a definition of a silhouette might be:

The word silhouette indicates the region of a 2D image of an objectO which
contains the projections of the visible points of O.

The projection of object points to image points can be described by many different
models. Generally, the projection function is denoted by P : IR3 � IR2. Here we
only consider the cases of orthogonal and perspective projection, but other projections



are adaptable to the later concepts without big efforts. The backprojection function
P�1 : IR2 � IR3, concerning a specified projection P , is defined by

P�1 :� xP � fxC � IR3 j P�xC� � xPg	 (6)

This mapping of image points xP to points in xC camera coordinates is not unique,
because of P not being injective.

Using these definitions, the silhouette of an object O in the pose �RMC� tMC� created
by projection P is formally denoted by

SRMC� tMC
� fP�RMCxM � tMC� j xM � Og	 (7)

It is assumed, that the silhoutte has no “hole”, therefore it can be represented by its
contour. As we know the contour of an object by tracking it using active rays, we have
a representation of the object silhouette at any time of the trace.

3.2 Outer and Visual Hull

(a) (b) (c)

Figure3. Building two silhouettes of an object (a), the outer hull of these silhouettes (b) and the
visual hull (c)

Now we examine the problem of reconstructing an object out of its silhouettes. Given
n sequentially recorded silhouettes tSRMC�t�� tMC�t�� 1 � t � n, we define the abbreviation
S�t� � tSRMC�t�� tMC�t�. The backprojection CM�t� of the Silhouette S�t� is given by the
union of the backprojections of all points xP � S�t�. Written in model coordinates, we
can calculate

CM�t� � RT
MC�t� � �P

�1�S�t��� tMC�t��� (8)

where an operation � between a set B and an element b is defined as the set of results
of the operation between this vector and each element of B: B � b :� fx � b j x � Bg.

Using equation 8, the concept of the outer hull AM is defined in [17] as follows:

AM :�
t2�

t�t1

CM�t� (9)

Figure 3 shows an example, comparing the principles of the outer and visual hull.
Reconstructing objects by building the outer hull, is known in the literature as so called
volume intersection algorithms or as shape from contour techniques. In [13] an overview
therefore is given. Figure 4 illustrates this concept. The outer hull is built out of two



(a) (b)

Figure4. Illustration of building the outer hull of two given rectangular silhouettes by intersecting
their backprojections. (a): intersection, (b): outer hull

Algorithm to calculate the outer hull of silhouettes
Parameters: S�t�� RMC�t�� tMC�t�� 1 � t � n

Initialization: 0AM :� IR3

FOR all t with 1 � t � n

Transformation into camera coordinates:
t�1AC :� RMC�t� �

t�1AM � tMC�t�

Intersection with backprojection of silhouette:
tAC :� t�1AC � P

�1�S�t��

Transformation into model coordinates:
tAM :� RT

MC�t��
tAC � tMC�t��

Return: outer hull nAM

Figure5. Algorithm for the iterative calculation of the outer hull

rectangular silhouettes. In the case of central perspective projection, the backprojections
of rectangles are pyramids with infinite height. These pyramids are intersected, to build
the outer hull.

Joining all possible backprojections of an object, an upper limit for the outer hull
is given by the concept called visual hull H�O� of an Object O. It can be described in
correspondence to [13] as the unity of all points, whose backprojection of any projection
intersects the objectO. The following relation holds:O 	 H�O� 	 AM. We now use the
outer hull AM as an approximation of the true object O. As already mentioned, we can
do this, because in the context of active contours, a coarse initialization of the contour
around the true contour is sufficient.

The associative property of the uniting operation allows the construction of the outer
hull as it is described in Figure 5. This algorithm has to be applied to the special 3D
representation, which is used to model the point set, building the outer hull.



4 3D Radial Object Representation

The idea of representing contours with 2D rays is now extended to the third dimension.

(a) (b)

Figure6. Definition of ray directions as normal vectors on the boundary plains of regular polyhe-
drons; (a) icosahedron, (b) icosahedron with normal vectors

To avoid confusions, following notations are used to distinguish between the 2D and
3D case: the accent ˜ denotes, that the corresponding symbol belongs to 3D rays, the
accent ˆ, that it belongs to the projection of a 3D ray, and without accent, that it belongs
to a 2D ray. The 3D ray representation K̃ can then be written as a tuple:

K̃ :� �W̃ � m̃� �̃ : W̃ � IR 
��	 (10)

W̃ is the set of direction vectors n of the predefined 3D rays with knk � 1. The vector
m̃ � IR3 denotes the reference point and the function �̃ returns the length of the ray in
direction n. The value � means, that this ray length is undefined, yet.

Each ray represents a single point on the surface of the object. If we define the
representation continuously, i.e. W̃ � fx � IR3 j kxk � 1g, the represented point set
is equal to fx � IR3 j x � m̃� kn� 0 � k � �̃�n��n � W̃g.

In the discrete case, the choice of the directions W̃ should be distributed regularly.
Moreover the resolution should be changeable dynamically to achieve any-time behavior.
If we define the regularity in the sense that neighboring directions shall enclose all the
same angle, we are restricted to 20 directions, defined by the normal vectors of the
icosahedron, being the regular polyhedron with the most plains (see Figure 6). This is
equal to take the 20 corners of the dodecahedron, being the regular polyhedron with the
most corners.

In [2] a method is described, to subdivide an icosahedron, so that the error in the
regularity is minimized. Taking the 20 normals and the 12 corners of the icosahedron,
60 triangular plains can be defined.

This approximation can be refined by subdividing the triangles into subtriangles,
defining three new points bisecting the three sides.

Using this representation, all convex and some concave objects can be described.
Like in the 2D case concave objects exist, which cannot be represented. Also holes
in the objects can better be approximated using different representations (for example
octrees); since we are only interested in the contour and a efficient mapping from 3D to
2D rays and vice versa, this is not relevant for our approach.



5 Application to Contour Based Object Tracking

We have seen, how to build the outer hull of an object from its silhouettes (Section 3).
Besides we have designed a 3D representation by 3D rays, similar to the 2D ray
representation (Section 4). Using these concepts, it is shown how to create the 3D
object model (Section 5.1) and to extract its contour in a given pose (Section 5.2).
Section 5.3 describes how to use this model to predict contours during tracking objects.

5.1 3D Model Generation

Now we apply the algorithm described in Figure 5 to the 3D representation developed
in Section 4. After each iteration step, the 3D ray model shall represent the outer hull,
which is generated by intersecting the backprojections of the extracted silhouettes.

The goal is to represent the outer hull AM by the 3D ray representation K̃M �
�WM� 03� �̃M�. The reference point is set to 03 without any loss of generality.

According to Figure 5, 0AM has to be set to IR3 at the beginning. This is done in 0K̃M

by assigning 0�̃M�nM� ��. In a second step, the set tAM — using model coordinates
— has to be transformed to camera coordinates. This is done by transforming K̃M to K̃C

following:

tK̃C � �WC� m̃C� �̃C�� with (11)

W̃C � RMC�t� � W̃M�

m̃C � tMC�t��

�̃C�nC� � �̃M�nM� where nC � RMC � nM	

tK̃C therefore represents the set tAC.
Now, tK̃C has to be intersected with the backprojection of the Silhouette S�t�,

represented by the active contour tK. It is mathematically clear, that for an object O, a
silhouette S and an arbitrary point p � IR3, the relation P�p� �� P�H�O���� P�O� �
S� � p �� H�O� holds. Besides we know P�p� � S  p � P�1�S�. We see, that all
points p with P�p� �� S have to be removed. Applying this to the ray representation,
only those rays are affected, whose projections are not totally contained in the silhouette.
These rays have to be cut, so that the ends of their projections lie on the border of the
silhouette. Figure 7 shows this operation and the notations used here.

Let us describe this cutting step formally, by first calculating the 2D projection
of each of the 3D rays. The starting point of each ray, i.e the reference point m̃C, is
projected to P�m̃C�. For each 3D direction nC � W̃C the corresponding angle ��nC�
and the length �̂���nC�� can be determined by applying the projection function P .

These projected rays have to be intersected with the extracted contour tK. Therefore,
we overlay tK with the projected rays. This is done by setting the reference point
m :� P�m̃C�, being possible, because m can be chosen arbitrarily.

According to the preliminaries, a unique intercept point of the backprojection of the

contour point c���nC�� � m� ����nC��

	
cos���nC��
sin���nC��



with the ray in direction nC

exists. The intersection of a 3D ray with the backprojection of the silhouette S therefore
is done by setting the ray length �̃C�nC� to �nC�, if the former ray length was larger.
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m̃� ��nC�nC

m̃C
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c���nC��

m � P�m̃C�

Figure7. Illustration of the cutting algorithm

The value �nC� is defined by following relation: m̃C � �nC�nC � P�1�c���nC���.
For the case of parallel or perspective projection, �nC� can be determined easily:

�nC� �
�̃�nC�

�̂���nC��
� ����nC��. Formally, the intersection can be written as following:

�̃C�nC� :�

�
�̃C�nC� if �̂���nC�� � ����nC��

�nC� if �̂���nC�� � ����nC��
	 (12)

By applying this cutting step to every single ray, tK̃ represents the outer hull tAM,
afterwards.

5.2 Model Based 2D Contour Computation

In the following, the method is shortly summarized to create the silhouette of the 3D
ray model in a given pose �RMC� tMC�. The resulting silhouette shall be represented by
K � �m� ��. The reference pointm is set toP�m̃C�. It remains to determine the values
����.

In the continuous case, for each value �, a set ofB��� � W̃ of 3D rays can be found,
defined by following relation: nC � B  ��nC� � �, where the function � is defined
equal Section 5.1. For each direction nC also the length �̂���nC�� can be determined.
The value ���� is now given by the following equation:

���� � maxf�̂���nC�� jnC � B���g	 (13)

In the discrete case, the set B��� is given by the relation nC � B  � � �� �
��nC� � ����, where �� denotes the maximum 3D angle between two neighboring
3D rays. The value ���� is then defined equal to the continuous case.
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Figure8. Data flow between 2D and 3D ray representations. A set of extracted 2D contours is
used for 3D model generation. The model can then be used to predict a 2D contour for a given
pose of the object.

5.3 System Integration

Now the 2D and 3D ray representations are tied together for contour based object
tracking. In Figure 8 the connections between both representations and the system
integration is clarified. The important aspect for object tracking is the possibility, that
for each angle � we get an interval I��� � ��s���� �e����, which is used to limit the
contour point search in the 2D image plane (compare Section 2). Thus equation (5)
becomes

������argmin
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Having both, the 2D contour and the 3D model, a coarse 3D pose estimation is possible,
which is needed to perform a 3D motion estimation and prediction with a Kalman filter.
For this, we have to define a distance function dist�v�v��, which measures the similarity
of two 2D contoursv andv�. Then the 3D pose, defined byR�

MC and t�MC, can be estimated
by �

R�

MC� t
�

MC

T
� argmin

RMC� tMC

dist�v�v�� (15)

where v corresponds to the extracted 2D contour and v � is the 2D contour of the model
under the transformationRMC and tMC.



Figure9. Some images out of the sequence taken from [15] and one recorded by us, and recon-
structed coarse models.

6 Experimental Evaluation

We have conducted several experiments, concerning the 3D reconstruction, 2D predic-
tion and tracking. In Figure 9 some images of two sequences are shown with the models
reconstructed models. The first sequence totally consits of 36, the second of 9 images.
Several other objects (for example, see Figure 10, right) haven been reconstructed.
We have tested convex objects as well as concave objects. Although the reconstructed
3D shape of concave objects does not look quite well, the model is accurate enough
concerning the accuracy of the predicted 2D contour.

The computation time for model generation depending on the 2D and 3D ray resolu-
tion are summarized in Table 1. For the models in Figure 9 and 8 an amount of 960 3D
rays and 36 2D rays have been chosen, which means, that also model generation can be
done in real–time. This is important for an online model building during tracking in the
future. Another example for model generation can be seen in Figure 10 showing a toy
train, following an elliptic way. Although the real pose of the object was estimated very
roughly by deviding the whole rotation angle by the number of images and assuming a
vertical rotation axis, the reconstructed model nearly has the same side relations as the
original one: 1 : 1.45 : 1.95 (model) and 1 : 1.37 : 1.63 (original object).

In Figure 10 three predicted contours and the corresponding extracted contours for
the model from Figure 9 are shown, which proves the accuracy of contour prediction.
The computation time for 2D contour prediction can be seen in Table 1. The mean error
in the ray length is about 2% to 5% of the extracted ray length, varying in the different
views.

Finally, in Figure 11 a result for tracking a moving toy train is shown. The extracted
motion path is overlayed the image.

7 Discussion and Future Work

In this paper we have presented an efficient combination of a 2D contour representation
and a 3D modelling technique. The motivation of the work has been to provide a mecha-
nism for 2D contour prediction of rigid objects moving in 3D. This is an important aspect
for contour based tracking algorithms in the case of natural scenes with heterogeneous
background.
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Figure10. Left: comparison between predicted 2D contour (first row) and extracted 2D contour
(second row). The prediction is accurate enough to successfully limit the search space for 2D
rays. Right: one image out of a sequence following a toy train (top) and the reconstructed coarse
model (bottom).

model generation contour generation
number of 3D rays number of 3D rays

number of 2D rays 60 960 15360 60 960 15360

18 1 8 145 1 8 149
36 1 8 143 1 10 179

180 1 7 119 5 26 423
360 2 8 120 10 51 733

Table1. Computation time for processing one image during the process of model and contour
generation, depending on the 2D and 3D ray resolution (in msec. with an SGI Onyx R10000)

A short introduction to a radial representation of 2D contours and an energy descrip-
tion for data driven contour extraction has been followed by a similar representation of
3D objects. The 3D model of an object can be built from a set of different 2D contours.
Well known methods from shape from contour have been applied. The key idea has
been, to make use of the similar representations, namely a radial representation for the
2D as well as for the 3D case, to achieve real–time performance. This has been proven
in the experimental part.

It is worth noting, that we did not want to implement an accurate 3D model generation
algorithm. In the context of active contours, a coarse 2D contour initialization is sufficient
to extract the object’s contour in the following energy minimization step. Thus, the 3D
visual hull of the object is sufficient for modelling the contour changes during tracking.
At present, we are integrating this approach in our real–time object tracking system.
Preliminary results show, that the performance of the system can be increased for partial
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Figure11. Left: tracking result (3D path of the moving object overlayed the image) in the case of
partial occlusions. Right: resampling of a 2D contour with a different reference point.

occlusions of the moving object. Also, the 3D pose estimation over time can be used for
qualitative 3D motion estimation (for example, the object is moving toward the camera)
of the moving object, as it has been reported in [7].

In the near future we focus on the following. First, during 3D model generation, the
3D rays, which have been cut due to a segmentation error, cannot increase in length.
This results in holes on the objects surface. Secondly, the initial 3D pose estimation
of the object is a time consuming task, in the case that no a priori pose information is
possible. Then, the complete parameter space RMC and tMC has to be searched. After the
initialization, this can be done in real–time by assuming, that the pose of the object is
changing slowly.

Appendix: Technical Details for the Contour Comparison

In our implementation of the system, we made the assumption of orthogonal projec-
tion. Then we are able to calculate the 2D translation t2D between the extracted and the
model contour: t2D � b� b̂, where b denotes the balance point of the extracted contour
and b̂ of the projection of the model silhouette.

To compare the two contours, we have to superimpose them and also their reference
points must be equal. We set the projection of the reference point of the model to 02,
so we only translate the extracted contour by subtracting the translation vector t2D from
the reference point m. Then we resample the extracted contour with the new reference
point 02 by trigonometric calculations illustrated in Figure 11.

Afterwards for each new defined ray of the 2D representation, the corresponding
ray length of the model projection can be determined by equation 13. To get the differ-
ence measure in equation (15) between the two contours, we integrate over the square
difference of the accoring ray lengths.
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