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ABSTRACT

In this paper we present a knowledge based approach to
a speech understanding and dialog system which possesses
any–time and real–time capabilities. Knowledge is rep-
resented by means of a semantic–network formalism; the
concept–centered knowledge base is automatically com-
piled into a fine–grained network which allows an efficient
exploitation of parallelism. The interpretation problem is
defined as a combinatorial optimization problem and solved
by means of iterative optimization methods. By using itera-
tive methods, any–time capabilities are provided since after
each iteration step a (sub–)optimal solution is always avail-
able. At the moment, the real–time factor for interpreting
an initial user’s utterance is 0.7.

1 INTRODUCTION

Automatic recognition of complex patterns, specifically
motion sequences and spontaneous speech,become increas-
ingly relevant for a great number of applications, such as
service robots to aid handicapped individuals, multi–modal
telecooperation tasks, etc. Real–time as well as any–time
capabilities are indispensable for such systems to be used
in real–world applications. The combination of parallel
and iterative processing seems to be a promising means to
achieve these capabilities.

A variety of parallel algorithms for data–driven process-
ing have been developed, especially in image processing
[12]. A parallel approach to speech recognition can be
found for example in [11]. In contrast, parallel symbolic
processing is much less investigated, although some major
problems of the field, like e.g. parallel knowledge repre-
sentation, are discussed in the literature [1] .

In [3] an approach to knowledge based pattern under-
standing which is based on iterative optimization methods
and which allows an efficient parallel computation was de-
veloped and successfully tested on a small image under-
standing task. Current research concentrates on applying
this control algorithm to a real–world speech understanding
problem, using as a scenario a dialog system which is able
to answer queries about the German train timetable.

The following section describes the knowledge represen-
tation that we use. Section 3 gives a short overview of the

1This work was partially supported by the Real World Computing
Partnership (RWCP).

dialog system. In Section 4 we present the iterative control
algorithm. Results on the performance of the system are
reported in Section 5. We conclude the paper with some
final remarks and an outlook to future research in Section
6.

2 KNOWLEDGE REPRESENTATION

An interpretation � of a pattern � is computed using an
internal knowledge model � and an initial description � of
� . For the representation of � we use the semantic network
formalism ERNEST [10] which provides the following
types of network nodes:
� Concepts representing abstract terms, events, tasks,

actions, etc.;
� Instances representing actual realizations of concepts

in the sensor data;
� Modified Concepts representing restrictions arising

from intermediate results (i.e, the interpretation of part
of the sensor data leads to restrictions on the interpre-
tation of the remaining sensor data).

There are also the following network links in ERNEST:
� Part Links linking concepts and the parts (which are

also represented as concepts) they consist of;
� Concrete Links linking concepts on different levels of

abstraction;
� Specialization Links establishing inheritance rela-

tions from general concepts to more specific ones.

The task–specific knowledge is thus represented by � =�	��

, which is a network of concepts linked to each other by

the various types of links.
The main components of a concept

�
are its parts � and

its concretes  . Figure 1 shows an excerpt of a semantic
network representing linguistic knowledge about the desti-
nation of a trip. One can see that, for example, a Preposition
(SY PREP) is part of a Prepositional Phrase (SY PP), and a
Word Hypothesis (H WHYP) is a concrete of a Preposition,
since it represents it on a lower level of abstraction.

Since there may be many different possibilities for the
realizations of a concept, modalities ��� are introduced with
the implication that each individual modality �������� may
define the concept

�
� . Another possibility for the repre-

sentation of different realizations of a concept is to define
separate concepts for each realization; this, however, pre-
vents a compact knowledge representation. Furthermore,
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Figure 1. Example of a semantic network representation.

parts of a concept may be defined as being obligatory or
optional. In Figure 1, for example, a Noun Phrase (SY NP)
can be defined by:

� Modality 1: obligatory part: Proper Noun
(e.g. “Berlin”)

� Modality 2: obligatory part: Noun
optional parts: Article, Adjective
(e.g. “the next train”)

For the definition of properties or features, a concept
�

has a set of attributes
�

. There may also be structural rela-
tions � between the attributes of a concept. Each attribute
and relation references a function � which computes the
value of the corresponding attribute and a measure of the
degree of fulfillment of the relation.

The occurrence of a specific pattern in the sensor data
is represented by an instance ��� �	� of the corresponding
concept

�
. For the computation of ��� �	� , all attributes and

relations of C have to be computed. Furthermore, instances
for all the obligatory parts and concretes of the concepts
have to exist (i.e., they have to be computed beforehand).
Due to errors in the initial description � (arising from noise
and processing errors) and ambiguities in the knowledge
model � (arising, for example, from the various modali-
ties), a confidence measure 
 is also defined. It is computed
by a function � , which measures the degree of confidence
regarding the occurrence of an instance ��� �	� in the pattern
� and its expected contribution to the success of the analysis
of the whole pattern.

The goal of pattern analysis itself is represented by one
or more goal concepts

����
. Consequently, an interpreta-

tion � of � is represented by an instance of a goal concept��� � � �� . Now, in order to find the ‘best’ � , an optimal in-
stance ����� ������ has to be computed. Thus, the interpretation
problem is an optimization problem and is solved as such.
The semantic network formalism of ERNEST provides an� � –based control algorithm for solving this problem, which
we replace by the parallel–iterative control (cf. Section 4).

3 THE DIALOG SYSTEM EVAR

As a framework for our approach, the dialog system
EVAR [9] is used. This system was initially developed us-
ing the semantic network formalism of ERNEST with the� � –based control algorithm and is able to answer queries
about the German train timetable. The knowledge base of
EVAR is arranged in 5 levels of abstraction:

� Word–hypotheses: represents the interface between
speech recognition and speech understanding; re-
quests and verifies word hypotheses from the acoustic–
phonetic front–end;

� Syntax: represents the level of syntactic constituents;
identifies syntactic constituents in the set of word hy-
potheses;

� Semantics: is used to model verb and noun frames
with their deep case; verifies the semantic consistence
of the syntactic constituents, compounds them to larger
ones, and performs task independent interpretation;

� Pragmatics: interprets the constituents sent by the
semantic module in a task–specific context;

� Dialog: models possible sequences of dialog acts;
operates in accordance with the level of identified in-
tention of the spoken utterance.

Figure 2 shows an excerpt from the semantic network of
EVAR on the dialog level. The ultimate goal of the dialog
system is to answer an information query. Therefore, the
system must be able to carry out a dialog with the user,
since the user might not provide the system with all the
necessary information for a database access in one single
utterance. Thus, dialog steps are performed, alternately, by
the user and by the system. The overall goal, an informa-
tion dialog, is represented by D INFO DIA. It begins with
the user’s initial utterance, D U INF REQ (e.g. “hello, I
want a train to Hamburg”). If the system needs more infor-
mation for database access, it asks for it (D S DEMAND,
e.g. “when do you want to leave?”). The user supplies
the requested information (D U SUPPL, e.g. “tomorrow
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Figure 2. Excerpt of the knowledge base of EVAR, showing part of the dialog model.

in the morning”). The system then may request for a con-
firmation (D S CONF REQ, e.g. “do you want to travel
to Hamburg tomorrow in the morning?”) depending on
the chosen dialog strategy (see below). This is followed
by a confirmation or a rejection by the user, D U PCONF
or D U NCONF, respectively. If all necessary informa-
tion is available, the system accesses the database, retrieves
the requested information to the user (D S ANSW), and
says goodbye (D S GOODBYE, not shown in the excerpt).
The three different dialog strategies available are: ROBUST:
since there may be errors in speech recognition, the system
requests for confirmation; NL: the system does not request
for confirmation (used e.g. for typed input); RA: only ini-
tial user information requests are processed (thus, the dialog
consists of a single information request by the user and an
answer by the system, if possible). It should be noted that
these are only some of the 20 dialog steps represented in
the knowledge base of EVAR.

4 A PARALLEL ANY–TIME CONTROL

The control algorithm for knowledge based pattern under-
standing which we employ (cf. [3]) treats the search for
an optimal interpretation as a combinatorial optimization
problem and solves it by means of iterative optimization
methods, e.g. Simulated Annealing [7], Stochastic Relax-
ation [5], and Genetic Algorithms [6]. By using iterative
methods one provides the system with any–time capabil-
ity since after each iteration step a (sub–)optimal solution
is always available. If the available computation time �
is small, only few iterations and hence a coarse result are
possible; if � is large, more iterations and a better result
can be computed. Furthermore, the control algorithm al-
lows an efficient exploitation of parallelism by compiling
the concept–centered semantic network into a fine–grained
task–graph, the so–called attribute network (cf. Figure
3) which represents the dependencies of all attributes, rela-
tions, and confidence measures of concepts to be considered
for the computation of instances ��� � � �� .

4.1. Parallel Processing

Parallelism is exploited on the network and on the control
level. On the network level, the attribute network may be
mapped to a multiprocessor system for parallel processing
(parallel bottom–up instantiation). On the control level,
several competing instances of goal concepts may be com-
puted in parallel (parallel search). This can be done using
the PVM (Parallel Virtual Machine) [4] on a local net-
work of heterogeneous workstations (e.g. WS1, ����� , WSp

in Figure 3). The attribute network is a prerequisite for
an efficient exploitation of parallelism and is automatically
generated in two steps:

� Expansion Since each concept is stored exactly once
in the knowledge base, but it may be necessary to
create several instances for a concept during analysis
(consider the example of the wheels of a car), all the
instances of a concept needed for the instantiation of
the goal concepts

� � 
are established by way of a top–

down expansion of the
����

s.

� Refinement The expanded network is refined by
the determination of dependencies between sub–
conceptual entities (attributes, structural relations,
confidence measures, etc.) of all concepts in the ex-
panded network. For each sub–entity, a node � � is
created. Dependencies are represented by means of
directed links � � �

� ��� �	�
� �
�

and express the fact that
the computation of � � must finish before the computa-
tion of � � may start.

Nodes without predecessors represent attributes that pro-
vide an interface to the initial segmentation (for example a
word–chain or a word–graph), and nodes without succes-
sors represent the confidence measures of goal concepts.
For the computation of instances of the goal concepts all
nodes of the attribute network are processed in a single
bottom–up step. This step corresponds to a single iteration
in the iterative optimization.
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Figure 3. Scheme of the parallel iterative control algorithm.

4.2. Iterative Optimization
Since the results of the initial segmentation are usually erro-
neous and due to the presence of ambiguities in the knowl-
edge base, the computation of an instance and its judgment
(i.e. confidence measure) are completely determined by
� the assignment (

���
�
� � � �� �

��� � 1 ������� � � of a segmen-
tation object

� � to each attribute
� �

of concepts rep-
resenting the interface to the initial segmentation and

� the choice (
�
� � � ������

�
��� � 1 ������� �	� of a modality

� � for each instance of a concept
�
� which enables

multiple definitions of the same object (cf. Section 2),

where � is the number of attributes of interface nodes and �
the number of concepts having more than one modality as-
sociated to them. This allows us to characterize the current
state of analysis by way of the following vector:
�� �� � ��� � � � � �� �

; � � � � � ������
��� � � 1 ������� � � ; � � 1 ���������	��� �

The task of the control algorithm is now to find that state
of analysis 
 �� which leads to an optimal instance of a goal
concept � � � � � �� . Therefore, a cost function � is introduced
and 
 � is treated as the current state of a combinatorial
optimization problem.

In each iteration step � , instances for the goal concepts���  � ��� 1

�
��������� ���  � ����� � and the corresponding costs ���  are

computed for the current state 
 � . Iterations are performed
until an optimal solution is found or until no more comput-
ing time is available. Please recall that after each iteration
step a (sub–)optimal solution is available.

In Figure 3 it is shown, for example, that in the current
state of analysis for which the attribute network is computed
on WS1, the segmentation object

���
is assigned to the

initial attribute node
� �

, and modality � �
�

1 �� is assigned to
the goal concept

� �
1 . On WSp, modality � �

�
1 �� is assigned

to
���

1 , indicating that competing instances are computed
for different states of analysis on the various workstations.

4.3. Expanding the Control for Dialog

Since in the context of a dialog not only the interpretation of
the user’s utterance is necessary, but also the management
of the dialog as a whole, the control has to be extended.
In our application (cf. Section 3), the overall goal concept
is D INFO DIA, which we will call

���
. Let’s consider,

now, an attribute network computed for
� �

. Since
� �

models all user and system dialog steps, an instance for���
can not be computed in one step (i.e., a bottom–up

processing of all nodes of the attribute network for
� �

is
not possible). Thus, the instantiation of user dialog steps
and system dialog steps have to be separated in the attribute
network. Therefore, we divide our global optimization task,
which is to find an optimal instance for

���
, into several

local optimization tasks
� ��

,
��� 

(this notation was chosen
in order to preserve the generality of the control). Now,
for the computation of an instance of

���
, instances for

subgoals
����

on the interpretation level (user dialog steps)
have to be considered alternately with instances of subgoals� � 

on the action level (system dialog steps). In order to
handle this closed loop of alternating interpretations and
actions over the time, a control–shell (cf. Figure 4) was
implemented.

It computes, in a pre–processing step, sub–networks� �"!�# ��
and

�$�%!�# � 
out of the attribute network for all� � 

s and
� � 

s, respectively. This is done off–line, be-
fore the analysis begins. Thus, for the computation of an
instance ��� �'& �%( �*)  � , only the corresponding sub–networks� �"!�# & �*( �%) 

have to be bottom–up processed. Furthermore, a
task–dependent function next dsub is provided by this shell
which decides whether an action or an interpretation (and
which) is to be performed next (this decision is taken by
means of some decision rules which were extracted from
the former dialog–model implemented with the

� � –based
control; it may be substituted by statistical methods in the
future). It also has to decide which subgoal concepts are
concurring at a point in time given the actual progression
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Figure 4. Control–shell for dialog–steps.

of the dialog and the knowledge about the application do-
main. For example, a user may give a positive (e.g. “yes,
tomorrow”) or a negative (“no, I want to go today”) con-
firmation to a system’s confirmation request (cf. Figure
2). Thus, after the concept D S CONF REQ was instanti-
ated, next dsub computes D U PCONF and D U NCONF
as being the concurring goal concepts to be considered next.� �"!�# & �*( �%) ���	� � is NIL if the dialog represented by

���
has

been completed. The information extracted in each instan-
tiation and the progression of the dialog is stored in the
memory of the system. In Section 5, results are cited re-
garding the user’s initial utterance to show the efficiency
of the control algorithm in this application domain. At
present, the dialog steps D U INF REQ, D S ANSW, and
D S GOODBYE have been fully implemented for the new
control.

5 EXPERIMENTAL RESULTS

The goal of initial experiments (cf. also [2]) was to evaluate
the performance of the system with respect to processing
speed and the percentage of correctly analyzed pragmatic
intentions1; for example:

We
�����
TRAVELLER

want to go to Hamburg
 �� �
DESTINATION

today
 ��� �
DEP TIME

.

Thus we only considered the user’s first request,
D U INF REQ. Further experiments will be carried out to
evaluate the dialog capabilities of the system. The context
for our experiments was as follows:
� goal concept

���
of the attribute network was

D INFO DIA;
� the attribute network itself consisted of about

10 500 nodes and was generated for the dialog
steps D U INF REQ, D S DEMAND, D U SUPPL,
D S ANSW, and D S GOODBYE;

� the dialog strategy was RA (cf. Section 3), i.e., the
dialogs consisted only of the steps D U INF REQ,

1These are pragmatic information units the system needs to recognize
in order to react to the user’s request; in EVAR they are represented by
concepts on the pragmatic level, such as P DESTINATION (cf. Figure 2).

D S ANSW, and D S GOODBYE;
� the optimization method used was stochastic relax-

ation;
� the optimization criterion was the maximization of the

number of words covered;
� as input for the linguistic analysis we used the translit-

erated utterances (simulating a 100% word–accuracy).

Parallelization on the control level was simulated on a single
processor (parallelization with PVM is being implemented
at the moment). The attribute network was processed se-
quentially.

Two test corpora were used: a corpus of 146 thought
up and read (i.e., not spontaneous) user’s first utterances,
8.3 words (2.7 seconds) per utterance and a total of 447
pragmatic intentions (part of the ASL–SÜD corpus) and
a corpus of spontaneous speech consisting of 327 user’s
first utterances collected over the public telephone network,
8.7 words (3.0 seconds) per utterance and a total of 1 023
pragmatic intentions (part of the EVAR–SPONTAN corpus).
Table 1 shows the number of correctly analyzed pragmatic
intentions (in %) for EVAR–SPONTAN and ASL–SÜD.

ASL–SÜD� � � 1 � � 2 � � 3 � � 4 � � 5

1 88.4 92.3 92.7 95.9 95.9
5 87.4 92.1 94.4 96.4 97.2

10 91.9 94.6 95.5 97.4 97.9
25 93.1 96.1 97.0 98.5 99.6
50 96.6 98.9 99.4 100 100

EVAR–SPONTAN� � � 1 � � 2 � � 3 � � 4 � � 5

1 73.6 76.7 77.6 87.8 88.0
5 75.6 82.5 83.4 88.3 88.9

10 83.3 88.0 89.1 90.0 90.1
25 85.3 89.4 90.8 91.1 91.6
50 89.5 91.3 92.0 92.0 92.2

Table 1. Percentage of correctly analyzed pragmatic inten-
tions for � iterations and � processors on ASL–SÜD and
EVAR–SPONTAN.

These results were obtained after a careful choice of an
initial state of analysis vector (cf. Section 4.2.) based on the
incoming word–chain and some heuristic rules (this initial-
ization is presently being replaced by a statistical approach
which showed to be successful in former experiments). On
this account, quite good solutions were found in the first
iteration step already. One can see that after � � 5 itera-
tions using � � 5 processors 97% and 89% of all pragmatic
intentions of the ASL–SÜD and EVAR–SPONTAN corpora,
respectively, were found. The majority of the pragmatic in-
tentions not identified were time specifications, which are
syntactically more complex than the expressions of other
intentions. Furthermore, after � � 5 �	� � 5, 97% and
94% of all destinations were correctly recognized for ASL–
SÜD and EVAR–SPONTAN, respectively. This means that in
almost all cases the system is able to maintain a dialog with



the user by confirming the destination location and asking
for information it has not yet acquired, e.g. the departure
time.

The mean processing time for a single iteration was
0.2 seconds (on a 9000/735 HP–Workstation). This can
be translated to a real–time factor of � 0 � 7 for � � 1,
� � 5. As mentioned before, these results were obtained
for the user’s initial utterance. Nevertheless, first experi-
ments for the dialog steps D U INF REQ, D S ANSW, and
D S GOODBYE were carried out. The additional process-
ing time, which comprises the prediction of the new dialog
step to be performed, and the instantiation of D S ANSW
(including access to the database) and D S GOODBYE is
about 0.3 seconds. A speed–up by a factor of approx. 10
could be achieved in first rudimentary experiments, com-
paring the system with the new control to the former system
with

� � –based control. This has to be confirmed by further
experiments.

6 CONCLUSION AND FUTURE WORK

In this paper we presented a dialog system based on a seman-
tic network formalism for knowledge representation and on
a parallel, iterative control algorithm with any–time and
real–time capabilities. Experimental results have proved
the feasibility of the approach.

Future work will concentrate on completing the imple-
mentation of the approach for all dialog steps. We will also
consider the implementation of incremental speech anal-
ysis, which will result in a further performance improve-
ment. In the long term, the integration of speech and image
analysis will be of great importance for pattern analysis
applications such as the control of a robot for the house-
hold chores. The approach presented here can provide the
appropriate uniform formalism.
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