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ABSTRACT

In this paper, we present an overview of the spoken dia-
logue system EVAR that was developed at the University
of Erlangen. In January 1994, it became accessible over
telephone line and could answer inquiries in the German
language about German InterCity train connections. It
has since been continuously improved and extended, in-
cluding some unique features, such as the processing of
out—of—vocabulary words and a flexible dialogue strategy
that adapts to the quality of the recognition of the user
input. In fact, several different versions of the system have
emerged, i.e. a subway information system, train and flight
information systems in different languages, and an inte-
grated multilingual and multifunctional system which cov-
ers German and 3 additional languages in parallel. Current
research focuses on the introduction of stochastic mod-
els into the semantic analysis, on the direct integration of
prosodic information into the word recognition process, on
the detection of user emotion, and on multilinguality and
multifunctionality.

1. Introduction

The spoken dialogue system EVAR was developed at the
University of Erlangen over a period of almost 20 years.
Different system architectures have been implemented and
evaluated, and intensive research has been performed in
the areas of word recognition, linguistic analysis, know-
ledge representation, dialogue management, and prosodic
analysis. To our knowledge, EVAR was the first spoken
dialogue system in the German language that was made
available to the general public when it was connected to
the telephone line in January 1994 (EVAR’s phone num-
ber: +49 9131 16287). Since that time, a corpus of ap-
proximately 3000 spontaneous human-machine dialogues
has been compiled, most of them in the train timetable
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information domain, involving mainly naive users who are
not familiar with the speech recognition and understand-
ing technology. These dialogues are constantly transcribed
and used for retraining, improving, and evaluating the var-
ious system components.

EVAR (“Erkennen, Verstehen, Antworten, Rickfragen”,
or “Recognize, Understand, Answer, Ask back”) was de-
signed as a research platform, where current develop-
ments can be implemented and evaluated with real users,
and speech data can be collected. The dialogue strategy
adopted is less strict than in the case of systems that
are intended for commercial applications, because to us,
the collection of actual spontaneous speech data is more
important than an optimal dialogue success rate. Never-
theless, word accuracy, semantic accuracy, and dialogue
success rates have all considerably increased over the last
few years, partly due to improved algorithms and dialogue
strategies, and partly to the increasing availability of train-
ing data.

An overview of the system architecture is given in Sec-
tion 2, where a brief description is also provided of the
word recognizer, the linguistic processor, the dialogue
manager, the speech synthesis module, and the WWW
database interface. A number of the unique features of
EVAR is then outlined. In Section 3, we explain how the
EVAR dialogue strategy adapts to the acoustic channel
and the cooperativeness of the user. In Section 4, we ex-
plain how out—of-vocabulary words are detected and clas-
sified by the word recognizer and how this information is
used to generate an appropriate system reaction. In Sec-
tion 5, we briefly report on the evolution of EVAR into
a multilingual and multifunctional system that automati-
cally detects the appropriate language and domain.

The subsequent sections focus on some recent develop-
ments that will soon be integrated into EVAR. Stochastic
methods for semantic analysis are discussed in Section 6,
which should complement and enhance the traditional lin-
guistic methods. A new approach involving the integrated
recognition of words and prosodic boundaries is presented
in Section 7, which allows the implicit detection of syntac-
tic structure during the word recognition process. Finally,
we outline our current research on the detection of user
emotion, which is an essential issue to be dealt with if



spoken dialogue systems are to be used in real-world ap-
plications.

2. System Architecture

The architecture of EVAR is depicted in Figure 1. User
utterances are first digitalized by an AD/DA converter.
Then word recognition is performed and the best word
chain (e.g. “I would like to go to Frankfurt’), or alterna-
tively a word graph, is handed on to the linguistic pro-
cessor. The linguistic processor extracts a set of semantic
concepts (semantic attribute—value pairs) from the word
recognizer result (e.g. [goalcity:frankfurt]) and for-
wards them to the dialogue manager. The dialogue man-
ager checks whether all necessary parameters are avail-
able and, if so, sends a query to the application database.
Depending on the dialogue history and the current dia-
logue strategy, the user is asked to confirm the parameter
(e.g. “You want to go to Frankfurt?”) and/or another
parameter is requested (e.g. “What time would you like
to leave?’); otherwise the result of the database search is
verbalized. The generated message is then synthesized by
a text—to—speech module and played to the user over the
AD/DA converter that is connected to the telephone line.
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Figure 1: The basic architecture of EVAR
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2.1. The Word Recognizer

EVAR uses a two—pass word recognition module that
is based on semi-continuous Hidden Markov Models
(SCHMM) and n-gram language models. The basic ar-
chitecture of the recognizer is depicted in Figure 2; more
details on the recognizer can be found in [9].

The HMM word models consist of polyphone subword
units, which are a generalisation of the widely—used tri-
phone models and were first introduced in [19]. The size
of the phonetic context covered by polyphone models de-
pends on the amount of training data available for each
phone context, with common words being automatically
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Figure 2: Architecture of the EVAR word recognizer

represented as whole-word models. Currently, we use an
improved version of the polyphone subword unit called the
generalised polyphone, which combines the basic concept of
structuring phones with different context sizes in a gener-
alisation tree with a hierarchy of phone superclasses. This
leads to a further significant reduction of word error rates.

The recognizer uses a set of stochastic language models
that are activated by the prediction forwarded by the dia-
logue manager. For example, if the dialogue manager ex-
pects the departure city, this increases the probability of
a user utterance, such as “I would like to leave from Ham-
burg” or simply “Hamburg”. Nevertheless, the stochastic
language model will also accept utterances, such as “No, at
ten o’clock”. This can also be an adequate response by the
user, because EVAR may ask for the confirmation of one or
more parameters along with the value of a new parameter
in a single dialogue turn, e.g. “You want to leave around
twelve o’clock. Where would you like to leave from?’. The
dialogue—step—dependent stochastic language models are
trained automatically using subsets of all recorded user
utterances, which have been labelled with the correspond-
ing dialogue manager prediction.

2.2. The Linguistic Processor

The linguistic processing component (LP) of EVAR com-
prises the parser and a domain—dependent linguistic know-
ledge base on which the parser operates. Accepting the
output of the speech recognizer as its input, its task is to
build up a semantic representation of the user’s utterance
and forward this representation to the dialogue module
for interpretation. The semantic representation formal-
ism further employed is the Semantic Interface Language
(SIL)[15].

The agenda—driven chart parser used achieves robustness
by means of the island parsing technique. This renders
it able to select partial results out of the chart, when no
global parsing result has been computed [16]. In addition,
the parser can operate either on graphs of word hypothe-
ses or on the best recognized word string, depending on



the word recognizer employed. This means that in the
case of a word graph, the parser has to look for the best—
score, grammatically correct path in the graph and build
up its semantic representation, whereas in the case of a
word string, syntactic and semantic analysis can be di-
rectly carried out. Either way, analysis is based on the
syntactic and semantic knowledge stored in the linguistic
knowledge base.

Linguistic knowledge is defined in terms of Unification Cat-
egorial Grammar (UCG) [24]. This formalism combines
unification with categorial approaches to grammar. Being
a categorial grammar, the number of rules employed is re-
stricted to a few basic rules of combination, while most
of the combinatorics of words is encoded in the lexical
categories themselves. Lexical entries are represented as
complex feature structures, which are merged by means of
simple unification.

2.3. Speech Synthesis

The text—to—speech module currently used in EVAR in-
volves the simple concatenation of prerecorded phrases and
words. This leads to good intelligibility and — at least for
the longer fragments — to a natural prosody, but the effort
required in changing the domain or the dialogue strategy is
large. The prerecorded speech signals are slightly warped
in order to make them sound machine-like, because we
want to assure callers that they are indeed talking to a
machine.

The quality of the speech synthesis has proven to have
considerable impact on the speaking style of the users.
When we used an even simpler concatenation method of
prerecorded words, with noticeable silence periods at the
word boundaries, many users imitated this speaking style,
either deliberately or unconsciously. This means that a
speech corpus compiled using a spoken dialogue system
will always reflect the speech synthesis algorithm chosen.
Thus, a modification of this module can result in a decline
in word recognition accuracy. The same is also true for
changes in the wording of system utterances, as they also
have an impact on the actual formulation of user utter-
ances.

2.4. The Dialogue Manager

The role of the Dialogue Manager (DMan) in EVAR is:
(a) to interpret the semantic representation of the user
utterance that was forwarded by the linguistic processor,
in the light of the application, the domain, and the spe-
cific dialogue history and (b) to plan the content and the
formulation of an appropriate response. These tasks are
carried out by various independent but closely collaborat-
ing submodules (Figure 3).

The Linguistic Interface (LI) interacts directly with the
Parser and isolates the information that is relevant to
the task: the parameters necessary for database access
(e.g. place and time of departure and arrival) and various
dialogue markers which determine the state of the dialogue
and influence its progression (e.g. ‘Yes’, ‘No’, ‘Thanks,
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Figure 3: The EVAR Dialogue Manager Processing Flow

bye’). The Belief Module (BM) is where the ‘anchoring’,
or disambiguation, of underspecified semantic representa-
tions takes place based on the predictions available re-
garding the development of the dialogue. This is where
an isolated city name (e.g. ‘Munich’) in an elliptical user
utterance is interpreted as either the goal or the source lo-
cation in the user requirements profile. This is also where
anaphors and relative expressions of place and time are
clarified. The most central component of DMan is the Di-
alogue Module (DM). This keeps track of the progression
of the dialogue in terms of system and user dialogue acts,
their translation into system goals and the degree of sat-
isfaction of the latter. An Augmented Transition Network
(ATN) description of the possible transitions between di-
alogue states is used to generate expectations about the
continuation of the dialogue, in terms of both user and
system acts (Section 3). The Task Module (TM), where
the interface to the domain database is maintained, holds
information about the identity and the number of the task
parameters that should be specified by the user before the
database can be accessed: goalcity, sourcecity, date, and
goaltime or sourcetime, in the case of train enquiries. Fi-
nally, the Message Planner (MP) determines the next sys-
tem utterance on the basis of the report provided by DM
on the state of the dialogue. Accordingly, it may either
generate a request for information or confirmation, when
the values for certain of the parameters are still missing
or contended, respectively; or it may present to the user
the database entries matching the query, when sufficient
specifications have been supplied to initiate a search.

2.5. WWW Database Access

The long-term vision regarding EVAR is its evolution into
a multimodal environment, where text, speech, and even
image processing are integrated over the phone and the
internet. A step in this direction has been the develop-
ment of a search engine that poses the user’s query to
multiple travel information databases on the WWW [2].
The search engine constitutes the interface between the
dialogue system and the WWW databases. To date, the
following databases are accessed: German Railways (DB),



Lufthansa, and Swiss Railways (SBB). During the search,
a number of dynamic HTML documents are created and
accessed holding the intermediate results collected. These
are temporarily saved in a local cache which is continu-
ally updated until the search is ended. The engine also
provides the facility for a number of local databases to be
set—up for regularly—accessed data. Although the retrieved
entries are filtered according to the parameters specified by
the user in the course of the dialogue, constraints can be
relaxed, when the initial query does not match any of the
stored data.

3. Flexible and Adaptive Dialogue
Strategy

One of the distinctive traits of EVAR is the adoption
therein of ‘open’ dialogue strategies, allowing the user to
freely formulate their queries and carry out the transaction
quite flexibly. The user is allowed to take the initiative re-
garding the order in which task parameter specification
takes place and is also usually able to change the current
subgoal of the interaction; e.g. in correcting a parame-
ter that has already been dealt with, at a time when the
system is expecting information about another parameter.
This contrasts to the more common approach of present-
ing the user with menus to which they have to comply
and answer with yes or no. In this sense, EVAR is quite
intelligent. As a result, however, there are more possibili-
ties regarding the content of the next user utterance, thus
increasing the probability of misrecognitions and misun-
derstandings. To remedy this, the system tries to always
confirm each task parameter as they are specified by the
user. This defensive strategy safeguards that the correct
database entry will be retrieved at the expense of interac-
tion speed.

Confirmation can be both explicit and implicit, depend-
ing on whether or not there has been a history of fail-
ures in the current dialogue (Figure 4). A potential cor-
rection by the user initiates a clarification subdialogue,
which can contribute to the repair of the most crucial er-
rors and, hence, to the successful completion of the task
in most cases. This is effected by asking the user to re-
peat or confirm a parameter on its own, or to spell it in
the worst case, thereby restricting the user’s usual free-
dom. Normally, however, the user is expected to confirm
a parameter indirectly in conjunction with the specifica-
tion of other parameters, which contributes to greater user
satisfaction [5, 2]. Consequently, EVAR can dynamically
modify its communicative and repair strategies employing
the user’s reactions in the course of the dialogue as a guide
and the frequency of conflict between the system’s beliefs
and the user’s goals.

4. Out—of-Vocabulary Word
Processing

One of the most important causes of failure in spoken di-
alogue systems is usually neglected: the problem of words
that are not covered by the system’s vocabulary (Out—
Of-Vocabulary or OOV words). In such a case, the word
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Figure 4: Flexible Dialogue Strategies in EVAR

recognizer usually recognizes one or more different words
with a similar acoustic profile to the unknown. These mis-
recognitions often result in possibly irreparable misunder-
standings between the user and the system. This is due
to the fact that users rarely realise that they have crossed
the boundaries of the system’s knowledge, but just notice
its suddenly weird behaviour. Therefore, it is desireable
to have the system detect unknown words and inform the
user about them so that they might correct the error. This
will increase not only the dialogue success rates but also
the acceptability of the system to the user.

Detection and Classification of
OOV Words

4.1.

In [8], we presented an approach to the detection of OOV
words which implicitly provides information on the word
category. This involves the integration of both detection
and classification of OOV words directly into the recog-
nition process of an HMM-based word recognizer. With
our approach, acoustic as well as language model informa-
tion can be used for the purpose of classifying OOV words
into different word categories. Currently the same acoustic
models are used for all OOV words; only language model
information contributes to the assignment of a category to
each.

The basic idea behind our approach is to build language
models for the recognition of OOV words that are based
on a system of word categories. Emission probabilities of
OOV words are then estimated for each word category.
Even if we include in our vocabulary all words of a cat-
egory that were observed in the training sample, there is
still a certain probability of observing new words of the
same category in an independent test sample or in future
utterances. This probability can be estimated from the
training sample itself. Details on the calculation of the
OOV emission probabilities were given in [8].

For most of our linguistically-motivated word categories,
the OOV probability is 0, because they describe a finite
set of words. In the timetable inquiry domain, there are 5
word categories that are practically infinite (e.g. CITY, RE-
GION, SURNAME). In addition, a category has been defined
for rare words that do not fall under any other category
(OOV probability 73%) and another one for garbage (e.g.
word fragments, OOV probability 100%).

After integrating OOV probabilities into the language
model, the latter has to be combined with one or several



acoustic models for OOV words. Simple ‘flat’ acoustic
models can be used for this purpose, as well as more en-
hanced models based on phone- or syllable-grammars. In
EVAR, we use ‘flat’ acoustic models that are constructed
by averaging the acoustic distributions of all phone models
in the training corpus.

For the experiments described in [3], an encouraging in-
crease in both word accuracy and semantic concept accu-
racy was achieved. The corresponding error rates dropped
by 5% and 7%, respectively. The OOV words that were
detected by the word recognizer were correctly classified
in 94% of the cases.

4.2. Extensions to the Linguistic Pro-

cessor

Word strings delivered by the OOV—-extended recognizer
will contain the corresponding information if an OOV word
has been detected. In order to make this information ac-
cessible to the dialogue manager, the LP has to include
it into the semantic representation that is passed on to
the dialogue manager. The system will then be capable
of reacting appropriately to an OOV word. Details on the
linguistic processing of OOV words in EVAR can be found
in [3].

4.3. Extensions to the Dialogue Man-

ager

The extension of the word recognizer and the LP of EVAR
with meta—knowledge about the occurrence of OOV words
has led to the design of new dialogue strategies that take
this extra information into account and are adopted on-—
line in the presence such a word. Thus, two new dialogue
states were incorporated in the corresponding ATN de-
scription of the dialogue structure, which accommodate
alternative state transitions in the DMan accordingly: (a)
REPEAT _PARAM is used to ascertain that an OOV word was
indeed uttered, in order to avoid false alarms. It provides a
first warning to the user that there may be a problem and
asks them to repeat just the parameter value involved. (b)
WARN follows the default repair mode SPELL and involves
the notification of the user about the cause of failure so
that they can either hang up (CLOSE) or pose a different
query (FURTHER_INFO).

This is illustrated in the following example dialogue:

User: I want to go to <Brussels> oov_city.
[goalcity:oov_city]

System: I think the information you require is not
covered by our database. Could you, please,
repeat the name of the city you want to go
to?

[system goal: REPEAT_PARAM]

User: <Brussels> oov_city.

System: Could you please spell the name of this
city?

[system goal: SPELL]
User: <B-r-u-s-s-e-1-s> oov_city.
System: Unfortunately, there is no information on

train connections for the city you want. Our
database only covers German cities. Would
you like to proceed with a different query?
[system goal: WARN]
User: Yes.
System: What exactly would you like to know?
[system goal: FURTHER_INFOI]

Evaluation of the OOV—extended
EVAR

4.4.

‘Transaction Success’ (TS) is an evaluation metric used in
the context of dialogue systems which refers to whether
or not the user got the information they were asking for
in an effortless manner. ‘Dialogue Completion’ (DC) is
another metric relating to the smoothness of closing of the
dialogue, respective of whether or not the task was carried
out successfully. A study of the protocols for the majority
of the dialogues collected with EVAR since it was extended
with OOV information (September 1997 — May 1998: 282
[sub]dialogues) [2] showed that TS had increased from 47%
to 59%. Moreover, a DC rate of 69% was established for
the new system version (the corresponding rate for the old
version was not available). It has also emerged that the
correct treatment of OOVs by EVAR is associated mainly
with completed and successful dialogues, 88% and 93%
respectively, thus justifying the incorporation of this new
functionality in the system.

5. Multilinguality and
Multifunctionality

Within the EC Copernicus—-project SQEL, EVAR was ex-
tended with respect to multilinguality and multifunction-
ality [1]. The current SQEL-demonstrator can handle
four different languages and domains: Czech (Czech train
connections), German (German train connections), Slo-
vak (Slovak train connections), and Slovenian (European
flights). The system starts up in German with a German
opening phrase, but the user is free to use any of the imple-
mented languages. The language is identified implicitly by
a multilingual word recognizer [1]. During the recognizer
beam search, search paths related to other languages are
normally eliminated in the first few seconds, thus keeping
the overhead low compared to running four monolingual
recognizers in parallel (Figure 5).

After completing the recognition process, the recognizer
passes to the linguistic processor both the identity of the
language spoken and the best matching word chain. The
recognition results for the multilingual recognizer are al-
most as good as when the monolingual version is run for
the language that was spoken. Once the language has
been identified by the word recognizer, it is associated
with the corresponding domain, which calls the appropri-
ate database and task parameters. All domains are already
accommodated for in the generic concept ontology used
in EVAR. This ontology covers concepts such as source
and goal location, departure and arrival time and date of
travel. The existence of such language-independent se-
mantic units has meant that porting the system to a new
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Figure 5: Implicit language identification by the word
recognizer. In this example, the language spoken is iden-
tified after approx. 1.8 seconds (180 time frames). At this
point, the multilingual recognizer starts to function as a
monolingual recognizer.

language involves mainly the development of new lexica
and grammars for the analysis and the generation phases
(apart from the word recognizers) and not an extensive
restructuring of the interpretation process within the dia-
logue manager. This is because the dialogue manager of
EVAR is sufficiently flexible to switch between the differ-
ent domains, i.e. to the appropriate parser, generator, and
application database for each language and domain.

6. Stochastic Methods for Semantic
Analysis

The motivation behind the use of statistical methods in
speech processing tasks has been the improved and some-
times more efficient analysis of the data in hand, while also
reducing the amount of expert knowledge that needs to be
incorporated in the corresponding system. The result is
the fast and straightforward adaptation to new tasks and
domains. This is why one of the major research areas we
currently focus on is the introduction of statistical meth-
ods at the level of semantic and linguistic analysis. Two
different methods are described here that are to be used
in EVAR during linguistic analysis.

The basic assumption behind using stochastic methods in
semantic analysis is that the analysis effort can be greatly
reduced when operating in a restricted domain such as
train timetable information. It is not necessary to carry
out a complete linguistic analysis, because it is sufficent
for the system to locate and understand those parts of an
utterance which exercise influence on the database query
to be performed, as well as those parts influencing the di-
alogue structure. For example, it is essential to know the
city of departure but it is completely irrelevant to know
who wants to travel or why someone needs a connection.
Those parts that are important to the dialogue system are
called semantic attributes and semantic/pragmatic analy-

sis could be limited to them.

In [4], a new concept was introduced of using stochastic
models for semantic analysis. The idea is to avoid using a
grammar that describes all important parts at once, and
to write instead small partial grammars, each of them cov-
ering a special attribute; e.g. a grammar that is able to
analyse time expressions. Given that not every utterance
includes all semantic attributes, we use stochastic methods
to predict the occurence of attributes in the current utter-
ance, only using partial grammars for the semantic anal-
ysis of the predicted attributes. The advantage is that
partial grammars are easy to maintain and reuseable in
other systems for different tasks. In addition, the analysis
is carried out faster without a decrease in accuracy.

As stated before, we have developed two different meth-
ods for semantic attribute prediction. The first one uses
n—gram language models [18] to decide whether or not a
specific attribute is included in the current utterance. For
this purpose, we divide our corpus into two subsets for each
attribute. The first one consists of all sentences comprising
this attribute, the second one is made up of all other utter-
ances. With these two subsets, two language models are
trained for each attribute, signaling its occurrence or its
absence, respectively. During the analysis phase, the prob-
ability of the recognized word sequence is calculated with
respect to each language model, and, for each attribute, a
decision is made according to the higher probability. Only
if the language model denoting the occurence of this at-
tribute wins, the corresponding partial grammar becomes
active. The experiments described in detail in [11] show
prediction rates of approximately 90% in average for three
different attributes (time, date and city expressions).

Our second approach to stochastic semantic analysis is
based on standard and higher order HMMs. It is the basic
assumption underlying this model, that each word w; in
a word chain w can be assigned to precisely one semantic
attribute. This can be described in a formal manner by
defining an assignment function ¢ which takes the word
chain w as input and produces for each word the corre-
sponding attribute. This is illustrated in the following
example:

Hamburg
GOAL

I want to go from Munich to
NIL NIL NIL NIL SOURCE SOURCE GOAL

Here, NIL marks those words that are irrelevant to the ap-
plication, SOURCE is a marker for the city of departure, and
GOAL for the city of arrival. Resting on this basic assump-
tion, two tied statistical processes are used as a model, one
describing the occurrence of attributes and the other for
relating words to attributes. As the assignment function
¢ is unknown during training — only the set of attributes
each utterance includes is annotated — we use the EM
algorithm to derive estimation formulas for the discrete
density functions involved. These estimation formulas are
generalised versions of the well known Baum—-Welch rees-
timation formulas. For a detailed discussion of this ap-
proach, cf. [10]. Using this method, we obtain detection



rates of 95% for time, date and city expressions.

7. Integrated Recognition of Words
and Prosodic Boundaries

It is widely recognized that prosodic information is a useful
source of information in speech understanding. Neverthe-
less, most existing systems do not make use of it. The
most probable reason is, that these systems can usually
only handle fairly short and simple utterances in a very
restricted domain, where prosodic functions — such as the
marking of sentence mood, accentuation, and phrasing —
are believed to be of little importance. In such applica-
tions, efficient linguistic processing is possible without any
prosodic information about the structure of the utterance,
and the prosodic marking of the sentence mood and ac-
centuation are mostly redundant. An acceptable system
performance can also be achieved, if prosodic information
is totally ignored. This is also the case in the EVAR do-
main.

‘When moving to more complex tasks, such as in VERBMO-
BIL human-to—human spontaneous speech translation [22],
prosody becomes an important issue. In VERBMOBIL,
utterances tend to be considerably longer than those in
EVAR; the average number of words per utterance in
EVAR dialogues is only 3, with an average of 7 words
in the first utterance, whereas an average VERBMOBIL ut-
terance is made up of 22 words. This makes it partic-
ularly important to identify prosodic phrase boundaries.
In spontaneous speech, prosodic boundaries are even more
crucial in understanding an utterance than punctuation
marks are in written language. Words which “belong to-
gether” from the viewpoint of meaning are grouped into
prosodic phrases, and it is widely agreed upon that there
is a close correspondence between prosodic and syntactic
phrase boundaries [20, 6, 23, 13].

The VERBMOBIL system uses a prosodic classifier that de-
termines phrase boundaries based on the word recognizer
output and the speech signal. In [13], the parsing of word
graphs computed on VERBMOBIL spontaneous speech data
was sped up by 92%, while the number of parse trees could
be reduced by 96% with the use of automatically deter-
mined prosodic phrase boundaries [14, 17].

In 7], we propose the direct integration of the classification
of phrase boundaries into the word recognition process.
HMMs are used to model phrase boundaries, which are
also integrated into the stochastic language model. The
word recognizer then determines the optimal sequence of
words and boundaries. In the VERBMOBIL domain, even
without additional prosodic features, we obtain phrase
boundary recognition rates that are comparable to those
achieved with the separate prosodic classifier introduced
above. At the same time, a word error rate reduction of
4% is attained without any increase in computational ef-
fort [7].

This approach to phrase boundary classification renders
prosodic information available already during the word

recognition process. It is assumed, that integrating
prosodic boundary information into EVAR will be espe-
cially useful for recognizing utterances, such as “No, no,
on sunday at eight, not on monday at eight”. Moreover, it
can be observed in the EVAR corpus that the boundaries
between semantic attributes are often marked prosodically,
e.g. “On thursday, from Hamburg, around eight o’clock”.
Thus, we are currently conducting experiments using dif-
ferent types of boundary labels on the EVAR corpus and
are confident that similar improvements will be effected
to those in the Verbmobil domain. We will also investi-
gate the usefulness of prosodic boundary information to
the linguistic processor.

8. User Emotion

Just as people kick soda vending machines when these
don’t work, it can be observed in the EVAR speech corpus
that users get angry at spoken dialogue systems, when a
dialogue with such a system goes wrong. In the context of
call-center applications, it is important to identify such a
situation and to initiate an appropriate reaction, such as
referring the customer to a human operator or starting a
clarification sub—dialogue, if one does not want to lose a
potential customer forever. The detection of emotion and
an adequate reaction to an angry user will certainly lead
to a higher degree of acceptance of the system.

Even though there are many different emotions that can be
expressed in human speech — such as sadness, joy, or fear
— we are currently only interested in the distinction be-
tween anger and normal speaking. Other types of emotion
are most probably not relevant to the implementation of
the emotion detector in spoken dialogue systems, such as
EVAR. Besides, it is more difficult to distinguish between
emotions, such as joy and anger [21].

Emotion can be expressed, at least, in two verbal ways (in
addition to non-verbal cues like body language): by the
lexical information carried by certain words of an utter-
ance, e.g. swear words; and by way of acoustic prosodic
cues, such as sharp changes in the loudness and/or the
fundamental frequency (Fp) of the speech signal, as well
as changes of the duration values. All these changes do
not have to occur in a single utterance. They can also
take place in conjunction with earlier utterances of a dia-
logue. Furthermore, emotion can be expressed by means
of a combination of the above parameters. We are cur-
rently concentrating on the use of acoustic prosodic cues
to locate emotional utterances, without using the lexical
information of words.

For the classification of emotion 276 prosodic features are
used in our approach, based mainly on durational cues and
fundamental frequency and energy contours. An artificial
neural network is used as classifier. On a training set of
1530 utterances and a test set of 300 utterances, we at-
tained a precision rate of 87% and a recall rate of 92% for
the detection of angry vs. normal speaking style (cf. [12]).



9. Conclusion and Future Work

Although the first commercial spoken dialogue systems for
train timetable information are beginning to emerge, run-
ning EVAR on the public telephone line still gives us the
valuable opportunity of assessing newly developed tech-
niques on real-world users. In this paper, we presented
EVAR and some of its unique features, as well as the main
research areas that are directly related to the further de-
velopment of EVAR.

One of our most ambitious goals is to merge our approach
to the integrated recognition of words and phrase bound-
aries with that of stochastic semantic analysis. The clas-
sification of words, phrase boundaries, and semantic at-
tributes will then be subject to a single integrated search
procedure, which employs many different sources of in-
formation, such as acoustics, prosody, statistical language
models for word and boundary sequences, statistical mod-
els for semantic attributes, and statistical language mod-
els for sequences thereof. By replacing the second pass of
the word recognizer with this search procedure, all these
sources of information can be made available at an early
stage in the recognition process. The result of this search
will be an ‘interpretation graph’ which contains not only
words and syntactic boundaries, but also semantic inter-
pretations of word sequences.
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