
FROM J. HAAS ET AL.,SPECOM’98, INTERNATIONAL WORKSHOP SPEECH AND COMPUTER, ST. PETERSBURG (RUSSIA), 1998, (PP.

151–156).

PROBABILISTIC SEMANTIC ANALYSIS IN RESTRICTED DOMAINS

J. Haas, J. Hornegger, H. Niemann

Universität Erlangen-Nürnberg,
Lehrstuhl für Mustererkennung (Informatik 5)
Martensstraße 3, D-91058 Erlangen, Germany

email:fhaas,hornegger,niemanng@informatik.uni-erlangen.de
Tel.: +49/9131/8527873 Fax: +49/9131/303811

ABSTRACT

We present a probabilistic approach to semantic and prag-
matic analysis in restricted domains and methods to im-
prove the understanding performance. As framework we
use the EVAR system, an automatic dialog system for an-
swering queries on German Intercity train connections over
the public telephone network. We introduce the statistical
model extracting the semantic content from a word chain
as well as our annotation scheme for the semantic of word
chains for a specialized task which allows fast and easy an-
notation. The task of detecting the semantic contents of
a word chain is described as the problem of assigning se-
mantic attributes to words. The statistical framework we
use has to deal with incomplete data estimation problems
which are solved through applying the Expectation Maxi-
mization algorithm. The resulting iterative estimation for-
mulas for the desired parameters are presented. The base-
line experiment and the obtained recognition results prove
the feasibility of our model. We present several methods
that are able to support our probabilistic semantic analy-
sis. We present experiments using categorial systems on
the lexicon, different initializing methods for probabilistic
parameters and combinations of these methods. The re-
sults show that the supporting power of the techniques is
small when they are used individually but remarkable for
the combination of them.

1 INTRODUCTION

For the tasks of semantic analysis, speech understanding
and automatic dialog systems it is not that important to rec-
ognize the user’s utterance with 100% word accuracy but
to get the user’s intention in order to generate an appropri-
ate system reaction which leads to a successful dialog. In
our application of information retrieval dialogs possible re-
actions are e.g. to start a clarification sub dialog or to give
the desired information. Nowadays the syntactic-semantic
analysis is mainly realized using rule based systems. These
parsers use a bunch of lexical and grammatical knowledge.
Hence, the system adaptation to another domain or task re-
quires the encoding of new lexical and grammatical knowl-
edge nearly from scratch. This is a time consuming and
tricky work which has to be done by a linguistic expert.
Having a probabilistic model for the semantic analysis in a
restricted domain which is able to learn the new task from
a suitable training set a faster and easier adaptation is pos-
sible.

The paper is organized as follows. In section 2 we
present the probabilistic model for the semantic analysis
and the mathematical details. We present the estimation
formulas we obtain for the parameter estimation. The se-
mantic annotation scheme allowing a fast and easy creation
of training material is introduced in section 3. For sure this
annotation scheme is strongly task dependent. There we
also describe the data we use and the first baseline exper-
iment with its results. We examined several methods well
known in the speech processing society which should be
able to support our probabilistic model. The results which
prove the feasibility of the methods individually and in
combination are presented in section 4. In section 5 we
give a short summary and an outlook on planned activities.

2 PROBABILISTIC MODEL FOR SEMANTIC
ANALYSIS

Our probabilistic model is based on the assumption that for
each wordwj of a word chainw we have an assignment
of one semantic attributeCi to wj . These semantic at-
tributes describe parameters which influence the system’s
reaction. The setC = fC1; C2; : : : CNg of possible at-
tributes is therefore strongly task dependent. In our case of
train timetable information dialogs these attributes are im-
portant information slots for the database query like e.g.
the source city, the destination or the time of departure,
but also markers important for the dialog like e.g. posi-
tive or negative feedback which influences the dialog strat-
egy. Obviously not all parts of the word chain are important
for its interpretation in the restricted domain or for the di-
alog continuation. To keep our assignment assumption we
have to introduce an additional semantic attributeC0, the
NIL attribute. All words carrying no meaning for the dia-
log system are attached toC0. An example illustrating this
assumption is given in figure 1.

Each semantic attributeCi is now identified with a ran-
dom process that generates wordswj . Thus, each such pro-
cess defines a density functionP (wj jCi) over the lexicon
of words. The assignment of a semantic attributeCi to a
word wj is formally described with the assignment func-
tion �. This function takes as argument the wordwj of
the word chainw and gives as result the index of the cor-
responding attribute�(wj) = lj . As we want to analyze
word chainsw we have to extend the assignment function
to operate on these:�(w) = (�(w1); : : : ; �(wn))T = (l1; : : : ; ln)T (1)
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Figure 1. Assignment of semantic attributesCk to wordswj of a word chain for train timetable information

The semantic of a word chainw in the current task is
now described through the set of semantic attributesC that
are assigned to the words ofw. All words corresponding
to one attribute fromC constitute one semantic segment
in the word chain which in a following step can be further
analyzed. In comparison to [3] who also defines an assign-
ment from the english to a formal language for the interpre-
tation of word chains, our approach does not make use of
the length of semantic segments or the number of assigned
attributes for the computation of probabilities. This differ-
ence gives us the possibility to use a much easier annotation
scheme which will be described in section 4.

The semantic analysis of word chains is now reduced to
the problem of finding the best set of semantic attributes
that are assigned to the words ofw. To provide a formal-
ism which enables us to handle the speech understanding
task statistically we introduce a model based on two tied
probabilistic processes.

1. The first one has to model the appearance of semantic
attributes and introduces a probability distribution on
the set of possible assignments�(w).

2. The second one is the semantic attribute generating
words with the density functionP (wj jCi).

With these two processes the probabilityP (w; �jC) for
observingw and the assignment� assuming the semantic
described throughC is computed. The assignment vector
can not be observed as we have only the set of semantic
attributes for a word chain but not the explicit alignment.
Thus, the probabilityP (wjC) derives from the marginal-
ization ofP (w; �jC) over all possible assignments, i.eP (w j C) = X� P (w; �jC) (2)= X� P (�)P (w j C; �) :

We now claim that the assignments depend only on pre-
ceding ones and they are of statistical orderg. Then the
probabilityP (�) for a special assignment is factorized in
conditional probabilitiesp(lk j lk�g : : : lk�1). Renaming
these probabilities withp(lk j lk�g : : : lk�1) = alk�g:::lk
we get the following:

P (�) = p(l1; l2; : : : ; ln) (3)= p(l1) � p(l2 j l1) � p(l3 j l1l2) � : : :: : : � p(ln j l1l2 : : : ln�1)= p(l1) � p(l2 j l1) � : : : � p(lg j l1l2 : : : lg�1) �nYk=g+1 p(lk j lk�g : : : lk�1)= al1 � al1l2 � : : : � al1l2:::lg nYk=g+1 alk�g :::lk
The probabilityP (w j C; �) is reduced to probabilities

for the observation of single wordswj depending only on
the actual assignment to the semantic attributeClj . With
these assumptions the probabilistic semantic analysis prob-
lem is reformulated:P (w j C) = X� p(�) nYj=1P (wj j C�(wj )) (4)= Xl1;l2;:::;ln al1 � al1l2 � : : : � al1l2:::lgnYk=g+1 alk�g :::lk � nYj=1P (wj j Clj )

The parameters to be estimated for the stochastic model
are the conditional probabilities for the elements of the
assignment vectoralk�g ;lk�g+1;:::;lk and the probabilitiesP (wj jC�(wj)) for observing wordwj under the assumption
of assigning it to the attributeC�(wj ). As the assignment�
is hidden in our training data, we use the Expectation Max-
imization algorithm (cf. [1]). As result we obtain iterative
estimation formulas for the necessary parameters. A de-
tailed derivation for the estimation formulas can be found
in [5].

Assume,M test sentences1w; 2w; : : : ;Mw are avail-
able for training purposes. The probabilities associated
with the assignment function can be iteratively estimated
using the following formulas, whereini andi + 1 denote
thei–th and(i+ 1)–st iteration steps:



a(i+1)l1 = 1M MX%=1 X��(%w1)=l1 p(i)(%w; �jC)p(i)(%wjC) ; (5)

a(i+1)l1l2 = MX%=1 X��(%w1)=l1;�(%w2)=l2 p(i)(%w; �jC)p(i)(%wjC)MX%=1 X��(%w1)=l1 p(i)(%O; �jC)p(i)(%wjC) ;(6)

a(i+1)l1;l2;:::;lg = (7)MX%=1 X��(%w1)=l1;�(%w2)=l2;:::;�(%wg)=lg p(i)(%w; �jC)p(i)(%wjC)MX%=1 X��(%w1)=l1;�(%w2)=l2;:::;�(%wg�1)=lg�1 p(i)(%w; �jC)p(i)(%wjC) ;
a(i+1)lk�g;:::;lk = (8)MX%=1 %nXk=g+1 X��(%wk�g)=lk�g;:::;�(%wk)=lk p(i)(%w; �jC)p(i)(%wjC)MX%=1 %nXk=g+1 X��(%wk�g)=lk�g;:::;�(%wk�1)=lk�1 p(i)(%w; �jC)p(i)(%wjC) :

Obviously, these equations are generalizations of the
well–known Baum–Welch reestimation formulas for Hid-
den Markov Models. They can be used for statistical de-
pendencies of arbitrary orderg (for g = 1 we get those
BW-Reestimation formulas for HMM). The same holds for
the discrete probabilities which characterize word produc-
tion, if the semantic attributeClj is known (1 � j � n and0 � lj � N ):p(i+1)(wj jClj ) = (9)MX%=1 %nXk=1 X��(%wk)=l;%wk=wj p(i)(%w; �jC)p(i)(%wjC)MX%=1 %nXk=1 X��(%wk)=l p(i)(%w; �jC)p(i)(%wjC) :

Within this framework, probabilities are computed with
a generalized forward-backward algorithm which is very
similar to the HMM forward-backward as we have special
beginning probability matrices for the firstg words. The
most likely state sequence, which gives us the semantic
segmentation for a word chainw and along with that the set
of semantic attributesC, results from a generalized Viterbi
algorithm.

3 ANNOTATION SCHEME AND BASELINE
EXPERIMENT

The data we use for our experiments are collected with
the automatic dialog system EVAR. This system answers
questions on train timetables for German Intercity con-
nections and is hooked to a public telephone line (Tel.
++49/9131/16287). The EVAR system and the data are
described in [2]. In this section we first describe the an-
notation scheme we use which is a quick and easy method
to create the necessary training material. In the second part
we report about the baseline experiment and the obtained
recognition results.

3.1. Annotation Scheme
All dialogs performed by EVAR are recorded and infor-
mation like the recognized word chain or the text of the
synthesized answer is stored. The speech signals are then
transcribed off-line, i.e. it is annotated what really was
spoken. The semantic we annotate is derived from this
spoken word chain. We defined a set of about 30 differ-
ent semantic attributes to be distinguished in the users’ ut-
terances. We consider only those parameters as semantic
attributes which influence the system’s reaction. For ex-
ample time and date expressions are important for the sys-
tem to give the correct information. Also positive or neg-
ative feedback are regarded as semantic attributes because
of their influence on the ongoing dialog. In contrast the
caller’s name or the reason why someone wants to travel
by train is obviously unimportant and therefore neglected
in the semantic annotation. The resulting semantic is inde-
pendent of the dialog context. The same word sequencew
has always the same semantic annotation regardless of the
yet collected information or the actual system dialog step.
For example if the system asks’Where do you want
to leave?’ often an answer with a city name e.g.
’Hamburg’ is observed. Then only’city:hamburg’
is annotated as being the semantic content. Taking the dia-
log context into account it is obvious that the named city is
the departure city (’sourcecity:hamburg’). Surely
this information is used inside our dialog system but this
interpretation step is carried out through the dialog man-
ager who keeps the dialog context and does some context
dependent interpretation. Here it is not the task of the se-
mantic analysis to do this kind of interpretation. If we want
to include the context in our probabilistic model we can do
this e.g. by adjusting the a priori probabilities for different
semantic attributes depending on the dialog state and the
actual system dialog step. The semantic annotation for a
spoken word chainw is the semantic described as the set of
semantic attributesC. As we do not need the explicit align-
ment of semantic attributes to words this annotation can be
done without linguistic knowledge. The NIL attribute cor-
responds to an empty handmade annotation. This approach
of describing the semantic is similar to the one described in
[6] with semantic concepts. The main difference here again
is the fact that for our models the annotation is much easier
as in [6] every word has to be labeled with its correspond-
ing attribute whereas we only need the overall annotation
for the whole sentence and not an explicit alignment. For
our experiments the 30 different semantic attributes we an-



notate are clustered together in the following twelve classes
which then should be modeled by our probabilistic model:

(1) SOURCECITY departure city
e.g. ”from Berlin”

(2) GOALCITY arrival city
e.g. ”to Bonn”

(3) CITY cities not in 1 or 2
e.g. ”via Munich”

(4) MARKER parts with influence on dialog
e.g. ”that’s right”

(5) RELDAY dates in relative manner
e.g. ”tomorrow”

(6) SPECIAL legal holidays
e.g. ”on Christmas”

(7) DATE dates not in 5 or 6
e.g. ”on November the 5th”

(8) TRAINTYPE type of train
e.g. ”with the ICE”

(9) POFDAY time as part of day
e.g. ”in the morning”

(10) RELTIME time in relative manner
e.g. ”later”

(11) TIME time not in 9 or 10
e.g. ”at 5 o’clock”

(12) NIL parts semantically irrelevant
e.g. ”I need help”

3.2. Baseline Experiment

For our Baseline Experiment we choose a training set of
10207 sentences from the EVAR corpus along with their
semantic annotation. Due to the dialog strategy some of
the sentences are very frequent. For example, the requested
confirmation of parameters for the database query are very
often answered with a’yes’ or ’no’. Therefore there
are only 3977 different sentences in the training data. As
test set we have another 4952 sentences collected with
EVAR where 2539 are different, due to the same reasons.
Some sentences in the test set are also included in the train-
ing set as we always take complete dialogs into the data sets
but still 2421 sentences are unseen. In the training and test
set there are 1682 different words which serve as observ-
ables for the probabilistic model, i.e. for each attribute we
have a discrete probability distribution over these words.

Each attribute to be recognized is represented by one
state in our probabilistic model. All states are connected
with each other. If we set the statistical dependency tog = 1 we have an ergodic HMM. The output probabili-
ties are discrete distributions over the words in the lexicon
like said above. As the EM algorithm has only local opti-
mality and a slow convergence we have to choose the ini-
tialization of the probabilities for our introduced method
carefully. The transition probabilities representing the con-
ditional probabilities for the assignment function are uni-
formly initialized for the baseline experiment. The out-
put probabilities are simply relative frequencies of words’
occurrences. We take all sentences from the training set
where the modeled semantic attribute is observed and count
the words therein. Afterwards we normalize the counts

over all words for one attribute and use this as output prob-
ability distribution. We start to counting at1 to avoid a
probability of value0.

Using this modeling technique and the described initial-
ization methods we obtain the recognition results shown in
Table 1. The percentages give the recognition accuracy, i.e.
we count all sentences as wrong where either an attribute
is deleted or inserted. Therefore the number of deletions
plus the number of insertions is higher than the number
of wrong sentences. If we have both, a deletion and an
insertion in one word chain, we only have one erroneous
sentence. What we do not count are insertions of theNIL
attribute because in our annotation we only haveNIL for
meaningless sentences but the attribute can also be present
in sentences which carry some meaning and then in the an-
notationNIL is omitted. Therefore we don’t have the pos-
sibility to decide automatically whether there are meaning-
less parts in the utterance or not. For that task we would
have to evaluate the semantic segmentation performance of
the model, which is not done yet. Within this evaluation
scheme the question arises if an insertion error should be
judged as expensive as a deletion because in the next step
after recognizing the semantic attributes we have to extract
the corresponding values (e.g. the real spoken city name
for the database query or the required time point). In this
step an insertion error can be discovered and repaired but
a deletion error not. At the moment we are only counting
deletions and insertions to scale our model’s performance.

HMM G2HMM
Accurate sentences 2843 2857
Wrong sentences 2109 2095

Accurate Detections 57 % 58 %

Insertions
Sentences 2068 2068

Deletions
Sentences 663 671

Table 1. Accuracy and number of errors of the baseline
experiment with statistical dependency of orderg = 1
(HMM) and orderg = 2 (G2HMM) with twelve seman-
tic attributes

The results show that our model is capable of learning
the assignment of words to attributes and therefore to se-
mantically analyze word chains. The main type of error we
have are insertions and if we take a detailed look on the in-
sertion errors we see that very often the semantic attribute
CITY is inserted within a syntactical construct giving the
destination or the starting point where the preposition (e.g.
“to : : :” or “from : : :” ) is assigned correctly but the city
name is assigned toCITY and not toGOAL or respec-
tively SOURCE. These errors are due to the initialization
we choose for the first experiment. A detailed analysis of
the deletions shows up that most often the attributeNIL is
affected which is also comprehensible as we have as exam-
ples for theNIL attribute only those sentences which are
completely meaningless for the task.



4 SUPPORTING METHODS AND RESULTS

The baseline experiment proves the capability of our ap-
proach to perform the task of semantic analysis in restricted
domains. In this section we introduce and examine some
methods which support our statistical model in semantic
analysis. Employing a method on its own gives only small
improvement in recognition rate. The impressive support-
ing power of these methods turns out when they are applied
in combination.

4.1. Categorial System

The first method we use is well-known in language mod-
eling and estimating word occurrence probabilities from
small data sets. We use a system of categories which
partitions the lexicon, i.e. each word belongs to one and
only one category. These categories are built consider-
ing syntactic and semantic constraints. In our experiments
we use two different categorial systems, the first one with
220 categories which serve as observables for the statisti-
cal model. For the second system we use only 13 different
main categories taken from the first categorial system like
’CITYNAME’ or ’WEEKDAY’. The words that do not be-
long to one of these categories build their own category.
Altogether we have 606 words comprised in the 13 cate-
gories and additionally 1076 words respectively categories
which results in an output alphabet consisting of 1089 ob-
servables. We still initialize the transition probabilities uni-
formly and the output probabilities as relative frequencies
where we start the counting at1, but we reduce the size of
the lexicon. For the experiments with category systems the
results are shown in the Tables 2 and 3.

HMM G2HMM
Accurate sentences 3111 3122
Wrong sentences 1841 1830

Accurate Detections 63 % 63 %

Insertions
Sentences 1814 1806

Deletions
Sentences 338 350

Table 2. Accuracy and Error-Rates for the experiments us-
ing a categorial system on the lexicon with 220 classes.

HMM G2HMM
Accurate sentences 3072 3093
Wrong sentences 1880 1859

Accurate Detections 62 % 62 %

Insertions
Sentences 1845 1836

Deletions
Sentences 350 323

Table 3. Accuracy and Error-Rates for the experiments us-
ing a categorial system on the lexicon with 1089 classes.

4.2. Initial Output Probabilities

In the next experiment we change the initialization method
for the output probabilities slightly. As described in sec-
tion 3 we use relative frequencies of words by counting the
words that are observed besides a special attribute and we
start to count at1. In this approach we start to count at0
because if a wordwj is never seen in combination with the
attributeCi we want to avoid explicitly the assignment of
this attribute in the analysis phase. Giving the wordwj the
output probabilityP (wj j Ci) = 0 does this. The recog-
nition results of this experiment using again the complete
word lexicon of 1682 words without categories are shown
in Table 4.

HMM G2HMM
Accurate sentences 2918 2913
Wrong sentences 2034 2039

Accurate Detections 59 % 59 %

Insertions
Sentences 1973 1956

Deletions
Sentences 778 825

Table 4. Accuracy and number of errors of the experiments
starting the count for the relative frequencies for the initial
output probabilities at0.

4.3. Initial Transition Probabilities

When we take a brief look at the results obtained in the ex-
periments described in sections 4.1. and 4.2. we see that
a lot of insertion errors occur. This is partially due to
the fact that our transition probabilities are uniformly ini-
tialized and the decision for the best assignment is only
guided by the output probabilities. That fact also explains
the problem described in section 3.2. with the insertion
of the CITY attribute when city names are seen. If the
probability for staying in theGOAL andSOURCE state
is tuned to a higher value, the model wouldn’t jump that
much around and hopefully also assigns the city name to
the GOAL/SOURCE segment. As the EVAR database
proves that attributes have a minimum length in number of
words that is needed to express the attribute we should use
this information for our model. For example, it is impos-
sible to express a departure city by only one word which
then has to be the name of the city. There must be at least
one additional word (e.g.’from’) indicating the special
semantic meaning. Therefore, attributes have characteristic
length distributions counted in number of words. We could
introduce some simple length modeling in our statistical
model by initializing transition probabilities not uniformly
but using these distributions. The results of this initializa-
tion scheme are reported in Table 5. Obviously the im-
provement is due to the fact that the number of insertions is
decreasing which was the desired effect.

Another modeling oppertunity which we have not exam-
ined yet is to scale dependencies between attribute by ad-
justing the transition probabilities. In the data we use there
are e.g. attribute combinations that never occur as well as



HMM G2HMM
Accurate sentences 3164 3124
Wrong sentences 1788 1828

Accurate Detections 64 % 63 %

Insertions
Sentences 1299 1751

Deletions
Sentences 1347 910

Table 5. Accuracy and number of errors of the experiments
with initial transition probabilities used for a crude length
modeling of attributes.

some combinations that are seen very often, like the se-
quence of first giving the departure city followed by the
destination. For our model we can use such information by
decreasing the transition probability for seldom seen com-
binations and increasing the often seen.

4.4. Combinations
As we have seen in the previous sections the supporting
methods are each on its own capable to improve the recog-
nition accuracy of the semantic attribute detection task. We
now want to combine those methods to see whether they
work even better together than individually. The experi-
ments we made showed the best accuracy rate for the fol-
lowing combination.� start counting for relative frequencies at0,� use the categorial system with 220 classes,� use initial transition probabilities for length modeling.

The results we obtain with these supporting methods are
reported in Table 6.

HMM G2HMM
Accurate sentences 3652 3455
Wrong sentences 1300 1497

Accurate Detections 74 % 70 %
Insertions

Sentences 812 1374

Deletions
Sentences 890 835

Table 6. Accuracy and number of error of the experiments
with the best recognition results.

5 CONCLUSION AND FUTURE WORK

We presented a probabilistic approach for the semantic
analysis of word chains and several methods which support
the statistical model and improve the performance of the
analysis. The problem of finding the semantic of a word
chain is formulated in a probabilistic manner. Our statis-
tic model is based on an unknown assignment function for
which the statistical parameters are estimated with the EM
algorithm depending on the desired statistical dependency.
For a dependency of orderg = 1 the well-know HMM for-
malism results, increasingg gives generalized versions of
HMMs.

We introduced our annotation scheme for the semantic
content of a word chain with so called semantic attributes.
For our purposes we use a system of 12 semantic attributes
encoding the information slots we have to fill to start a
database inquiry. One of these attributes is theNIL at-
tribute which models parts having no meaning in the do-
main. In the baseline experiment we prove the feasibility
of our statistical model. We achieve a semantic attribute
detection accuracy of 57% for a statistical dependency of
order1 and 58% for order2. The following section pre-
sented several methods for improving the performance of
our model and show their usability. We tested categorial
systems on the lexicon and several methods for initializing
the output and transition probabilities. The methods give
only small improvements when applied uniquely but their
combination shows impressive results. We achieve the best
recognition results of 74% for orderg = 1 and 70% for or-
derg = 2 with the categorial system with 220 classes, ini-
tial transition probabilities modeling the length of attributes
and starting the count of relative word frequencies at0.

In the future we are concentrating on the initial output
probabilities and on ways of using the semantic annota-
tion during training. As our statistical model is very sen-
sitive about the initialization we are looking for better ini-
tialization methods to be used e.g. ’intelligent’ smoothing
techniques for the relative frequencies. We are also consid-
ering an information theoretical measure like the salience
introduced in [4] for a smoothing operation on the output
probabilities. Besides that we want to use the semantic an-
notation as additional knowledge during the training. At
the moment we use the semantic annotation only for the
initialization of the output probabilities. We think that by
putting this information in the model we still can improve
the performance of our probabilistic semantic analysis.
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