
ON THE APPLICATION OF LIGHT FIELDRECONSTRUCTION FOR STATISTICAL OBJECTRECOGNITIONB. Heigl, J. Denzler, H. NiemannUniversit�at Erlangen{N�urnbergLehrstuhl f�ur Mustererkennung (Informatik 5)Martensstr. 3, D{91058 Erlangen, Germanyemail: heigl@informatik.uni-erlangen.dewww: http://www5.informatik.uni-erlangen.deABSTRACTIn this paper we apply light �eld reconstruction andrendering of object views to the problem of automaticgeneration of training material for a statistical objectrecognition system. The advantages of using a light �eldinstead of real images are shown. We evaluate with re-spect to the error rate of the classi�er, whether the re-constructed light �eld can be applied to the trainingstep. We also show how the recognition rate of the clas-si�er trained by the light �eld depends on its resolution.1 MotivationStatistical methods become more and more important inthe �eld of pattern recognition. First impressive resultshave been reported in the mid 80's in speech recognition,where Hidden Markov Models have been applied. To-day, almost all systems for speech recognition are basedon this kind of statistical framework. It turns out thatfor a suited con�guration of a statistical classi�er anenormous amount of representative training data is nec-essary [8].In the past years in computer vision statistical meth-ods have been of increasing interest, too. Examples are2{D and 3{D object recognition and pose estimation us-ing Bayesian classi�er [4], or motion segmentation withMarkov{Random �elds [3]. Where in speech recogni-tion large data sets can be recorded in a relatively shorttime, in computer vision it is a very time consuming taskto record a su�ciently large representative training set.One of the reasons is the number of free parameters.In the case of one 3{D object, the pose and the illumi-nation must be varied. Assuming Lambertian reectionsix parameters for the pose and three parameters for thelight source need to be varied.Thus, in the case of 3{D object recognition a largeamount of di�erent views of the object must be recorded.In practice, a certain amount of images of the objectis recorded manually, semi{automatically, or automati-cally using a robot arm with a mounted on camera. Ofcourse, manual recording is not feasible for such a task,but even in the case of an automatic strategy the move-ment of the robot takes a lot of time. Additionally, the

variation of the light source direction increases the ef-fort. Finally, for real applications a non trivial numberof di�erent objects needs to be distinguished.What might be a solution to these problems? Forrecognition algorithms which are based on segmentedprimitives in images (lines, corners) CAD models forsynthetic view generation could be a solution. Sophisti-cated lighting simulations and texture mapping increasethe quality of the images, but up to now, such a strat-egy does not result in data which is close to real imagestaken with a camera. In the case of appearance basedstrategies [9], this way fails, because an adequate mod-elling of the surface reectance of complex objects isactually impossible.In this paper we investigate a new concept in com-puter graphics regarding the suitability for statisticalpattern recognition. The light �eld [6] | also cited aslumigraph [2] | is a new image{based representationof arbitrary complex objects. The light �eld allows aphoto{realistic image rendering, without explicitly mod-elling the geometry of the object. In Sect. 2 we shortlysummarize the concept. We automatically build light�elds by a robot arm with a mounted on camera movingaround the object (Sect. 2). With the light �eld, newphoto{realistic views are rendered and they are thenused as training material to con�gure a statistical ob-ject recognizer. The statistical approach [9] is describedin Sect. 3. Sect. 4 gives a discussion of theoretical suit-ability of the light �eld for the training of statisticalclassi�ers. In Sect. 5 the con�gured classi�er is appliedto recognize and localize real objects in 3{D. The resultsare compared to those of a classi�er which is trainedwith real images taken with a camera. The results willshow, whether the rendered views reect the reality ac-curate enough to be applied to statistical training, andif an increasing number of rendered views also increasesthe recognition rate. Sect. 6 summarizes the results andgives ideas for future work.2 Recording the Light FieldIn correspondence to [6], one way to represent a light�eld, is to de�ne each viewing ray by two points on two



t s v u
Fig. 1: Representation of a viewing ray in the lumigraph.
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Fig. 2: Side view of the recording situation.speci�ed planes, as illustrated in Fig. 1. Fig. 2 showsa constellation, used to get the necessary conditions tocreate a light �eld in this representation. The images arerecorded automatically by a moving camera, mountedon a robot arm [1]. The optical center of the camerais moved to discrete positions of the uv{plane, whereasthe optical axis always intersects the object center. Thisrequires a good hand{eye calibration. The recorded im-ages are resampled, so that each image plane is trans-formed to the corresponding st{plane. Therefore, eachtransformed image represents a bundle of viewing rays,determined by one single uv{position and all positionsof the st{grid. Now the light �eld consist of a collectionof viewing rays with the corresponding color values.To render new unknown views with the light �eld,the coordinates u,v,s and t of the required light rayshave to be determined. The resulting color values arecalculated by bipolar interpolation between the valuesof the neighboring grid points. It is possible to renderimages from all arbitrary positions, if they are withinthe viewing angle. Combining more of those pairs ofplanes, the viewing angle can be varied in a more widerange.3 Statistical Object RecognitionWhen analyzing a 2{D image with multiple 3{D objectstwo major problems have to be solved: the pose esti-mation and classi�cation of each object in the scene.Most publications in the �eld of statistical object mod-eling use geometric information of segmentation resultsas random variables. Lines or vertices, for example, can

be used for the construction of statistical models. Thereare two major disadvantages of using segmentation re-sults. When restricting the recognition process to thislevel of abstraction a lot of information contained in theimage is lost. Another disadvantage are the errors madeby segmentation.These are the reasons for using the gray{level infor-mation of an image [9]. There exists a lot of work basedon segmentation free object recognition, for example,correlation, appearance based modeling [7], maximiza-tion of mutual information [10], or methods based onmixture densities of the gray values of object images.All approaches in statistical pattern recognition needa huge amount of training data to con�gure the classi-�er which depends on the number of parameters of thestatistical model as well as on the number of objects,which shall be distinguished.For the experiments in this paper we apply a statis-tical 3{D object localization and classi�cation approachdescribed in [9] extended for using color images. InFig. 3 an overview of the system is given. The parameterspace is six{dimensional for this task. The 3{D trans-formation consists of the rotationR 2 IR3�3 determinedby three parameters and the translation t 2 IR3In a �rst step of the localization process a multireso-lution analysis of the image is done to derive feature val-ues on di�erent scales and resolutions (sampling rates)at the locations of rectangular sampling grids.We de�ne a statistical measure for the probability ofthose features under the assumption of an object trans-formation. The complexity of the pose estimation ishigh if all features on the di�erent scale levels are com-bined into one measure function. Therefore, a hierar-chical solution is used. Measures are de�ned for eachscale. The analysis starts on a low scale and a roughresolution. The resolution is then increased step bystep. The transformation estimation becomes more ex-act with each step. Let ~cs be the vector of the con-catenated feature vectors detected in an image on scales, Bs the model parameters of an object class andR; t be parameters for rotation and translation. Themodel parameters Bs consist of geometric informationlike probability density locations and other density pa-rameters. The density p(~csjBs;R; t) is then used for lo-calization. The maximum likelihood estimation resultsin (bRs;bts) = argmax(R; t) p(~csjBs;R; t).As here is not enough room for a detailed descrip-tion, we refer to [9], including feature extraction, modelformulation and the parameter estimation.4 Light Field Rendering for Statistical ObjectRecognitionThe problem, for which we propose a solution, is therequirement of a huge amount of training material, i.e.sample views of each object. In the training step thepose of the object in 3{D is needed. For this, usually



Image ! Multiresolutionhierarchy ! Maximum{Likelihoodestimationargmax(R; t) p(~cs0 jBs0 ;R; t)#argmax(R; t) p(~cs1 jBs1 ;R; t)#argmax(R; t) p(~cs2 jBs2 ;R; t)Fig. 3: System overview: Probability density maximiza-tion on multiresolution hierarchy of images (from [9]).a known constellation of object and camera is achieved,by moving a camera by a robot's arm around the object.This is a time consuming task, because for the robot'sposition high precision is needed.An alternative approach to this problem is to recon-struct the light �eld of an object with a certain resolu-tion and to render views for training. The advantagesof this approach are:1. If we have recorded a light �eld once, we are able torender arbitrary many views at arbitrary positionswith arbitrary camera parameters like for focus orradial distortion.2. We are also able to render views, even at positionswhich can not be reached by the robot's arm or berecorded sharply because of the limitations of thecamera lens.3. The rendering process is much faster (app. one sec-ond per image) than the movement of the robot(app. twelve seconds per image).4. You can use one special constellation for recordingthe light �eld which is calibrated exactly.Therefore we have a virtual environment for generationof scene views.It may sound strange to use one object model (thelight �eld) to create another one (the statistical). Soit seems to be possible to use the light �eld itself asobject model. But the light �eld just is able to repre-sent a special recording situation with a certain illumi-nation whereas the statistical object model also includesthe variance of illumination. Therefore we have to useseveral light �elds recorded at di�erent illuminations torender views for the statistical training.One basic assumption is, that the rendered images re-ect the reality with a su�cient accuracy to con�gure astatistical model. This depends on the resolution of thelight �eld, the exactness of the camera positioning dur-ing recording and the accuracy of interpolation. Thesepreliminaries are examined in the next section, wherethe veri�cation is based on the results of the 3{D objectlocalization described in Sect. 3, taking into account justthe coarsest resolution.

5 Experiments and ResultsFor con�guring the statistical classi�er, a training sethas to be recorded. For our special classi�er, the record-ing positions must have a constant distance to the ob-ject, so they have to lie on a sphere. Also their exactpose in 3{D must be known. Now we achieve these viewsby two ways: we directly record them with a robot andwe reconstruct them with a previously recorded light�eld. We have used two objects for evaluation. Bothoriginal objects can be seen in Fig. 4 as well as the cor-responding views rendered by the reconstructed light�eld.

Fig. 4: Two objects for experiments. Left: original im-age. Right: rendered image using the reconstructedlight �eld. First row: object 1. Second row: object2. The image data in the training step for a certainillumination on the one hand consists of 172 originalcolor images, and on the other hand of 332 and 172rendered color images of a light �eld, which has beenreconstructed from 172 original images, as described inSect. 2. For training, three di�erent illuminations havebeen used. For testing both classi�er| trained by origi-nal images as well as the classi�er con�gured by renderedimages | they have to localize 289 di�erent directlyrecorded views of the objects in 3{D, i.e. three anglesand the displacement in the 2{D image plane must beestimated. The distance to the object is assumed to beknown and �xed. At present, this is a limitation by thestatistical model described in Sect. 3. For evaluation, wedecide, that an object is not correctly localized, if the re-constructed pose for at least one angle di�ers more than10 degrees from the real pose. In Tab. 1 the results canbe seen for the classi�ers trained with original images(ORIG) and trained with rendered images (LIF).It is worth noting, that the information which is usedfor the light �eld reconstruction always consists of 172images, independently of the number of images renderedfor training.



object # training error rate errorimages ORIG rate LIF1 3� 332 n.a. 21.91 3� 172 12.1 22.82 3� 332 n.a. 15.32 3� 172 7.6 14.1Tab. 1: Localization results for the objects using athreshold of 13 degrees for one of the three rotation axesand 10 pixels for x{ and y{translation.
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10Fig. 5: Comparison of error rates for object 2 in depen-dence on the threshold for angles.The results show, that the rendered images still lackthe necessary reality to result in the same recognitionrates as for real images. Increasing the number of ren-dered training images does not result in a better recog-nition rate generally. The classi�er LIF has an up to twotimes as large error rate. Fig. 5 shows the dependencyof the error rates on the threshold for angles.A detailed inspection of the results have shown, thatfor rendered images at the border of the �eld of viewthe perspective distortions increase signi�cantly. This iscaused by small errors in the camera calibration and thehand{eye calibration of the robot's arm. These prob-lems are not applicable for the classi�er ORIG, becausethe statistical model is optimized with respect to thecamera and the accuracy of hand{eye calibration. Theexact calibration parameters play no part in the param-eter estimation step as long as the test images are takenwith the same camera and the same robot con�guration.Thus, to run a fair comparison between ORIG and LIF,test images should be taken with another camera androbot arm.Nevertheless, the results also show, that the conceptof light �elds is a promising image based rendering tech-nique for statistical object recognition. Including geo-metric information in the reconstruction process as al-ready mentioned by [6] will improve the quality. Also,more accurate camera calibration and hand{eye calibra-
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