
A Two-Stage Probabilistic ApproachFor Object RecognitionStan Z. Li1 and Joachim Hornegger21 Nanyang Technological UniversitySchool of EEE, Nanyang Avenue, Singapore 639798szli@szli.eee.ntu.ac.sghttp://markov.eee.ntu.ac.sg:8000/~szli/2 Stanford University, Robotics LaboratoryGates Building 134, Stanford, CA 94305-9010, USAjh@Robotics.Stanford.EDUAbstract. Assume that some objects are present in an image but can beseen only partially and are overlapping each other. To recognize the ob-jects, we have to �rstly separate the objects from one another, and thenmatch them against the modeled objects using partial observation. Thispaper presents a probabilistic approach for solving this problem. Firstly,the task is formulated as a two-stage optimal estimation process. The�rst stage, matching, separates di�erent objects and �nds feature cor-respondences between the scene and each potential model object. Thesecond stage, recognition, resolves inconsistencies among the results ofmatching to di�erent objects and identi�es object categories. Both thematching and recognition are formulated in terms of the maximum aposteriori (MAP) principle. Secondly, contextual constraints, which playan important role in solving the problem, are incorporated in the proba-bilistic formulation. Speci�cally, between-object constraints are encodedin the prior distribution modeled as a Markov random �eld, and within-object constraints are encoded in the likelihood distribution modeled asa Gaussian. They are combined into the posterior distribution which de-�nes the MAP solution. Experimental results are presented for matchingand recognizing jigsaw objects under partial occlusion, rotation, trans-lation and scaling.1 IntroductionModel-based object recognition is a high level vision task which identi�es the cat-egory of each object in the scene with reference to the model objects. There aretwo broad types of approaches: templet-based and feature-based. In the templet-based approach, an object is represented by a templet which may be in the formof its bitmap or the entire outline; the observation is matched to the templetbased on some distance measure. This approach has been used in numerous ap-plications such as character recognition and face recognition in which objectsare well observed in the image.Currently, the templet-based approach does not seem to o�er a proper solu-tion to the partial matching problem. A basic assumption in the templet-based



approach is that the object can be observed entirely. The assumption is invali-dated when objects are only partially observable due to mutual occlusions. Thetemplet-based approach is not inherently ready to handle this situation: Whileit allows local deformations, it is unable to perform with missing parts. This isbecause of its lack of the ability to represent an object by local features.The feature-based approach is complementary to the templet-based approachin this regard. Here, an object model is represented by local object features, suchas points, line segments or regions, subject to various constraints [3, 8, 6, 17].Object Matching is performed to establish correspondences between local featuresin the scene (image) and those in each model object. Because it is based on thelocal features of an object rather than the global information of it, it is moreappropriate to handle the partialness and ovelappingness, and hence provides analternative for object recognition. This paper is aimed to investigate a formalmathematical framework for object recognition using partial observation.From a pattern recognition viewpoint, an object is considered as a pattern ofmutually or contextually constrained features. The use of contextual constraintsis essential in the interpretation of visual patterns. An feature itself makes littlesense when considered independently of the rest. It should be interpreted inrelation to other image features in the spatial and visual context. At a higherlevel, a scene is interpreted based on various contextual constraints betweenfeatures.An interesting situation is when a scene contains many, possibly mutually oc-cluded, objects, which is the case dealt with in this paper. In this situation, boththe following two sources of contextual constraints are required to resolve am-biguities in the model-based matching and recognition, in our opinion: between-object constraints (BOCs) and within-object constraints (WOCs). The particularstructure of an object itself is described by the WOCs of the object. Such con-straints are used to identify an instance of that object in the scene. The BOCs,which describe constraints on features belonging to di�erent objects, are used todi�erentiate di�erent objects in the scene. In a sense, within-object constraintsare used for evaluating similarities whereas between-object constraints are forevaluating dissimilarities. An interpretation is achieved based on the two typesof constraints.In matching and recognition, as in other image analysis tasks, exact andperfect solutions hardly exist due to various uncertainties such as occlusion andunknown transformations from model objects to the scene. Therefore, we usuallylook for some solution which optimally satis�es the considered constraints. Aparadigm is prediction-veri�cation [1]. It is able to solve the matching probleme�ciently. In terms of statistics, we may de�ne the optimal solution to be themost probable one. The maximum a posteriori (MAP) principle is a statisticalcriteria used in many applications and in fact has been the most popular choicein statistical image analysis.Markov random �eld (MRF) theory provides a convenient and consistentway for modeling image features under contextual constraints [4, 14, 12], also forobject recognition [15, 5, 12, 9]. MRFs and MAP together give rise to the MAP-



MRF framework. This framework, advocated by Geman and Geman (1984) andothers, enables us to develop algorithms for a variety of vision problems system-atically using rational principles rather than relying on ad hoc heuristics.Scene-model matching is generally performed by considering one model ob-ject at a time, and when there are multiple model objects, multiple matchingresults are generated. Because the matching to each model is done independentlyof the other models, inconsistencies can exist among the results of matching tothe di�erent objects, and must be resolved to obtain consistent and unambiguoussolutions. Our formulation of a two-stage estimation o�ers a solution in termsof the MAP principle.In this paper, we develop a statistically optimal formulation for object match-ing and recognition of a scene containing multiple overlapping objects. Matchingand recognition are posed as labeling problems and are performed in two con-secutive stages, each solving an MAP-MRF estimation problem. The �rst stagematches the features extracted from the scene against those of each model objectby maximizing the posterior distribution of the labeling. This �nds feature cor-respondences between the scene to the model objects, and separates overlappingobjects from one other. It produces multiple MAP matching results, each forone model object. Inconsistencies in these results are resolved by the second es-timation stage, MAP recognition. In this latter stage, the MAP matching resultsproduced by the previous stage are examined as a whole, inconsistencies amongthem are resolved, and all the objects are identi�ed unambiguously �nally.The contextual constraints are imposed in probability terms. The BOCs areencoded in the prior distribution modeled as a Markov random �eld (MRF).This di�erentiates between di�erent objects and between an object and the back-ground. In a way, this is similar to the line-process model [7] for di�erentiatingedge and non-edge elements. The WOCs are encoded in the likelihood distribu-tion modeled as a Gaussian. It compares the similarity between a model objectand its corresponding part in the scene. The BOCs and the WOCs are combinedinto the posterior distribution. An optimal solution, either for matching or forrecognition is de�ned as the most probable con�guration in the MAP sense.The rest of the paper is organized as follows: In Section 2, the optimal so-lutions for matching and recognition are formulated, which illustrates how touse probabilistic tools to incorporate various contextual constraints and howto resolve ambiguities arising from matching to individual model objects. Ex-periments are presented in Section 3 for matching and recognition of a scenecontaining multiple free-form jigsaw objects under rotations, translations, scalechanges and occlusions.2 Two Stage MAP-MRF EstimationObject matching and recognition, like many other image analysis problems, canbe posed as labeling problems. Let S = f1; : : : ;mg be a set of m sites corre-sponding to the features in the scene, and L = f1; : : : ;Mg be a set of M labelscorresponding to the features in a model object. What types of features to use



to represent an object is a problem not addressed in this paper. We assume somefeatures have been chosen which present invariance in some feature propertiesand relations. An example of representation is given in the experiments sectionfor curved objects like jigsaw, which can be referred to now by the unfamiliarreader.In addition to the M labels in L, we introduce a virtual label, called theNULL and numbered 0. It represents everything not in the above label set L,including features due to un-modeled objects as well as noise. By this, the labelset is augmented into L+ = f0; 1; : : : ;Mg. Labeling is to assign a label fromL+ to each site in S. Without confusion, we still use the notation L to denotethe augmented label set unless there is a necessity to di�erentiate. A labelingcon�guration, denoted by f = ff1; : : : ; fmg, a mapping from the set of sites tothe set of labels, i.e. f : S ! L, in which fi 2 L is the object feature matchedto the image feature i. When there are more than one object, a label representsnot only an object feature but also the object category.Given the observed data d, we de�ne the optimal labeling f� to be the onewhich maximizes the posterior. The posterior is a Gibbs distribution P (F =f j d) / e�E(f) with the posterior energyE(f) 4= U(f j d) = U(f) + U(d j f) (1)The energy is a sum of the prior energyU(f) (the energy in the prior distribution)and the likelihood energy U(d j f) (the energy in the distribution of d). Hence,the MAP solution is equivalently found by minimizing the posterior energy f� =argminf2FE(f). An MAP estimation is performed in each of the two stages.2.1 Stage 1: MAP MatchingThis stage performs MAP matching to each model object by minimizing theenergy E(f) of a posterior distribution in which the prior is modeled by Markovrandom �elds (MRFs) and the likelihood by Gaussian.The prior is modeled as an MRF which is a Gibbs distribution P (f) =Z�1 � e�U(f) where Z is the normalizing constant. The energy U(f) is of theform U(f) = Pc2C Vc(f) where C is the set of \cliques" for a neighborhoodsystem N and Vc(f) are the clique potential functions. In object matching,one may restrict the scope of interaction by de�ning the neighborhood set ofi as the set of the other features which are within a distance r from feature i,Ni = fi0 2 S j [dist(featurei0 ; featurei)]2 � r; i0 6= ig. The function \dist" is asuitably de�ned function for the distance between features. For point features,it can be chosen as the Euclidean distance between two points. It is tricky ashow to de�ne a distance between non-point features; e.g. for straight lines, asimple de�nition would be the distance between the midpoints of two straightlines. The distance threshold r may be chosen reasonably to be the maximumdiameter of the model object currently under consideration.The prior energy U(f) is of the form U(f) =Pc2C Vc(f) where C is the setof \cliques" and Vc(f) are the clique potential functions. In essence, a Gibbs



distribution is featured by two things: it belongs to the exponential family andits energy is de�ned on clique potentials. When cliques containing up to twosites are considered, the energy has the following formU(f) = Xfig2C1 V1(fi) + Xfi;i0g2C2 V2(fi; fi0) =Xi2S V1(fi) +Xi2S Xi02Ni V2(fi; fi0) (2)where C1 = ffig j i 2 Sg and C2 = ffi; i0g j i0 2 Ni; i 2 Sg are the sets ofsingle- and pair-site cliques, respectively, and V1 and V2 are single- and pair-sitepotential functions. In de�ning C2, we assume that fa; bg is an ordered set andso fi; i0g 6= fi0; ig. The clique potentials are de�ned asV1(fi) = �0 if fi 6= 0v10 if fi = 0 ; V2(fi; fi0) = �0 if fi 6= 0 and fi0 6= 0v20 if fi = 0 or fi0 = 0 (3)where v10 > 0 and v20 > 0 are penalty constants for NULL labels.The pair-site clique potentials V2(fi; fi0) encode between-object constraintsby treating the two situations di�erently: (i) when both features are due to theconsidered object (fi 6= 0 and fi0 6= 0), and (ii) when one of the features is due tothe background or another object (fi = 0 or fi0 = 0). This di�erentiates betweenthe considered model object and another object, and between the consideredmodel object and the background. A dissimilarity between the classes of thetwo features is thus evaluated. The potentials associate label pairs belonging tothe considered object (more closely related) with a lower cost, and associateslabel pairs belonging to di�erent objects (less closely related) with a higher cost.Therefore, the use of the properties of the pairwise interactions plays a crucialrole in separating overlapping objects.The likelihood distribution p(d j f) describes the statistical properties ofmodel features seen in the scene and is therefore conditioned on pure non-NULLmatches fi 6= 0. It depends on how the visible features are observed, and this inturn depends on the underlying transformations and noise, which is regardless ofthe neighborhood system N . Denote D1 for unary properties and D2 for binaryrelations between the features of a model object. Assume (i) that the truthD = fD1; D2g of the model features and the data d are composed of types offeatures which are invariant under the considered class of transformations (theirselections are application-speci�c); (ii) that they are related via the observationmodels d1(i) = D1(fi) + e1(i) and d2(i; i0) = D2(fi; fi0) + e2(i; i0) where e isadditive independent zero mean Gaussian noise.1 Then the likelihood functionis a Gibbs distribution with the energyU(d j f) = Xi2S;fi 6=0V1(d1(i) j fi) + Xi2S;fi 6=0 Xi02Sni;fi0 6=0V2(d2(i; i0) j fi; fi0) (4)1 The assumptions of the independent Gaussian noise may not be accurate but o�ersan approximation when an accurate observation model is not available.



where Sni 4= S�fig, and the summations are restricted to the non-NULLmatchesfi 6= 0 and fi0 6= 0. The likelihood potentials areV1(d1(i) j fi) = K1Xk=1[d(k)1 (i)�D(k)1 (fi)]2=f2[�(k)1 ]2g (5)and V2(d2(i; i0) j fi; fi0) = K2Xk=1[d(k)2 (i; i0)�D(k)2 (fi; fi0)]2=f2[�(k)2 ]2g (6)where the vectorsD1(fi) andD2(fi; fi0) are the \conditional mean" (conditionedon f) for the random vectors d1(i) and d2(i; i0), respectively; K1 and K2 arethe numbers unary properties and binary relations; [�(k)n ]2 (k = 1; : : : ;Kn andn = 1; 2) are the variances of the corresponding noise components.The likelihood potentials are de�ned for image features belonging only to themodel object under consideration (fi 6= 0 and fi0 6= 0). Therefore they encodethe within-object constraints. They are used to evaluate the similarity betweenthe model object and its corresponding part in the scene.The constraints on both the labeling a priori and the observed data areincorporated into the posterior distribution with the posterior energyU(f j d) =Pi2S V1(fi) +Pi2SPi02Ni V2(fi; fi0)+Pi2S:fi 6=0 V1(d1(i) j fi)+Pi2S:fi 6=0 Pi02Sni:fi0 6=0 V2(d2(i; i0) j fi; fi0) (7)Hence, the between-object constraints and the within-object constraints are com-bined into the posterior energy. The MAP matching is the con�guration whichminimizes U(f j d).One model object is considered at a time. Minimizing U(f j d) for a modelobject results in a mapping from S to L+ for that object. The result tells ustwo things: (i) (separation) image features belonging (the \in-subset") and notbelonging to the considered object, and (ii) (matching) correspondences betweenthe features in the \in-subset" and the features of the model object.The parameters MRF v10 and v20 and the likelihood parameter �(k) have tobe determined in order to completely de�ne the MAP solution. This is done byusing a supervised learning algorithm [12].The present model can be compared to the coupled MRF model of [7] in thatthere are two coupled MRFs, one for line processes (edges) and one for intensities;and a line process variable can be on or o� depending on the di�erence betweenthe two neighboring intensities. The concept of \line process" in the presentmodel is the relational bond between features in the scene. When fi 6= 0 andfi0 6= 0, i and i0 are relationally constrained to each other; otherwise when fi = 0or fi0 = 0, the relational bond between i and i0 is broken. The di�erences are:the present model makes use of relational measurements of any orders becausecontextual constraints play a stronger role in high level problems, whereas themodel in [7] uses only unary observation. Moreover, in the present model, the



i = 1 2 3 4 5 6 7 8 9 10 11 12f (1) 0 0 0 0 0 0 0 0 0 0 0 0f (2) 0 0 0 0 0 0 0 10(2) 9(2) 7(2) 0 0f (3) 0 0 0 0 0 0 0 0 0 3(3) 4(3) 0f (4) 0 0 0 5(4) 4(4) 3(4) 2(4) 1(4) 0 0 0 0f (5) 0 0 0 0 0 0 0 7(5) 6(5) 5(5) 4(5) 3(5)f (all) 0 0 0 5(4) 4(4) 3(4) 2(4) 7(5) 6(5) 5(5) 4(5) 3(5)Table 1. Matching and recognition of an image containing m = 12 features to L = 5objects.neighborhood system is non-homogeneous and anisotropic, as opposed to theimage case in which pixels are equi-spaced.The MAP matching of the scene is performed to each potential object oneby one. In this case, the complexity of the search is linear in the number ofmodels. Some fast screening heuristics may be imposed to quickly rule out un-likely models, but this is discussed in this paper. We concentrate on the MAPformalism.2.2 Stage 2: MAP RecognitionAfter matching to each potential object one by one, we obtain a number of MAPsolutions. However, inconsistencies may exist among them: Assuming that thereare L potential model objects, we have L MAP solutions, f (1); : : : ; f (L) wheref (�) = ff (�)1 ; : : : ; f (�)m g is the MAP labeling f� for matching the scene to modelobject � 2 f1; : : : ; Lg obtained in stage 1, and f (�)i denotes feature numberI = fi of object �. Since each f (�) is the optimal labeling of the scene in termsonly of model object � but not of the other objects, inconsistencies may existamong the L results in the sense below.A feature i 2 S in the scene may have been matched to more than one modelfeature in di�erent objects; that is, there may exist more than one � 2 f1; : : : ; Lgfor which f (�)i 6= 0. Table 1 illustrates an example of results for matching animage with m = 12 features to L = 5 model objects, where f (�) (� = 1; : : : ; 5)are the MAP solutions for matching to the �ve objects. For example, imagefeature i = 8 has been matched to 10(2) (feature No. 10 of object 2), 1(4) and 7(5).However, any feature in the scene should be matched to at most one non-NULLmodel feature; that is, for a speci�c i, there should be that either f (�)i = 0 for all� or f (�)i 6= 0 for just one � value. When this is not the case, the inconsistenciesshould be resolved in order to unambiguously identify the object category towhich each image feature uniquely belongs. A possible consistent �nal result isgiven as f (all) in the table.The recognition stage is to make the matching results consistent and to iden-tify the categories of objects in the scene. Again, this stage is also formulated as



an MAP estimation. Denote object � as O(�). The posterior derived previouslyfor matching to O(�) can be explicitly expressed as P (f j d;O(�)). Denotingthe posterior probability for matching to all the L objects as P (f j d;O(all))where O(all) is short for O(1); � � � ;O(L), the MAP recognition is then de�ned asf� = argmaxf2F(all) P (f j d;O(all)). The con�guration space F(all) consists of(1 +PL�=1M (�))m elements, where M (�) is the number of labels in model �,when all the labels in all the models are admissible.The posterior, P (f j d;O(all)) / P (f j O(all))p(d j f;O(all)), is a Gibbsdistribution because of the Markov property of the labels. Similar to that in thematching stage, the prior energy isU(f j O(all)) =Xi2S V1(fi j O(all)) +Xi2S Xi02Ni V2(fi; fi0 j O(all)) (8)and the likelihood energy isU(d j f;O(all)) = Xi2S;fi 6=0V1(d1(i) j fi;O(all)) +Xi2S;fi 6=0 Xi02Sni;fi0 6=0V2(d2(i; i0) j fi; fi0 ;O(all)) (9)The single-site potential are de�ned as V1(f (�)i j O(all)) = V1(f (�)i j O(�)) whichis the same as that in (3) for matching to a single model object �. The pair-sitepotential are de�ned asV2(f (�)i ; f (�0)i0 j O(all)) = 8<:V2(f (�)i ; f (�0)i0 j O(�);O(�0)) if � = �0v20 otherwise : (10)where V2(f (�)i ; f (�0)i0 j O(�);O(�0)) = V2(fi; fi0) is the same as that in (3). Theabove de�nitions are a straightforward extension of (3): In (3), features due toother objects (as opposed to the one currently under consideration) are all la-beled as NULL ; (10) simply takes this principle into consideration for recognizingmultiple objects. Using (3), we obtainV2(f (�)i ; f (�0)i0 j O(all)) = �0 if (� = �0) and (f (�)i 6= 0) and (f (�0)i0 6= 0)v20 otherwise (11)The single-site likelihood potentials are V1(d1(i) j f (�)i ;O(all)) =V1(d1(i) j f (�)i ;O(�)) which is the same as (5). The pair-site likelihood potentialsareV2(d2(i; i0) j f (�)i ; f (�0)i0 ;O(all)) =8>><>>:V2(d2(i; i0) j f (�)i ; f (�0)i0 ;O(�);O(�0))if � = �00 otherwise(12)



where V2(d2(i; i0) j f (�)i ; f (�0)i0 ;O(�);O(�0)) = V2(d2(i; i0) j fi; fi0) is the sameas (6). The posterior energy is obtained as U(f j d;O(all)) = U(f j O(all)) +U(d j f;O(all)).When LMAP matching solutions are available, the con�guration space F(all)can be reduced to a great extent. Let S 0 � S be the set of sites which werepreviously matched to more than one non-NULL label, S 0 = fi 2 S j f (�)i 6=0 for more than one di�erent �g. For the case of Table 1, S 0 = f8; 9; 10; 11g.Only those labels in i 2 S 0 are subject to changes in the recognition stage.Therefore, the con�guration space can be reduced to F(all) = L(all)1 � L(all)2 �� � � � L(all)m where L(all)i is constructed in the following way:{ For i 2 S 0, L(all)i consists of all the non-NULL labels previously assigned toi, ff (�)i � 6= 0 j � = 1; : : : ; Lg, plus the NULL label;e.g. L(all)8 = f0; 10(2); 1(4); 7(5)g for Table 1.{ For i 62 S 0, L(all)i consists of the non-NULL label if there is a non-NULL label,or L(all)i = f0g otherwise; e.g. L(all)6 = f3(4)g, and L(all)3 = f0g.Each involved object � contributes one or zero label to L(all)i , as opposed toM (�)labels before the reduction, and therefore the size of L(all)i is at most L + 1 asopposed to 1+PL�=1M (�) before. The size of L(all)i is one for i 62 S 0. Therefore,the MAP recognition is thus reduced to the following: (i) It is performed overthe reduced con�guration space F(all)S0 = Qi2S0 L(all)i ; (ii) it is to maximize theconditional posterior f�S0 = argmaxfS02F(all)S0 P (fS0 j d; fS�S0 ;O(all)) where fS0 =ffi j i 2 S 0g is the set of labels to be updated, and fS�S0 = ffi j i 2 S � S 0g isthe set of labels which are �xed during the maximization. It is equivalently tominimize the conditional posterior energy U(fS0 j d; fS�S0 ;O(all)).After the reduction, only one or just a small number of labels remain ad-missible for each site and the search space becomes very small. For example,for the case of Table 1, the reduced label sets of size larger than one areL(all)8 = f0; 10(2); 1(4); 7(5)g, L(all)9 = f0; 9(2); 6(5)g, L(all)10 = f0; 7(2); 3(3); 5(5)g,L(all)9 = f0; 4(3); 4(5)g, and the sizes of L(all)i are one for i 62 S 0; the previoussize of P5�=1(M (�) + 1)12 con�gurations (say, M (�) = 10) is then reduced to4� 3� 4� 3 = 144, so small that an exhaustive search may be plausible.2.3 Minimization MethodsThe optimization in MAP matching and recognition is combinatorial. While anoptimum is sought in a global sense, many optimization algorithms are basedon local information. Many algorithms are available for this [12]. The ICM al-gorithm [2] iteratively maximizes local conditional distributions in a way as a\greedy method". Global optimizers such as simulated annealing (SA) [11, 7]also iterate based on local energy changes. Relaxation labeling algorithms [10,16] provide yet another choice. It is desirable to �nd globally good solution with



a reasonable cost. A comparative study [13] shows that the Hummel-Zucker re-laxation labeling algorithm [10] is preferable in terms of the minimized energyvalue and computational costs. Therefore, the Hummel-Zucker algorithm is usedfor computing the MAP solutions in our experiments. As the result of unam-biguous relaxation labeling, there is a unique fi for any i in the scene while theglobal energy reaches a local minimum.The computational time is dominated by relaxation labeling, in the �rststage, which matches the scene to each model, and hence so is the complexity ofthe system. The Hummel-Zucker relaxation labeling algorithm converges afterdozens of iterations.3 Experimental ResultsThe following experiment demonstrates the use of the present approach for theMAP object matching and recognition of partially observed and overlapping ob-jects. There are 8 model jigsaw objects in the model-base which can be seenlater in the results. All the models share the common structure of round ex-trusions and intrusions, and such ambiguities can cause di�culties in matchingand recognition. In a scene, the objects are rotated, translated, scaled, partiallyoccluded and overlapping, as shown in Fig.1. Boundaries are computed from theimage using the Canny detector followed by hysteresis thresholding and edgelinking, which results in three broken edge sequences. After that, corners of theboundaries, which are de�ned as curvature extrema and tangent discontinuities,are located, and used as feature points (Fig.1). Some model feature points aremissing and the boundary of the object in the center is broken into two pieces.The sites in S correspond to the corners on a image curve and the labels in Lcorrespond to such feature points on a model curve.
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Fig. 1. A jigsaw image (left), the detected boundaries and corners (right).
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Fig. 2. Deriving similarity invariants for each curve segment bounded by two featurepoints pi and pj .3.1 Invariant FeaturesA similarity invariant representation is used to encode constraints on the featurepoints (d1(i)) and on the curve segments between the feature points (d2(i; j)).The invariant unary property d1(i) is chosen to be the sign of the curvature�(pi) for corner i. Similarity invariant relations d2(i; j) are derived to describethe curve segment between the pair of corner i and j, as follows: Consider thecurve segment dpipj between pi and pj and the straight line pipj that passesthrough the points, as illustrated in Fig.2. The ratio of the arc-length dpipj andthe chord-length pipj : d(1)2 (i; j) = arclength(dpipj)chordlength(pipj ) is an invariant scalar. Theratio of curvature at pi and pj : d(2)2 (i; j) = �(pi)�(pj) is also an invariant scalar.Two n-position-vectors of invariants are derived to utilize the constraints on thecurve segment: First, �nd the mid-point, denoted by p0, of dpipj such that curvesegments dpip0 and dp0pj have the equal arc-length. Next, �nd the point, denotedby o, on pipj such that line op0 is perpendicular to opj . Both p0 and o are uniquefor dpipj . Then sample the curve segment at the n equally spaced (in arc-length)points u1; : : : ; un. This is equivalent to inserting n� 2 points between pi and pj .The vector of normalized radii is de�ned as d(3)2 (i; j) = [rk]nk=1 where rk = kuk�okkop0kis similarity invariant. The vector of angles is de�ned as d(4)2 (i; j) = [�k]nk=1where �k = \ukopi is also similarity invariant. Now, d2(i; j) consists of fourtypes (K2 = 4) of 2n+ 2 similarity invariant scalars.3.2 Matching and RecognitionIn the matching stage, an image curve is matched against each of the eightmodel jigsaws. Fig.3 shows the solutions of matching one of the image bound-ary curves (in solid) to each of the eight model jigsaws, i.e. the MAP estimates



(1) (2) (3)

(4) (5) (6)
(7) (8) (9)Fig. 3. Results from matching and recognition stages. (1) MAP solution f (1)� formatching the boundary curve (in solid) to model jigsaw No.1 (in dashed). The overlayof the model jigsaw on the input boundary curve indicates the correspondence. (2){(8)MAP solutions for matching the boundary curve to models Nos.2{8. (9) The �nal MAPrecognition result where the three recognized model jigsaws are overlayed on the inputboundary curve.



Fig. 4. The overall matching and recognition result.f (�)� = maxf P (f j d;O(�)) for � = 1; : : : ; 8, where each model jigsaw (indashed) is aligned to the curve. The overlapping portion indicates the corre-spondences whereas the image corners in the non-overlapping portion of thescene are assigned the NULL label.The matching stage does two things: (i) It classi�es the corners in the sceneinto two groups, non-NULL and NULL , or in other words, those belonging tothe considered object and those not. (ii) For the non-NULL group, it gives thecorresponding model corners. Therefore, the matching stage not only �nds thefeature correspondences between the scene and the considered model, but alsodoes the separation of feature belonging to the considered object from those not.Despite the ambiguities caused by the common structure of round extrusionsand intrusions, the MAP matching has successfully distinguished the right modelusing information about the other part of the model. Also, it allows multipleinstances of any model object, as in f (5)� and f (7)� of Fig.3 where each containstwo instances of a model.Although each MAP matching result is reasonable by itself, it may be incon-sistent with others. For example, f (2)�, f (3)� and f (7)� in Fig.3 compete for acommon part. This is mostly due to the common structures mentioned above.The inconsistencies have to be resolved. The MAP recognition stage identi�esthe best model class for each corner in the scene. The �nal recognition result isshown in the lower-right corner of Fig.3. Fig.4 shows the overall result for match-ing and recognizing the three boundary curves in the scene to all the models.There are a number of parameters involved in the de�nition of the MAPsolutions. Parameters v20 = 0:7 is �xed for all the experiments. Parameters[�(k)2 ]2 in the likelihood are estimated by using a supervised learning procedure[12]. The estimated values are 1=�(1)2 = 0:00025, 1=�(2)2 = 0, 1=�(3)2 = 0:02240



and 1=�(4)2 = 0:21060 for the likelihood. For the unary properties, we set v10 = 0for the prior and V1(d1(i) j fi) = 0 for the likelihood. The reason for settingv10 = 0 is that the in
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