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Abstract

In this paper we describe a system for automatic gait analysis. Different
kinds of human gait are recognized using sequences of grey—level images.
No markers are needed to get the trajectories of different body parts. The
tracking of body parts and the classification are based on statistical models.
We model several body parts and the background as mixture densities. The
positions are determined iteratively, we begin with the most stadtetp

find. The anatomy of a human body restricts the area to search for the next
one. From the trajectories, features for gait analysis are derived. These are
used to train hidden Markov models (HMMs), one HMM for each kind of
gait.

1 Introduction

Application of gait analysis can be found in several fields, for examplécakbdiagnosis,
physical therapy, and sports. It is used to get information about gaitdgrs of patients
with knee or hip pain, or tumors. It is helpful to control cycles oftion for example in
rehabilitation or training.

In most medical examination systems the trajectories which are the cus/ésdy
parts describe are determined by markers which are attached to several ptiiateady.
The major problems using markers are exact positioning and thenghdtithe skin sur-
face when the person is moving, which causes variations of the markdopssPatients
also may feel obstructed walking with stickers all over their body. In gestcognition
people often have to wear coloured gloves. We develop a system whicls witHout
any markers and does not presume special clothing. The classification of gaihé
automatically.

One example for motion analysis using markers is given in [11]. Leatterhes
LEDs to the body, tracks them and computes the trajectories. The pgraddice motion
is used by matching the curvature of one period of the trajectory witbdefrtrajectory.
In contrast to this we do not presume any markers and train hidden Mar&delmfor
each kind of gait.

*The authours are members of the Graduiertenkolleg 3-D iraagh/sis and synthesis sponsored by the
Deutsche Forschungsgemeinschaft (DFG).
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Figure 1. Sample images from sequences of people walking, limpingifgpgand run-
ning

There are several approaches for motion tracking and the recognition aifhomaly
parts using a geometric model. Most of them presume contour detectich vghnot
necessary in our system. [10] uses a model of the human body consistidgyginders
with elliptic cross sections. He matches the lines of the image witlcoiméours of the
projected model. Hidden contours of the model are removed. [4] generat&sraddel
of the human body consisting of tapered super—quadrics. He uses seatkogjonal
views to track humans in action. [5] detects different body parts by aniitetgbproach
using multiple views. Starting with a single deformable mode$ is segmented into two
parts if the model does not fit the following frame.

Head and hand position are tracked by a stereo Blob tracker [1]. This systesads
to recognize Tai Chi gestures by HMMs using the motion of the head andathds as
features [3]. [2] computes blobs based on motion and colour similaggtial proximity
and groupings in earlier frames. The limbs belong to one blob. FaringgHMMs for
gait recognition he needs hand—labeled sequences or tracked markers.

Other approaches for action recognition use just the local motion ifiiemfor clas-
sification. [7] computes local motion statisticsapt—cells. The feature vector consists
of the summed normal flow in each cell. The classification of periodic actidoris by a
3-D template match. [9] uses the grey—level values of rows and colunamsiinage se-
guence or in difference images to extract features for gesture recognigamsdd hidden
Markov models (HMMs) and a neural net for classification. In contrast tethgstems
we consider the motion of body parts, which we think is more detailed.

The paper is structured as follows. In section 2 we give a short oweori¢he system.
This consists of two parts. The first one determines the trajectordifefent body parts
which is described in section 3. These are used to derive features for classifafagait
based on HMMs afterwards, see section 4. In section 5 we show our expesiameht
conclude with an outlook on future work.

2 Overview

The system performs an automatic classification of different gaits fraygvel se-
guences. The classes are walking, running, hopping, and limping. ra@imeaind test
images are sequences of people moving parallel to the camera in front ofcebsizit
ground. There are no restrictions concerning clothing. Example franeeshamvn in
Figure 1.
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Figure 2: Overview on the system. The determination of trajectorishasvn in the
dashed box

An overview on the system is given in Figure 2. There are two majoisp#re
determination of trajectories and the classification of gait, both of thenbased on
statistical models. The first one is shown in the dashed box. We defingtigs for
different body parts (head, trunk, leg) and the background. These azeafjerodels for
the body parts derived from images of different people, the backgrouradnied for each
image sequence. We localize the body parts in every frame by mixtureideraking
into account the anatomic relationships between the parts.

The trajectories are used to extract features from two succeeding frames. Thedeat
describe the periodic component of the motion of the body partsy @aéne random
variables which are used to train an HMM for each kind of gait.

3 Tracking of body parts

The tracking and recognition of body parts has been addressed by many resedtofers
either define geometric object models for the positions of segmenfatitures like edges
or track the parts by correlation with object templates which may be adapteel perdon
moves in an image sequence. At least for the human face more sophisticated appearan
based models have been evaluated [12].

We use a statistical approach for modelling a scene with static backgfsemdlso [8])
and a person moving parallel to the image plane. Local features are extraciddttare
of rectangular image positions. For the body parts which are tracked weedetie-
pendent density functions which are — together with the background —icechin a
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mixture density for the complete image. Thereby a priori knowleddhefelative posi-
tions of the parts is incorporated. The object positions are deterrbynad expectation
maximization approach.

3.1 Features

We apply a discrete wavelet transform to each image in order to extract locakfeat-
tors. Given an imag¢(z,y) with z € {0,1,...,D, -1}, y € {0,1,...,D, — 1} we
combine the wavelet coefficients of different resolutions at each grid locatipe X,

zm € R’ of a quadratic gridX = [@pm],,_o ., With resolution 2. Letcy

(¢ = 0,1,2) be the high—pass andl,, ; the low pass coefficients of a tensor product
wavelet transform on scale € 7 with resolutionr, = 2'** at locationz,,. The
wavelet analysis is performed up to leygl_»: s € {0, ..., N — 2}. Toreduce the direc-
tional dependency of the high—pass coefficients we compute the featuresedatg) =

(Cm70, ey Cm’Nfl)T as:

Cm,s = log E lem,s,il | 8 =0,...,N =2
i=0,1,2
Cm,N—1 = log|dm n_2l.

Feature vectors(x) for arbitraryx are calculated by linear interpolation.

3.2 Statistical model

The feature vectors of an image result from static background and diffeoelytparts.
This means that we have to consider a static background Qlassd several object
classes),, Qs, . ... Furthermore we model not all body parts and image distortions occur.
These unknowns are modelled by arbitrary backgrdgd

All features are assumed as independent. The local feature ve¢inyg are con-
catenated in the image feature veatot et p(c| B, Q;, R;, t;) denote the density for the
image features for object(2; with model parameterB. The 2-D rotationR; = R(¢;)
and translatiort; describe the position of the object partsX 2) and are not necessary
for background.

To define the statistical model of the complete image we first introchaepiendent
models for each body paft; (i > 2). The model object is composed of local feature
vectors on a rectangular grid. The grid is identicalXaf no object transformation is
applied. Let4; C X be a small region which contains the object as shown in Figure 3.
The features outsidé; are considered as arbitrary position independent background with
normal density(c(z)|B, Qo) = N (z|py, Eo). This leads to

ﬁ(c‘BaQiaRiati) = H p(c‘BammaQiaRiati) H p(c‘BammaQU)
TnmEA; TmEA;

II V(cRizm+t) 1, Biim)
TmEA;

II N(c(Riwn +t:) 110, o) -

T ¢A;
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Figure 3: Object covered with grid for feature extraction

The valuec (R;x,, + t;) at each transformed location is computed by interpolation from
the image feature vectat. Thereby we assume the transformation of all local feature
vectors as orthonormal. This is not exactly true for linear interpmiabiut experimental
results show that this assumption is not critical.

The evaluation of this density is on a transformed grid. In ordevatuate the density
on the image grid we have to apply the inverse transformation todinmal density
parameters. The image features are not independent then but have local coselat
ignore those correlations and use only diagonal variaBtgs(R, t), which constitute
the model parameteB together with the mean vectors:

p(c|BanaRzatz) = H p(c‘BawmaQiaRiati)
T.,,eX

H N (C(wm)“‘l’z,m(Rzatz)a Zz,m(Rz,tz)) .

rneX

The static background has no transformation parameters but is patgi@mdent:

p(e(@)B, ) = [[ Nle(@m)lbym: B1m).

TmeX

Based on the assignment of each image location to one object class we can define a
mixture density for the observation. Lét: X — {0,1,2,...} denote the assignment
function which bears the hidden information to which clgg; ) locationz., belongs.

For a shorter notation we wrig, = ((m) := {(x.,). Then the mixture density is

p(c|B,R,t) = > p(c,¢|B,R,t)

¢

> p(cl¢, B, R, t)p(¢| B, R, t)
¢

With ¢ = (C(m))z,ex and(R, ) = ((Ri,t),c,..).
We model the a priori density of the assignment based on the bodygsitiops as
p(¢|B, R,t) = [[5 xp((,|B, R,t). For each local assignment we only distinguish

between background and body assignnfenﬁ( —{0,1}:

p(Cm‘B,R, )=k -p(&m‘B,R,t),
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Figure 4: Left: Reference locations for the head (ear), trunk (neck) andigp (The
distances are marked. The fourth point is the knee, which is determindgk lgtation
of the leg and the length. Right: Trajectories of these four point©bAl frames of a
sequence.

wherek is a norming constant. The body probabiljiyém = 1|B, R, t) is derived

from the relative positions of reference locaticison each body paf®;. The reference
positions are transformed #8 (R;, ¢;). For two subsequent pals andQ;; we define

the body probability

P (\a’:i(Ri,ti) —&ip1(Riv1, i)l |ém)

pi(&m‘B7Rat): _ ~ - :
DOr e (|mi(Ri,ti) — Zit1(Riva,tiga)| |Cm)

Thereby we assume normal distribution for the distance of body refedecations and
a uniform distribution of the distance otherwise. The body prditi@ls are combined by

p(C,, =1|B,R,t) =[], pi((,, = 1|B, R, ).

3.3 Pose search

The simultaneous pose estimation of all body parts is too time cangunTherefore
we choose an iterative approach in this paper where at each iteration step we search f
one additional body part. All body parts are trained on different petuplget general
part models. The first object of the iteration is searched in the first irnatfee image
sequence globally. The other parts and all subsequent images are only seaceltigd |
then.

The search itself is conducted by an expectation maximization approach, where th
expectation term (Kullback—Leibler)

54 (log p(e,¢|B, R,t)|c, B,R,t) =

> > p(lmle,@m, B, R, t)logp(c|C,n; @m, B, R, 1)
rneX Cm

is maximized with respect toR, ¢).
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4 Classification of gait

4.1 Features for motion recognition

Trajectories of body parts contain a lot of information on someone mgoviwe can
receive data about the velocities, acceleration and rotation of different kot [Es-
pecially the information derived from the legs, feet and the centre of arasisnportant
in clinical application. Analyzing gait by trajectories, physicians intetpine symmetry,
amplitude and frequency of these curves.

The features we extracted from the trajectories are periodic, which is {heriamt
component of a movement. The amplitude of the trajectories are relateg $éhof the
person. The form and symmetry of the trajectory does not depend on it.

As features we use displacements of body parts-mndy—direction which are de-
notedv; , andv; , for thei—th body part. They are derived from two succeeding frames:

Vi = xz,n+1At Tin
Viy = Yion+1 — Yin
' At
(%:,n, ¥i,n) IS the positionz; (R;, t;) of thei—th body part in thes—th frame.At denotes
the frame rate of a sequence. The features are independent of sequences takiffiemith d
ent rates. These features are used especially for body parts which do notrperiation,
like the head and the trunk. The trunk contains the centre of mas$iebposition of the
head is more exact because of the trunk’s deformation. The trajectoriemdes.s
Concerning the leg the rotation anglas a useful feature. It describes the flexibility

of the joint which is important especially in medical applications.

4.2 Hidden Markov models

The classification is done by hidden Markov models [6]. These have beeriruspeech
recognition successfully. We extract one observation vector from teresding frames,
N + 1 images will lead taV feature vectors. The observed feature vector inrthn
frame is denoted by,,, so the whole observed sequence will be described by a random
variableO = (o1, ..., on). The dimension of the vectar, is determined by the number
of extracted features. This random variable will describe in general manedthe period
T which is one step with the right leg and one with the left leg. Theusage may
start anywhere in the walking cycle. We use discrete HMMs. The outmtbrso,, are
guantized before training the HMMs and testing the sequences.

The HMMs (w, A, B) consist of] statesS = (Si,...,Sr). In the training phase
the initial state probabilityr, the state transition probability matrid and the output
probability B are computed. We consider HMMs of degree one, the actual state just
depends on the preceding state. The training is expected to end up in aleftetio—
right model, as the state transitions do not go backward in time, bltde a periodic
motion.

For each kind of gait one HMM is trained. The different kinds of gait, ¢ctesses
are denoted aQ,., k = (1,...,4). In the classification phase the probabilities for each
HMM to generate the observation sequence is computed and maximized, which means
argmax, p(O|(w, A, B),) has to be found.
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Figure 5: Some result images. The four positions are marked. Tharage shows a
person whose body parts could not be found successfully.

5 Experiments

5.1 Trajectories

We performed our experiments with sequences similar to the sample fréamea @
Figure 1. 110 frames of 29 people are used to train general models of thagehrts,
the head, the trunk and the leg, including different clothing and haduco The fea-
tures for the localization of body parts (section 3.1) are extracted hjotveston wavelet
transform. To train the static background, the whole sequence is usaihitsg material.

The recognition of body parts is done iteratively. The head is thedastto find
as it is the most stable one, there is no occlusion or deformation.elfirgt frame of
a sequence the head is searched globally, in the whole image. Then we comsider t
trunk. We define a reference location for every body part. For the posifithe parts see
Figure 4. For the head, the location is the ear. For the trunk, ieis#tk position. The
relationship between these two points can be considered by a constanteliseaween
them, see section 3.2. This restricts the search area for the trunk tma degermined
by the distance to the head. We assume normal distribution of distanai=scribed in
section 3.2, it is determined by sample frames when training the generalsnédr the
leg we chose a reference location at the hip. The bigger variance concemidigtdmce
to the neck causes a larger search area.

We tested the system for 96 sequences of 12 different people. Some localizatio
results are shown in Figure 5. The positions for the head, neck aratdimarked. The
fourth position shows the rotation angle of the thigh.

Table 5.1 shows the results. In 18 of 96 sequences the head could natbzeld
correctly in the first frame or later. Most of them are sequences of a pergan than the
others. The person itself was found, but the assignment of bodywastaot successful.
The heads of all other persons are tracked well, if they are detected corredtéy finst
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Localization correct| Recognition rate
Head tracking 78/96 (sequences) 81 %
Head position | 2492/2632 (frames) 95 %
Trunk position| 2492/2632 (frames) 95 %
Leg position 1704/2410 (frames) 71%

Table 1: Results for the tracking of body parts.

Classification correct| Recognition rate
Walking 40/53 75.5%
Limping 23/40 57.5%
Hopping 26/53 49.0 %
Running 31/47 66.0 %
Sum 120/193 62.2 %

Table 2: Results for the classification.

image. 95 % (just considering the 78 sequences) of the localization was €kaatght
position of the leg is much harder to find. Just 71 % of the positiere found correctly.
Here we just considered 2410 frames, because in the beginning and andifraaserot
completely in the frame. Correct positioning of the leg means that therlefjht leg was
localized correctly. We will get along with mixing up the two legs if wanswer both of
them.

5.2 Classification

We performed the experiments for classification using 193 sequences iffietértt peo-
ple, 53 walking, 40 limping, 53 running and 47 jumping. 10 HMMsdach kind of gait
are trained. Each sequence is tested by a model not containing itself fargraive used
the trajectories of the head and the trunk. The feature vector is fouendional. We
consider HMMs of degree one. The choice of four states is motivated byaiheycle
itself, representing the stance and swing phase of each leg.

The results are shown in Table 5.2. Walking people are recognized welst dfo
the wrong results occur from hopping people to be detected as runnirggcdnfusion
matrix is shown in Table 5.2. There are some possibilities to ingotassification. The
most obvious are using more sequences for training and features frembattly parts.
There is still a lot of unused information in the leg trajectory, wi# use this in further
experiments.

6 Future

In future work more body parts will be incorporated to develop a gdmaodel for the
human body. Especially the second thigh and the feet are important foegagnition.
The system will be tested with a larger data set. Scaling and other vie®gi&ectories)
will be taken into account.
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Walking | Limping | Hopping| Running]
Walking| 75.5% | 18.9% 5.6 % 0%
Limping| 37.5%| 57.5% 0% 50%
Hopping| 9.4 % 0%| 49.0%| 41.5%
Running| 12.8% 21%| 19.1%| 66.0%

Table 3: Confusion matrix, it describes to which kinds of gait (colgjithe sequences
(rows) are assigned.
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