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ABSTRACT

In this paper we show how prosody can be used in spo-
ken dialog systems. First, we describe the phenomena that
prosodic analysis is concerned with and give examples why
prosody is relevant in the context of spoken dialog pro-
cessing. Then we examine prosody in the light of pattern
classification. We show how prosodic events can be cat-
egorized. We detail how those prosodic events manifest
themselves in the speech signal, i.e. what acoustic features
are important. Having made clear what we want to dis-
tinguish and which features we use in order to do that, we
present a statistical framework that enables us to reliably
determine e.g. phrase boundaries and accents. After that
we show how dialog systems can utilize prosodic informa-
tion. The importance of prosody is strikingly demonstrated
in the context of parsing word hypothesis graphs. In the
VERBMOBIL speech–to–speech translation system, the use
of boundary probabilities yields a speed–up of 92% and a
96% reduction of alternative readings. Segmentation and
accentuation in the context of shallow linguistic analysis
are other applications where prosody can be gainfully em-
ployed. For several new directions in prosody research (in
the context of dialog systems) such as emotion detection,
multi–lingual prosody, feature selection, and integration of
prosodic knowledge in speech recognition, preliminary re-
sults are presented.

1 INTRODUCTION

In this paper we discuss the use of prosodic information
in automatic speech understanding systems. Prosodic in-
formation is attached to speech segments which are larger
than a phoneme, i.e. syllables, words, phrases, and whole
turns of a speaker. To these segments we attribute perceived
properties like pitch, loudness, speaking rate, voice qual-
ity, duration, pause, rhythm, and so on. Even though there
generally is no unique feature in the speech signal corre-
sponding to these perceived properties, we can find features
which highly correlate with them; examples are the acous-
tic feature fundamental frequency (

�
0), which correlates to

pitch, and the short time signal energy correlating to loud-
ness. Another and probably more commonly used name
for prosodic information is intonation, even though intona-
tion is normally only used in connection with pitch related
phenomena.

In human–human communication, the listener extracts
information out of these perceived phenomena, i.e. we can
assign certain functions to them. The prosodic functions
which are generally considered to be the most important
ones are the marking of boundaries, accents, sentence
mood, and emotional state of the user. To demonstrate
the use of prosodic information people often cite humor-

ous examples like minimal pairs where different prosodic
events completely change the meaning as for example in

(1) We fed (her) (dog biscuits). vs.
We fed (her dog) (biscuits).

and

(2) What is that in the road ahead? vs.
What is that in the road? A head?

or where the absence of prosody (punctuation) makes the
interpretation of a text very difficult like with

(3) Cotton clothing is made of grows in Georgia

(all three examples from [22]) and

(4) John where James had had had had had had had had
had had been correct

The last example is from [25], one possible reading with
punctuation is
John, where James had had “had”, had had “had had”;

“had had” had been correct.
All these examples highlight an aspect where prosody can
probably help the most in spoken dialog systems: Espe-
cially in spontaneous speech, prosodic boundaries are as
important for understanding an utterance as punctuation
marks are in written language. Words which “belong to-
gether” from the viewpoint of meaning are grouped into
prosodic phrases, and it is widely agreed upon that there
is a high correspondence between prosodic and syntactic
phrase boundaries [33, 13, 41, 19].

Especially in spontaneous speech the interpretation of
the speech signal becomes an enormous search problem,
because

� Spontaneous speech often contains elliptic sentence
equivalents. As a consequence, when parsing an ut-
terance with a grammar for sentences, after practically
each word we have to start a new analysis as well as
continue with the old analysis.

� In order to find all the words which were uttered we
have to consider several hypotheses for one spoken
word due to recognition errors (typically an order of
magnitude more, i.e. 10 – 20 hypotheses/word).

We will see that prosody can shift the search from a breadth–
first towards a depth–first search and lead to enormous
speed-up (Section 4.1.).

In example (1) and (2) — one could argue — se-
mantic/pragmatic constraints might rule out certain read-
ings/meanings, i.e. one of the two reading is implausible in



the context of the application/surrounding. Prosody can still
be very helpful if the computation of constraints from other
knowledge sources is more expensive than the computation
of prosodic information.

Example (2) highlights one reason why the extraction of
prosodic features, their classification into prosodic classes,
and the use of these classes in automatic speech under-
standing is not an easy task: The marking of the boundary
between road and A head interferes with the marking of
the sentence mood question. The main reasons, why the
use of prosody in dialog systems is not easy, are:

� it is not clear at all how many prosodic classes, e.g.,
two, three or more boundaries, should be distinguished

� the mutual influence of segmental (i.e. word chain) and
suprasegmental (i.e. prosodic) information

� the interferences of the different prosodic functions
which are realized to a great extent with the same
prosodic parameters

� the trading relation between prosodic parameters,
where the smaller value of one parameter can be com-
pensated by a greater value of another parameter

� the optionality of prosodic means; a specific function
can be expressed with prosody but it does not have
to, e.g., when other grammatical means are already
sufficient (as in wh–questions)

� speaker and language specific use of prosodic features

Thus, even though the number of research projects on
prosody in the context of automatic speech recogni-
tion/understanding has increased steadily over the past ten
years, VERBMOBIL is — to our knowledge — the world wide
first and so far only complete speech understanding system,
where prosody is really used. VERBMOBIL [36, 9, 37] aims
at automatic speech–to–speech translation of appointment
scheduling dialogs.

Besides the difficulties cited above, we see the fol-
lowing aspect as a main reason, why prosody is not yet
widely used: As shown in Section 4, the marking of
boundaries is the most important function of prosody.
Table 1 shows the number of words for three different
spoken dialog systems, one speech–to–speech transla-
tion system (VERBMOBIL) and two information retrieval
systems (the flight information system ATIS [34] and
the train timetable information system EVAR [11, 1]).
The number words per turn in ATIS � and EVAR dif-
fer significantly, since EVAR can take over the dialog–
initiative and ask yes/no–questions and questions like

where would you like to leave from?
which are often answered elliptically. As can be seen, the
turns in the VERBMOBIL domain (see also [42] for groups
working on speech–to–speech translation within the C–Star
consortium) are about three times as long as in the informa-
tion retrieval application. This shows that segmentation is
way more important in the relatively new field of automatic
speech–to–speech translation.

In this paper we show how prosodic information can be
computed and used in a speech understanding system. Since
the authors developed the prosody module of the VERBMO-
BIL system and since the use of prosody is implemented on

�
In [34] the turns are called “segment–initial”, since they were taken

from 25 dialog sessions with three independent tasks (segments).

VERBMOBIL ATIS EVAR

Dialog–initial 32 11 7
Dialog–internal 21 6 3
All 22 7 3

Table 1. Average number of words for dialog–initial and
dialog–internal utterances for a speech–to–speech transla-
tion system (VERBMOBIL) and two information retrieval
systems (ATIS and EVAR).

all levels of linguistic processing in this system, most exam-
ples are taken from there. For a detailed description of the
VERBMOBIL system and the VERBMOBIL prosody module
the reader is referred to [18, 19].

The rest of the paper is organized as follows: First we
describe the prosodic classes to be recognized (Section 2).
In Section 3 we show how the features are computed which
represent the prosodic parameters and we present recog-
nition results for the prosodic classes. Following this we
demonstrate how prosodic information is used (Section 4).
We concentrate on the use of prosodic boundary informa-
tion (Sections 4.1. and 4.2.) and present results of exten-
sive experiments. With respect to the other prosodic func-
tions we indicate how prosodic information can be used
but not present end–to–end results with a complete system
(Section 5). The paper ends with some concluding remarks
(Section 6).

2 PROSODIC CLASSES

There are many different labelling schemes for prosodic in-
formation, with ToBI [27, 28, 7] probably being the most
known system. ToBI has a tier where the labels are combi-
nations of high and low tones attached with symbols which
interpret the tones as either marking a boundary or an ac-
cent. A second tier contains a hierarchy of boundary mark-
ers (break indices).

We do not favor any labelling scheme which requires a
categorization of how a prosodic parameter is used to mark
a certain event, i.e. a categorization of the form. Rather we
propagate a fully functional labelling which marks a word
as for instance accented, but not what prosodic parameter
is used for marking the word (e.g. ToBI only allows for the
parameter pitch and disregards intensity and duration) or
how the prosodic parameter is used to mark the word (for
example an accent realized by a low tone which is followed
by a high tone vs. a high tone – low tone accent). Such
a functional labelling can be done much faster and more
consistent than a formal/functional labelling like ToBI (see
the discussion on labelling time and consistency in [4]). We
so to speak leave it up to a large feature vector and statistical
classifiers to find the form to the function.

In the next section we discuss, what functional bound-
ary classes we distinguish. Classes for the other prosodic
functions are considered in Section 2.2.

2.1. What are the Right Boundary Classes?

Consider the following excerpt from a real VERBMOBIL turn
(translated into English), where



� A � stands for breathing,
w � L � for unusual lengthening of word w,� P � for a pause,
Bi for acoustic prosodic boundary
D3 for a dialog act boundary, and
M3 for a syntactically motivated boundary:
(see below for details w.r.t. the boundary classes)

(5) ����� M3 D3 well then I’m not present at all B3 M3 D3� A � and in the � L � B9 � P � thirty fourth week B3
M3 � P � � A � that would be B3 � P � Tuesday B2
the twenty third B3 � A � and Thursday the twenty
fifth M3 D3 � P �������

Clearly, a classifier which segments this turn based only
on acoustic prosodic information like length of a pause be-
tween words, might give the linguistic analysis boundaries
which hinder rather than help (like the boundary between
in the and thirty).

We distinguish therefore between

B0: normal word boundary

B2: intermediate phrase boundary with weak intonational
marking

B3: full boundary with strong intonational marking, often
with lengthening

B9: “agrammatical” boundary, e.g., hesitation or repair

and can thus distinguish between prosodic boundaries
which correspond to the syntactic structure and others which
contradict the syntactic structure. However we still have the
problem that syntactic boundaries do not have to be marked
prosodically. A detailed syntactic analysis would rather
have syntactic boundaries irrespective of their prosodic
marking, e.g. it needs to know about B9 and B0 in order to
favor continuing the ongoing syntactic analysis rather than
assuming that a sentence equivalent ended and a new anal-
ysis has to be started (see the word boundary after road in
example (2)). Depending on — among other things — the
speaker style, the speaker is sometimes inconsistent with
his/her prosodic marking. In the example above, the in-
termediate boundary between Tuesday and the twenty third
is clearly audible, whereas there is no boundary between
Thursday and the twenty fifth. Syntactic phrasing is — be-
sides by the prosodic marking — also indicated by word
order.

The problem that the modules which want to use prosodic
information would really like other boundaries is solved
analogously to the way in which word recognition works:

1. Classify each word boundary with a classifier based
on acoustic prosodic features and trained with these B
boundaries. We only distinguish between
“clause boundary” (B = B3) vs.
“no clause boundary”( � B = � B0, B2, B9 � ).
This gives a score	�
�������������������������! �"$#$�&%'���( )�*��#$�,+)-�#.��+)����+*/
and corresponds to the Hidden Markov Models
(HMM) for the recognizable words. The classifica-
tion is explained in Section 3.2.

2. Classify each word boundary whether a syntactic
boundary falls on that word boundary, based on the
surrounding words. This corresponds to the

�
–gram

language models (LM) and is explained in Section 3.3.

3. Combine the two scores using Bayes formula. How
this is done in a word hypotheses graph (WHG) is
explained in Section 3.4.

For the syntactic boundary classification we have the de-
mand for large training databases, just like in the case of
training LM for word recognition. The marking of per-
ceptual labels is rather time consuming, since it requires
listening to the signal. We therefore developed a rough
syntactic prosodic labelling scheme, which is based purely
on the transliteration of the signal, the so called M system.
The scheme is described in detail in [5, 4]. It classifies each
turn of a spontaneous speech dialog in isolation, i.e. does
not take context (dialog history) into account. Each word
is classified into one of 25 classes in a rough syntactic anal-
ysis. For the use in the recognition process the 25 classes
are grouped into three major classes:

M3: clause boundary (between main clauses, subordinate
clauses, elliptic clauses, etc.)

M0: no clause boundary

MU: undefined, i.e. M3 or M0 cannot be assigned to this
word boundary without context knowledge and/or per-
ceptual analysis (obviously, only prosodic marking
or computationally more expensive knowledge based
context modelling can help here in an automatic anal-
ysis).

Even less labelling effort and formal linguistic training is re-
quired if we label the word boundaries according to whether
the mark the end of a semantic/pragmatic unit. We refer
to these boundaries as dialog act boundaries. Dialog acts
(DA) are defined based on their illocutionary force, i.e. their
communicative intention ([31]). DA are, e.g., “greeting”,
“confirmation”, and “suggestion”. A definition of DA in
VERBMOBIL is given in [17, 23]. In parallel to the B and M
labels we distinguish between

D3: dialog act boundary

D0: no dialog act boundary

The recognition of these two classes is done in the same
way as the recognition of the syntactic classes.

# B3 B2 B9 B0 D3 D0
M3 951 78.7 9.1 0.1 12.1 51.5 48.5
MU 391 27.1 29.1 0.5 43.2 7.2 92.8
M0 6297 2.8 4.6 3.7 88.9 0.2 99.8

Table 2. Percentage of M labels corresponding to B and D
labels.

# M3 MU M0
D3 533 91.9 5.2 2.8
D0 7106 6.5 5.1 88.4

Table 3. Percentage of D labels corresponding to M labels.

Table 2 and Table 3 show the correspondence between
the three boundary labelling systems. There is a high (albeit
not perfect) correspondence between prosodic boundaries



and syntactic boundaries, as well as between DA bound-
aries and syntactic boundaries. In addition, the M system
provides internal structure to the DA, i.e. a DA consists —
in the average — of two syntactic clauses or phrases.

Table 4 shows the amount of labelled data for the three
different boundary label systems.

label system hours # of turns # of words
B 2 900 15000
M 34 14000 310000
D 18 8000 160000

Table 4. Amount of labelled data for the three different
boundary label systems

2.2. Classes for Prosodic Accentuation, Sentence
Mood and Emotion Detection

In this section we discuss the classes w.r.t. the other prosodic
functions, which we consider in our research.

Accentuation
Depending on the speech unit under consideration one dis-
criminates between lexical (word), phrase, and sentence
accent [10, 25]. We do not try to recognize the lexical
accent and only look at accentuation on the phrase and sen-
tence level. In English there are quite a few minimal pair
noun–verb examples, where the position of the lexical ac-
cent is distinctive, like in

permit vs. permit
In German, these minimal pairs are rather rare. In VERBMO-
BIL, we currently distinguish between four different types
of syllable based phrasal accent labels which can easily
be mapped onto word based labels denoting if a word is
accented or not:

PA: primary accent

SA: secondary accent

EC: emphatic or contrastive accent

A0: any other syllable (not labelled explicitly)

Since the number of PA, SA, EC labels is not large enough,
to distinguish between them automatically, we only ran
experiments trying to classify “accented word” (A = � PA,
SA, EC � ) vs. “not accented word” ( � A = A0).

In the VERBMOBIL domain, the number of emphatic or
contrastive accents is not very large. In information retrieval
dialogs this could easily change, if there is a large number
of misunderstandings and corrections (see the discussion in
Section 5.1.).

Sentence mood
Sentence mood can be marked by means like verb position,
wh–words, or prosody. We distinguish between confirma-
tion, question, and feedback. So far we have not looked
in detail at the prosodic marking of sentence mood within
VERBMOBILand will not further discuss the use of sentence
mood in dialog systems in this paper. See [21] where we
present a version of our EVAR dialog system which inter-
prets user barge–ins during the transmission of the system
information as either repetition of the given information
(channel feedback) or as a request to confirm the last piece
of information. The system relies on the prosodic marking
of sentence mood.

Emotion
In human–human relationships, the detection of emotion
based on prosodic information, is very important. Even
though there are many different emotions in human speech
like sadness, joy or fear we are currently only interested in
the distinction between anger and normal speaking. Other
emotions will most probably not be relevant for the ap-
plication of an emotion detector in speech understanding
systems, whereas the distinction between the two classes
angry and neutral can be quite important in a automated
call–center scenario (see details in Section 5.5. and [16]).

3 COMPUTATION OF PROSODIC
INFORMATION

There are two fundamental approaches to the extraction of
features which represent the prosodic information contained
in the speech signal:

1. Only the speech signal is used as input. This means
that the prosody module has to segment the signal into
the appropriate suprasegmentals (e.g., syllables) and
calculate features for these units.

2. The result of the word recognition module is used in
addition to the speech signal as input. In this case
the prosody module knows about the time–alignment
of the recognizer and about the underlying phoneme
classes (like long vowel).

The first approach has the advantage that prosodic infor-
mation can be computed immediately and in parallel to the
word recognition and that the module can be optimized in-
dependently. The problem is that the segments determined
by the prosody module later have to be aligned with the
segments computed by the word recognizer in order to map
the prosodic information onto word hypotheses (or sylla-
bles within hypotheses) for further linguistic processing. In
the second approach the prosody module can use the phone
segments computed by the word recognizer as a basis for
prosodic feature extraction. This segment information is
much more reliable and it corresponds exactly to the seg-
ments for which prosodic information should be computed
in order to score word hypotheses prosodically. Wrong seg-
mentation often leads to linguistically implausible prosodic
information so that such word hypotheses can be discarded.

Based also upon investigations described in [25] we de-
cided for the second approach: input to the module is a
WHG and the speech signal. Output is a prosodically scored
WHG, i.e., to each of the word hypotheses, probabilities
for prosodic accent, for prosodic clause boundaries, and for
sentence mood are attached. Figure 1 shows how prosodic
information is computed in VERBMOBIL (For an alternative
architecture see Section 5.4. and [14]).

We now describe the individual steps towards the calcu-
lation of these probabilities for the word hypotheses.

3.1. Extraction of Prosodic Features
We distinguish different categories of prosodic features.
The acoustic prosodic features are signal–based features
that usually span over speech units that are larger than
phonemes (syllables, words, turns, etc.). Normally, they
are extracted from the specific speech signal interval that
belongs to the prosodic unit, describing its specific prosodic
properties, and can be fed directly into a classifier, e.g., into
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Figure 1. Architecture of a prosodic classifier that is based
on the result of the word recognizer (as used in the VERB-
MOBIL system). The prosodic classifier itself is based on
an MLP that takes the prosodic features as input and on an�

-gram LM that takes into account the surrounding word
context.

a multi–layer perceptron (MLP). Within this group we can
further distinguish:

� Basic prosodic features
which are extracted from the pure speech signal with-
out any explicit segmentation into prosodic units. Ex-
amples are the frame-based extraction of fundamental
frequency (

�
0) and energy.

� Structured prosodic features
are computed over a larger speech unit (syllable nu-
cleus, syllable, word, turn) from the basic prosodic
features e.g., features describing the shape of the

�
0

or energy contour, and the segmental information that
can be provided from the output of the word recog-
nizer, e.g., features describing durational properties of
phonemes, syllable nuclei, syllables, pauses.

On the other hand prosodic information is highly interre-
lated with linguistic information, i.e. the underlying linguis-
tic information strongly influences the actual realization and
relevance of the measured acoustic prosodic features. In this
sense, we speak of

� Linguistic prosodic features
which are categorical and can be introduced from other
knowledge sources, as lexicon, syntax, or semantics.
Examples for these features are flags marking if a syl-
lable is word-final or not or denoting which syllable
carries the lexical accent. Other possibilities not con-
sidered here might be special flags marking content

and function words or syntactic and semantic cate-
gories obtained from a part–of–speech tagger. Usually
they have either an intensifying or an inhibitory effect
on the acoustic prosodic features.

In the following, the cover term prosodic features means
mostly structured prosodic features and some lexical
prosodic features.

For spontaneous speech it is still an open question, which
prosodic features are exactly relevant for the different clas-
sification problems and how the different features are inter-
related. Therefore, we try to be as exhaustive as possible,
and we use a highly redundant feature set leaving it to the
statistical classifier to find out the relevant features and the
optimal weighting of them. As many relevant prosodic
features as possible are extracted from different overlap-
ping windows around the final syllable of a word or a word
hypothesis and composed into a large feature vector which
represents the prosodic properties of this and of several
surrounding units.

We investigated different contexts of up to � 6 syllables
( � 3 words, resp.) to the left and to the right of the current
word–final syllable. The best results so far were achieved
by using 276 features computed at each word–final syllable
considering a context of � 2 syllables ( � 2 words, resp.).

In more detail the features used here are:
� duration (absolute and normalized as in [40]) for each

syllable nucleus/syllable/word
� for each syllable and word in this context

– minimum and maximum of fundamental fre-
quency (

�
0) and their positions on the time axis

relative to the position of the current syllable as
well as the

�
0-mean

– maximum energy (also normalized) � position
and mean energy (also normalized)

� �
0-offset � position for the current and preceding word

(the
�

0-offset is the last non-zero
�

0-value in a seg-
ment)

� �
0-onset � position for the current and succeeding

word (the
�

0-onset is the first non-zero
�

0-value in a
segment)

� for each syllable in the considered context: flags in-
dicating whether the syllable carries the lexical accent
or whether it is in a word final position

� length of the pause preceding/succeeding the current
word

� linear regression coefficients of
�

0 and energy contour
over 11 different windows to the left and to the right
of the current syllable

� integral over the error of the regression line w.r.t. the
�

0 and energy contour
� for a normalization of the durational features,measures

for the speaking rate are computed over the whole ut-
terance based on phone duration statistics (as in [40]).

Figure 2 shows some of the features mentioned above.
These features describe the properties of a parameter curve
within an interval implicitly; for instance by looking at the
position of the maximum and minimum one can say whether
there is a low–high or high–low transition.
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Figure 2. Features which describe the properties of a pa-
rameter curve within an interval implicitly.

classified as
class # B � B

B 165 84.8 15.2
� B 1284 11.2 88.8
class # A � A

A 690 78.3 21.7
� A 823 13.4 86.6

Table 5. Confusion matrix for the classification of prosodic
boundaries ( � B

�
B) and accents ( � A

�
A).

3.2. Classification of Prosodic Events

Given a feature set and a training database of hand la-
belled classes to be recognized, pattern recognition offers
a large variety of classifiers for supervised learning. Here
we only report results obtained with MLP which turned
out to be superior compared to Gaussian distribution clas-
sifiers and polynomial classifiers in similar investigations
[20, 6]. Different MLP topologies were analyzed for the
various classification problems. As training procedure the
Quickpropagation algorithm [12] with the sigmoid activa-
tion function was used. Experiments were performed with
different feature sets. In any case the MLP had as many
input nodes as the dimension of the specific feature vector
and one output node for each of the classes to be recognized.
During training the desired output for each of the feature
vectors is set to one for the node corresponding to the refer-
ence label; the other ones are set to zero. With this method
in theory the MLP estimates a posteriori probabilities for
the classes under consideration. During training the MLP
was presented with an equal number of feature vectors from
each class so that it computes class likelihoods instead of
a posteriori probabilities. These likelihoods are combined
with prior probabilities estimated on the basis of the word
chain as shown in Section 3.3.

The best result for the classification of prosodic bound-
aries ( � B

�
B) and accents ( � A

�
A) are illustrated in Table 5

in a confusion matrix. They were obtained using an MLP
with 40/20 nodes in the first/second hidden layer.

In the next two sections we show, how we combine
the acoustic–prosodic classification of B boundaries with
a stochastic LM based on the syntactic–prosodic M bound-
aries and the word chain, and how we put this boundary
information into a WHG (see also [19]).

3.3. Classification of M and D Boundaries with
Stochastic Language Models

Let �� be a word out of a vocabulary where
#

denotes
the position in the utterance;

- � denotes a symbol out of
a predefined set � of prosodic symbols. These can be
for example � M3, M0, MU � , � D3, D0 � , �(� A, A � , or a
combination depending on the specific classification task.
For example,

- � = M3 means that the
#����

word in an utterance
is succeeded by a syntactic clause boundary.

Ideally one would like to model the following a priori
probability 	�
 � 1

-
1 � 2

-
2 ��������� - � /

which is the probability for strings, where words and
prosodic labels alternate ( � is the number of words in the
utterance). When determining the appropriate label to sub-
stitute

- � , the labels at positions
- ����� and

- ����� are not known
( ��� 1  2  ������ ). Thus, we use the following probabilities:

	�
 � 1 �����!�� - ������ 1 �������� / � 	�"	$#*	&%
(1)

where
	 "

,
	 #

, and
	 %

are defined as follows:

	 " � 	�
 � 1
/ 	�
 � 2

� � 1
/$' ����� '�	�
 � � � � 1 �����(� ��� 1

/
(2)	 # � 	�
 - � � � 1 �����!� � / (3)	&% � 	�
 ����� 1

� � 1 �����!�� - � /' ����� ')	�
 �� � � 1 �����(�� - �)��*� 1 �����(��+� 1
/

(4)

Terms like � 1 �����!� � in
	�
 - � � � 1 �����!� � / are called history.

As usual in stochastic language modelling, the history has
to be restricted to a certain length [24]. The stochastic LM
approach we use is the so called polygram [30], which is an�

–gram with a special interpolation scheme.
Given a word chain � 1 �����!� � ������� � , the appropriate

prosodic class
-

�� is determined by maximizing the proba-
bility of equation 1:

-
�� � argmax#�,�-/. 	�
 � 1 �����(� � - � � �*� 1 �����!� � /

Note that the probability
	&"

is independent of
- � (equa-

tion 2). Thus this maximization (and
-

�� ) is independent
from

	$"
. Note also that

-
�� does not only depend on the left

context (probability
	 #

, equation 3) but also on the words
succeeding the word �0� (probability

	1%
, equation 4). In

practice, the context is restricted to the maximum history
length 243 used during training of the polygram:

-
�� � argmax# , -/. 	�
 ��5��687 �����(�� - ������ 1 ��������*�9687 / (5)

Classification results using this LM are given in Table 6,
which is described at the end of the next section.

3.4. Prosodic scoring of WHG
A WHG is a directed acyclic graph [26]. Each edge cor-
responds to a word hypothesis which has attached to it its
acoustic probability, its first and last time frame, and a time
alignment of the underlying phoneme sequence. The graph
has a single start node (corresponding to time frame 1) and
a single end node (the last time frame in the signal). Each
path through the graph from the start to the end node forms
a sentence hypothesis. Each edge of the graph lies on at
least one such path. In the following the term neighbors



of a word hypothesis in a graph refers to all its adjacent
predecessor and successor edges.

With prosodic scoring of a WHG we mean in fact the
annotation of the word hypotheses in the graph with the
probabilities for the different prosodic classes. These prob-
abilities are used by the other modules during linguistic
analysis, e.g. by the parser in the syntax module. Note
that in the case of phrase boundaries, we do not compute
the probability for a prosodic boundary located at a certain
node in the WHG, but for each of the word hypotheses in the
graph the probability for a boundary being after this word is
computed. This is important, since for the computation of
the acoustic–prosodic features phoneme durations are used.
These are most robustly obtained from the time alignment
of the phoneme sequence underlying a word hypothesis
computed with the word recognizer. The durations have to
be normalized with respect to the intrinsic phoneme dura-
tion. In fact, often for word hypotheses being in parallel
between the same nodes in the WHG, very different scores
for the same prosodic classes are computed due to differ-
ences in the segmentation into phonemes and to the intrinsic
normalization segment duration.

The following steps have to be conducted for each word
hypothesis �0� :

1. Determine recursively appropriate neighbors of the
word hypothesis until a word chain � ����� �����(� ��� " is
built which contains enough syllables/words to com-
pute the acoustic–prosodic feature vector and where
����� , ����� , with � being the maximum context
modelled by the polygram.

2. For each
- ��� � compute the probabilities

	$# , �
� #�,

	 #(, -/. � # , where

� # , � 	�
 - � � � � / 	�
 
 ���� � �����(�� - �)��*� 1 �����(���� � /
� � denotes the acoustic–prosodic feature vector, �
is a weight for the combination of the acoustic–
prosodic model probability

	�
 - � � � � / (estimated with the
B boundaries) and the syntactic–prosodic LM probability	�
 ���� � �����!�� - ����*� 1 �����(���� � / (estimated with the M or D
boundaries). The value of � is determined empirically on a
validation set.

In the current implementation we just select that hypo-
thesis as the “appropriate” neighbor of �+� , which is most
probable according to the acoustic model. Note that this
is suboptimal, because the context words may differ from
the spoken words. An exact solution would be a weighted
sum of all probabilities

	8# ,
computed on the basis of all

the possible contexts. However, this does not seem to be
feasible under real–time constraints.

In Table 6 the recognition rates for the classification of
syntactic–prosodic boundaries (M3

�
M0) for different ex-

periments on 160 WHG are presented. These are WHG out
of a larger set which contained all the spoken words; the den-
sity of the graphs was about 13 words per spoken word; for
details see [19]. LM � denotes the polygram–classification
as described in Section 3.3., where � specifies the maxi-
mum context allowed during training of the polygram. The
column ‘word chain’ refers to experiments conducted on the
time alignment of the spoken word chain, i.e., with optimal

word chain WHG� � � � � �
MLP 89.3 (82.5) 77.5 (78.0)
LM2 91.0 (77.6) 90.6 (76.5)
LM3 93.5 (84.8) 91.9 (81.3)
MLP + LM3 94.0 (90.0) 92.2 (86.6)

Table 6. Recognition rates (
�

) for the classification
of syntactic–prosodic boundaries (M3

�
M0) on 160 WHG,

which contain the spoken words. The averages of the class-
dependent recognition rates (

� �
) are given in parenthe-

sis.

word chain� � �
MLP 83.2 (72.7)
LM2 89.7 (83.4)
LM3 93.1 (85.6)
MLP + LM3 93.2 (85.6)

Table 7. Recognition rates (
�

) for the classification of
dialog act boundaries (D3

�
D0) on 1178 turns with the

spoken word chain. The averages of the class-dependent
recognition rates (

� �
) are given in parenthesis.

context. The results show that the LM3 classifies boundaries
better than the MLP and that furthermore a combination of
both classifiers yields the best results (94% recognition rate
using word chains). It is not surprising that the recognition
rates are smaller on word graphs than on word chains due to
the suboptimal selection of words in the context, however,
the decrease is not drastic so that 92% recognition rate is
obtained on word graphs.

In Table 7 the recognition rates for the classification of
dialog act boundaries (D3

�
D0) on 1178 turns with the

spoken word chain are presented. The MLP is trained on B
boundaries and evaluated on D boundaries. Again, the best
results are obtained, if LM and MLP are combined.

4 USE OF PROSODIC INFORMATION

4.1. Phrasing and Deep Linguistic Analysis
In this section, we describe the interaction of prosody with
the syntax module developed by Siemens (Munich) within
the VERBMOBIL system; for the interaction with another
syntax module developed by IBM (Heidelberg) cf. [2]. In
the module described here, we use a Trace and Unification
Grammar (TUG) [8] and a modification of the parsing al-
gorithm of Tomita [35]. The basis of a TUG is a context
free grammar augmented with PATR-II-style feature equa-
tions. The Tomita parser uses a graph-structured stack as
central data structure [32]. After processing word w � the top
nodes of this stack keep track of all partial derivations for
w1...w � . In [29], a parsing-scheme for WHG is presented
using this parser. It combines different knowledge sources
when searching the WHG for the optimal word sequence:
a TUG, a statistical trigram or bigram model and the score
of the acoustic component. In the work described here we
added prosody as another knowledge source.

In order to make use of the prosodic information, the
grammar had to be modified. We introduced a special



Prosodic Syntactic Clause Boundary symbol (PSCB) into
our grammar. The best results were achieved by a grammar
that neatly describes the occurrence of PSCB between the
multiple phrases of the utterance. A context–free grammar
for spontaneous speech has to allow for a variety of possible
input phrases following each other in a single utterance, cf.
(rule1) in Table 8. Examples are normal sentences (rule2),
sentences with topic ellipsis (rule3), elliptical phrases like
PPs or NPs (rule4), or presentential particle phrases (rule5
and rule6). Those phrases were classified as to whether
they require an obligatory or optional PSCB behind them.
The grammar fragment in Table 8 says that the phrases s,
s-ell and np require an obligatory PSCB behind them,
whereasexcl(amative) may also attach immediately to the
succeeding phrase (rule 6). The segmentation of utterances

(rule1) input � phrase input .
(rule2) phrase � s PSCB .
(rule3) phrase � s ell PSCB .
(rule4) phrase � np PSCB .
(rule5) phrase � excl PSCB .
(rule6) phrase � excl .

Table 8. Grammar for multiple phrase utterances

according to a grammar like in Table 8 is of relevance to
the text understanding components that follow the syntactic
analysis.

When searching the WHG, partial sentence hypotheses
are organized as a tree. A graph-structured stack of the
Tomita parser is associated with each node. In the search an
agenda of score–ranked orders to extend a partial sentence
hypothesis (hyp � = hyp(w1,...,w � )) by a word w �*� 1 or by the
PSCB symbol, respectively, is processed: The best entry
is taken; if the associated graph–structured stack of the
parser can be extended by w ��� 1 or by PSCB, respectively,
new orders are inserted in the agenda for combining the
extended hypothesis hyp �*� 1 with the words, which then
follow in the graph,and, furthermore, the hypothesis hyp �*� 1
is extended by the PSCB symbol. Otherwise, no entries are
inserted. Thus, the parser makes hard decisions and rejects
hypotheses which are ungrammatical.

The acoustic, prosodic and trigram knowledge sources
deliver scores sc which are combined to give the score for
an entry of the agenda. In the case the hypothesis � ��% � is
extended by a word �0�*� 1 the sc of the resulting hypothesis
is computed by

 )�(
 � ��% ��� 1
/ �  )�(
 � ��% � /

�
�������& �"$#$�  )�(
 � ��� 1

/
��� '�"$�)#����*� �  )�(
 � ��� 1  �� �  (� ��� 1

/
��� ' %'���( )�*��#$�  )�(
 ���� 1  � /
���  ��,�	� � % "$# � � � �����&"$#.�&����"$#$��� �

where
�

can be PSCB or � PSCB.
%'���( )�*��#$�  )�(
 �  PSCB /

is a ‘good’ score if the prosodic classifier detected a
clause boundary after word � , a ‘bad’ score otherwise.% �*�( )�*��#.�  )�(
 �  � PSCB / is ‘good’ if the prosodic classifier
has evidence that there was no prosodic clause boundary
after word � , ‘bad’ otherwise.
The weights � and � are determined heuristically. Prior
to parsing, a Viterbi–like backward pass approximates the

scores of optimal continuations of partial sentence hypothe-
ses ( 
 � –search). After a certain time has elapsed, the search
is abandoned. With these scoring functions, hard decisions
about the positions of clause boundaries are only made by
the grammar but not by the prosody module. If the grammar
rules are ambiguous given a specific hypothesis � ��% � , the
prosodic score guides the search by ranking the agenda.

For the parsing experiments we chose 594 turns out of
122 dialogs. WHG were computed using the word rec-
ognizer of the University of Karlsruhe described in [38].
The WHG contained 9.3 hypotheses per spoken word. The
word accuracy, i.e., the highest accuracy of any of the paths
contained in the graph, was 73.3%. 117 WHG were correct,
i.e. they contained the spoken word chain.

Using the grammar of Table 8 we parsed these 594 WHG
and compared them with the parsing results using a gram-
mar without PSCB. For the latter, we took the category
PSCB out of the grammar and allowed all input phrases
to adjoin recursively to each other. The graphs were
parsed without taking notice of the prosodic PSCB infor-
mation contained in the lattice. In this case, the number
of readings increases and the efficiency decreases drasti-
cally, cf. Table 9. The statistics show that in the average,

with PSCB without PSCB
# successful analyses 359 368�
# syntactic readings 5.6 137.7�
parse time (secs) 3.1 38.6

Table 9. Parsing statistics for 594 WHG

the number of readings decreases by 96% when prosodic
information is used, and the parse time drops by 92%. If
the lattice parser does not pay attention to the information
on possible PSCB, the grammar has to determine by itself
where the phrase boundaries in the utterance might be. It
may rely only on the coherence and completeness restric-
tions of the verbs that occur somewhere in the utterance.
These restrictions are furthermore softened by topic ellip-
sis, etc. Any simple utterance like Er kommt morgen results
therefore in a lot of possible segmentations, see Table 10.

[er,kommt,morgen] He comes tomorrow.
[er],[kommt,morgen] He? Come tomorrow!
[er kommt],[morgen] He comes. Tomorrow!
[er],[kommt],[morgen] He? Come! Tomorrow.

Table 10. Syntactically possible segmentations

The fact that 9 WHG (i.e. 2%) could not be analyzed
with the use of prosody is due to the fact, that the search
space is explored differently and that the fixed time limit
has been reached before the analysis succeeded. However,
this small number of non–analyzable WHG is neglectable
considering the fact that without prosody, the average real–
time factor is 6.1 for the parsing. With prosodic information
the real–time factor drops to 0.5; the real–time factor for
the computation of prosodic information is 1.0.

4.2. Phrasing and Shallow Linguistic Analysis
There are two main reasons why a linguistic analysis in a
dialog system can fail:

1. The user utters something which is beyond the capa-
bilities of the system



2. The acoustic quality of some part of the utterance is
so bad that the word recognition process produces bad
results

Case 1. often occurs when the user deviates from the
subject as in

(6) Well, on the 25th I have no time at all,
that’s my son’s first school day

in the VERBMOBIL scenario, or

(7) Let’s see, the conference starts at two, I should take
2 hours into account to get from the train station to
the convention center, so I need to arrive before noon

in the EVAR domain.
In both cases the recognizer and linguistic analysis could

run into difficulties with the underlined part of the utter-
ance because of out–of–vocabulary words. When a deep
linguistic analysis fails, or as a general strategy for the un-
derstanding phase of a dialog system, the linguistic analysis
can be performed on a very coarse level:

1. segment the turn into semantic/pragmatic units

2. classify these segments according to their illocution-
ary force (e.g. REJECT, SUGGEST) and propositional
content (e.g. DATE, LOCATION)

3. extract the propositional content with a local parser
and translate the utterance with sentence tabloids or
retrieve the information from the database, depending
on the scenario of the dialog system.

The segmentation task (step 1.) is done with prosodic fea-
tures using an MLP and based on the best word chain in the
WHG using a LM as described in Section 3.4. The MLP is
trained with prosodic features as described in Section 3.2.
on the basis of acoustic–prosodic boundaries (B

� � B). The
LM to segment a turn on the basis of the word chain is used
as described in Section 3.3. After segmentation is done, the
DA units into which the turn has been segmented have to
be classified (step 2.) into one of 18 DA classes as de-
fined for the VERBMOBIL prototype in [17]. This is done
with an LM classifier [39]. We trained 18 DA-dependent
LM on a labelled subset of the VERBMOBIL corpus. Thus,
we can classify with these LM by running them in paral-
lel and deciding for that DA with the highest a posteriori
probability.

With this approach we correctly identified 93% of the
word boundaries w.r.t. D3 vs. D0 and classified 45.8% of
the DA units correctly.

After an incoming turn has been segmented and classi-
fied into DA, it is translated with a template based approach
(step 3.) depending on the corresponding DA. Template
based means, that for each DA there are one or more tem-
plates with gaps, which are filled with the semantic content
and are used as the translation irrespective of the actually
spoken words. Example (6) would be classified as REJECT,
DIGRESS and could be translated as:

(8) The 25th is not possible.

This shallow translation alone can translate 47% of
VERBMOBIL turns approximatively correct (approxima-
tively correct means that at least the meaning of the turn
is represented correctly in the target language). Using the

shallow analysis as a backup, if deep linguistic analysis
fails, greatly increases the robustness and acceptance of
the VERBMOBIL-system: Deep analysis alone leads to 52%
approximatively correct translation, with the combination
74% of the turns are translated approximatively correct.

How prosody could help to extract the semantic fillers is
shown in Section 5.1.

In our current research we integrated the segmentation
and classification task (step 1. and 2.) in an 
 � -search
[39]. Thus, we are able to use the DA information for clas-
sification of phrase boundaries and the phrase boundary
information for the DA classification, because they depend
on each other. The better we can classify the phrase bound-
aries, the better is the classification of the DA. On the other
hand the DA information can overcome wrong boundary
hypotheses if the probability for a wrong DA unit becomes
very bad. We improved our DA accuracy using this ap-
proach and new interpolation techniques for our LM from
45.8% to 53.3% for the spoken word chain. We could im-
prove the segmentation rate from 93% to 95% with this
approach. If we use hand-segmented phrase boundaries
from the labelled corpus simulating one hundred percent
segmentation rate the dialog act accuracy is 68% for the 18
DA.

5 CURRENT AND FUTURE WORK

In the last section we presented results which show that
prosody is a valuable knowledge source and can greatly
help in the understanding phase of a spoken dialog sys-
tem. Besides improvement of the existing module our cur-
rent activities aim at the use of accentuation information
(Section 5.1.), systematic feature selection (Section 5.2.),
use of prosody in other languages (Section 5.3.), use of
prosody in the word recognition phase (Section 5.4.), and
the detection of emotion (Section 5.5.). In the following we
present some preliminary results for each of these fields.

5.1. Accentuation and Shallow Linguistic Analysis
As shown in the last section, a linguistic analysis can be
performed on a very coarse level. So far we have only
indicated, how to perform steps 1. and 2. in a coarse lin-
guistic analysis, i.e. how to segment a turn into smaller
semantic/pragmatic units and how to classify them. Here
we show how prosody can guide a local parser to extract
the relevant information (see [15] for details).

We took about 4000 turns from calls to our EVAR train
timetable information system [11, 1], classified each word
automatically as either prosodically accented or not and
looked at those words, where more than 80% of their oc-
currences were classified as accented. Table 11 shows the
15 most frequent of these words for all turns and for those
which contain a time expression and another semantically
relevant piece of information (time+). This list already in-
dicates that accented words are a good starting point for
local parsers. Preliminary evaluations with these time+ ut-
terances showed that almost always (in over 90% of the
cases) one of the words with a high classification result for
accentuation was within the time expression.

Note that the most frequent word in the time+ subcorpus
is no, indicating a correction, whereas over all turns no
is not in the list of words which are “always” accented.
This is not surprising, since the no in a correction is more
important than in a yes/no–question as in



Accentuation probability � 0 � 8
in � 80% of the observations

Rank all turns time+ turns

1 Nürnberg no
2 connection ten
3 Friday twelve
4 Stuttgart eighteen
5 Frankfurt sixteen
6 train connection Nürnberg
7 ten Erlangen
8 Sunday fifteen
9 Saturday thirteen

10 twelve nineteen
11 Montag seventeen
12 Mittwoch fourteen
13 Würzburg afternoon
14 Bamberg Friday
15 achtzehn twenty three

Table 11. Most frequent words from the EVAR domain,
which are “always” accented. The words are ranked by
number of observations

(9) you want to leave from Kiel?
NO, from TRIER

vs.

(10) do you want any more information?
no

In an informal analysis of calls to the EVAR system we
listened to turns which contained a negation (dialog marker
NO) and some semantic information like “GOAL CITY”
or “SOURCE TIME”. Whereas emphatic and contrastive
accents are rather rare in VERBMOBIL (about 1.2% of all
words and 3% of the accented words are marked as having
emphatic or contrastive accent), this phenomenon becomes
important in the information retrieval scenario: Emphatic
stress was observed quite frequently (in about one third of
these correction turns). Emphatic stress results in unusual
pronunciations. Typical for such a situation is a strong
accentuation of otherwise reduced syllables and within–
word pauses between syllables as in

(11) No, I want to leave from RE ��� � � 	 �
GENS ��� � � 	 � BURG ��� � � 	 �

which lead to even worse word recognition results than in
the turn which is supposed to be corrected. Thus, even
though we currently only look at the classes A and � A,
we believe that accent should be marked more detailed in
scenarios where emphasis is observed frequently.

5.2. Optimization of the Prosodic Feature Vector
As indicated in Section 2, it is an open question which
prosodic parameters are used how, in order to mark prosodic
functions. Our approach so far is to calculate a feature vec-
tor which has as many features as possible. We know that
some of these features highly correlate with each other and
trust the classifier not to get worse if irrelevant features are
added. Clearly this is suboptimal w.r.t. efficiency, but also
from a epistemological point of view. In [3] we classified
prosodic boundaries and accents with subsets of our features

like “all energy related features” and “all features without
the energy related features”. The results obtained for the
different subsets show that each feature class contributes to
the marking of accents and boundaries, and that the best
results can be achieved by simply using all feature subsets
together.

We currently run experiments for feature selection us-
ing statistical significance measures. Preliminary results
again indicate that feature sets which represent all prosodic
parameters (

�
0, duration, energy) are selected.

5.3. Prosody for English and Japanese
VERBMOBIL is a speech–to–speech translation system for
the language pairs German–English and German–Japanese.
We have recently started to port our prosody module to
English and Japanese.

Table 12 shows first results for boundary classification
for these two languages. As a classifier we used the com-
bination MLP+LM. The results are in the same range as
for German, those for English are somewhat worse, those
for Japanese are somewhat better. Without anticipating a
detailed analysis, we assume that in the case of English,
this is due to less training data (about 30% of the German
data) and in the case of Japanese, this is due to a more
“disciplined”, i.e. less spontaneous speaking style.

English
classified as

class # M3 M0
M3 1851 90 10
M0 6061 8 92

Japanese
class # D3 D0
D3 1169 95 5
D0 23644 2 98

Table 12. First Recognition results of the VERBMO-
BIL prosody module for English and Japanese

5.4. Prosody and Word Recognition
Our prosodic classifier used in the VERBMOBIL system
is based on the word recognition result (as depicted in
Figure 1). Therefore, the word recognizer itself cannot
use any prosodic information. However, we believe that
prosodic information, especially syntactic-prosodic bound-
ary information, is also useful to improve word recognition
results. It is well known, that state of the art speech recog-
nizers are based on two sources of knowledge: acoustic in-
formation and language model information. Statistical LM
provide the probability of a given word sequence based on
a rather simple model: it is assumed that a spoken utterance
is an unstructured sequence � 1  (� 2  �� � � ��� of words. Obvi-
ously, this is not true. By integrating models for syntactic-
prosodic phrase boundaries into the word recognizer and
into the statistical LM, the word recognizer can incorporate
information about the structure of the utterance.

An integrated model of sequences of words and bound-
aries allows for a distinction between word transitions
across phrase boundaries and transitions within a phrase,
which is an obvious advantage: Words at the beginning
of a new phrase correlate less strongly with the preceding
word than words within the same phrase. Instead, the fact
that they are separated from their predecessor by a phrase



boundary should contribute a great amount of information
when LM probabilities are calculated.

We therefore propose an integrated approach to recog-
nize the word sequence and the prosodic boundaries in one
step. We use HMM to model phrase boundaries and in-
tegrate them into the stochastic LM. The word recognizer
then determines the optimal sequence of words and bound-
aries. Even without additional prosodic features, only with
the acoustic features of our baseline word recognizer, we
already obtain recognition rates for M3 phrase boundaries
that are comparable to those achieved with the sequential
approach shown in Figure 1. At the same time, a word
error rate reduction of 4% is achieved without any increase
in computational effort [14]. Preliminary experiments have
also been conducted to investigate methods of effectively
integrating additional prosodic features. We obtained some
promising results using an MLP-HMM-hybrid architecture.

5.5. Emotion in Speech Understanding Systems
Just like people kick soda vending machines when these do
not work, it is expected that users will get mad and angry
at speech understanding systems when a dialog with such
a system goes wrong. Especially in the scenario of call-
center applications, it is important to detect such a situation,
if one does not want to loose a potential customer for ever.
After the detection of such a communicative cule-de-sac,
appropriate steps like referring the customer to a human
operator or starting a clarification dialog have to be taken.
Emotion has not received much attention in the context
of automatic speech understanding. When going from the
laboratory to real life applications we expect this to change.
For the moment we do not look at lexical filling of words
(e.g. swear words) but rather try to decide between neutral
and angry with prosodic features

On a database of neutral and angry utterances, where
the anger was simulated, we show in [16] that the emotional
state of the utterances can be predicted with high accuracy.
Table 13 shows recognition results for utterances from the
17 training speakers which were not used during training
(seen speakers) and for 3 independent test speakers (new
speakers).

classified as
seen speakers new speakers

class angry neutral angry neutral
angry 92% 8% 84% 16%
neutral 13% 87% 5% 95%

Table 13. Recognition rates neutral vs. angry for the two
test sets.

6 CONCLUDING REMARKS

Prosodic information is known to play a major role in hu-
man speech understanding; a growing number of research
projects within the last ten years dealt with this topic.
The German speech–to–speech translation system VERB-
MOBIL is, however, the first complete spoken dialog system
where prosody is used successfully. Currently, this use is
mainly confined to the prosodic scoring of WHG. We have
shown that by that, a substantial speed up of parse time
and a substantial reduction of syntactic readings could be

achieved. The shallow linguistic analysis which is a backup
translation scheme VERBMOBIL if deep linguistic analysis
fails, also heavily depends on prosodic boundary informa-
tion. In the future we expect boundary information to also
bring substantial improvement for the recognition phase of
a spoken dialog system.

Other applications are, e.g., the prosodic marking of ac-
cents (center of information for shallow linguistic analysis),
and the prosodic marking of emotions, e.g., neutral vs. an-
gry speaking style, which should trigger different reactions
of the system.

Although it might be possible that segmentation is really
the most important contribution of prosody to speech under-
standing, we are still at the very beginning of an integration
of prosody into automatic speech understanding systems.
Further improvements are therefore very likely.
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[21] R. Kompe, E. Nöth, A. Kießling, T. Kuhn, M. Mast, H. Niemann,
K. Ott, and A. Batliner. Prosody takes over: Towards a prosodically
guided dialog system. Speech Communication, 15(1–2):155–167,
1994.

[22] W. Lea. Prosodic Aids to Speech Recognition. In W. Lea, editor,
Trends in Speech Recognition, pages 166–205. Prentice–Hall Inc.,
Englewood Cliffs, New Jersey, 1980.

[23] M. Mast, E. Maier, and B. Schmitz. Criteria for the Segmentation
of Spoken Input into Individual Utterances. Verbmobil Report 97,
1995.

[24] H. Ney, U. Essen, and R. Kneser. On Structuring Probabilistic
Dependences on Stochastic Language Modelling. Computer Speech
& Language, 8(1):1–38, 1994.
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