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ABSTRACT: We present a newsearch-by-contentmethod to identify transcriptional regulatory
regions in eukaryotic genomic sequences. The method is based on stochastic language models which
are a straightforward generalization of oligomer statistics. We describe the theoretical background and
different parameter estimation techniques used to build the models. The resulting language models
are applied to classify fixed length sequences into the classes of promotersand non-promoters, and to
search for transcription start sites in contiguous sequences. Detailed classification results for human
andDrosophiladata sets are presented, and the practical applicability of the models is demonstrated
on an independent test set of vertebrate genomic sequences. On this set, which hasalready been
used to compare different computational approaches for promoter recognition, the performance of
our method is comparable to the best algorithms described so far. The number of false positives can
be further reduced by a post processing step on the output scores. Examining both strands ofthe
independent test set, the models thus are able to identify about half of the annotated transcription start
sites (12 out of 22) while making a false prediction roughly every 800 base pairs.

1 INTRODUCTION

Computer based analysis of DNA primary sequences, especially of regulatory regions like promoters,
is a challenging problem within the field of bioinformatics. As more and more largescale sequencing
projects give rise to the number of long contiguous genomic sequences which may contain multiple
genes, the need for computational methods to seperate these genes and find the exact location of the
transcription start site and of the first exon is increasingly urgent. Methods which are available up to
now still do not fulfill the requirements imposed on the prediction accuracy. Thisis mainly caused
by the highly complex structure of eukaryotic polymerase II promoter sequences. Recentprogress on
the structure and function of polymerase II promoters is reviewed for example in (Kornberg, 1996)
and (Roeder, 1996).
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In a eukaryotic promoter, several signals are scattered within the region located near the tran-
scription start site. These signals are binding sites of interacting transcription factors which regulate
the expression of the particular gene by the eukaryotic polymerase II enzyme. The most prominent
signals are certainly the signals within the core promoter region: The so-called TATA-box which is
the binding site of the TFIID transcription factor that is involved in the interaction between DNA
and eukaryotic polymerase II (Burley and Roeder, 1996), the initiator sequence at the start site itself
(O’Shea-Greenfeld and Smale, 1992), and the downstream promoter element (Burke and Kadonaga,
1997). What makes promoter recognition difficult is the fact that signals other than those in the core
region may occur in different numbers, spacing, and order. All of the occuring signalscan be weakly
conserved or missing altogether, showing a large dependency among each other. So, when searching
for particular signals, one might miss a large number of weakly conserved promoters. On the other
hand, the functionality of a signal seems to be determined not only by its sequence but also by the
context in which it appears. Search methods are therefore plagued by a large numberof false positives
caused by single well conserved signals.

In (Fickett and Hatzigeorgiou, 1997) the available methods for promoter recognition were recently
reviewed. On an independent test set the best methods were able to locate about 40–50 % ofthe true
promoters with a false prediction every 500–800 base pairs. The methods reviewed included signal
search methods, which either rely on the prominent signals around the transcription start site (Reese
and Eeckman, 1998) or on a large collection of weight matrices for known transcription factors bind-
ing sites (Prestridge, 1995), as well as content search methods based on the statistics of short words
(oligomers) which do not look for particular signals (Audic and Claverie, 1997; Hutchinson, 1996).
In (Solovyev and Salamov, 1997) the two approaches are combined by judging a sequence using both
weight matrices for the TATA-box and the initiator, and content based scores forthe upstream region.

The method described here is a search-by-content method based on interpolated stochastic lan-
guage models (SLMs). These models have been widely used for classification purposes in speech
recognition (Jelinek, 1990; Kuhn et al., 1994; Schukat-Talamazzini et al., 1997). Interpolated SLMs
can be regarded as a straightforward generalization of oligomer statistics, and we will show that they
significantly outperform the oligomer approach.

2 METHODS

2.1 STOCHASTIC LANGUAGE MODELS

Recognising promoter sequences with a search-by-content method means to identify awhole reg-
ulatory region of fixed length within a contiguous genomic sequence. The position of the putative
transcription start site is associated with a specific position withinthe region. The general approach
thus is to slide a window of suitable length over the complete sequence in steps of afew bases and
judge the sequence in the window. Therefore the problem can be broken down to the classification of
a fixed length sequencew = w1 : : : wT , where each symbolwi is taken from a finite vocabularyV.

For simplicity, we first regard only one class of sequences. The probabilityP (w) of the occurence
of a particular sequencew can be written as follows, using the chain rule:P (w) = TYi=1P (wijw1 : : : wi�1); (1)

which means that one symbol in a sequence is dependent on all its predecessors, i. e. onthehistory
of preceding symbols.
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If we can establish a model which computes this probability, we have the means to determine how
likely a sequence will occur in a specific class. A stochastic language model is exactly such a model
which assigns a probability to a sequence of symbols.

2.2 ESTIMATION OF PARAMETERS

The right hand side of equation 1 contains a history of possibly infinite length which cannot behan-
dled; therefore, an approximation is made by imposing a restriction on the historylength. A possible
approximation of the probabilityP (w) is made by choosing the upper history length equal toN � 1:P (w) � TYi=1P (wijwi�N+1 : : : wi�1) (2)

The resulting language model is calledN-grammodel; it is equivalent to the well-known oligomer
approach withN as the length of the oligomer, which in turn is equivalent to a Markov chain of orderN � 1. We also refer to the parameterN as the consideredcontext.

Using a training sample, the Maximum Likelihood estimation~P (wijwi�N+1 : : : wi�1) of the con-
ditional probabilities with contextN can be performed simply by counting:~P (wijwi�N+1 : : : wi�1) = #(wi�N+1 : : : wi)#(wi�N+1 : : : wi�1) ; (3)

where # denotes the frequency of its argument in the training sample. Of course, one would like to
choose a large context — the approximation made by a language model of higher order gets closer
to the real probability as denoted in equation 1. Unfortunately, the number of parameters which have
to be estimated increases exponentially with the number ofN , and thus the ML estimates become far
from being reliable because of the limited training sample size.

A compromise with respect to this trade-off between the model context and the training sample
size can be made by introducing a weighted interpolation scheme.

2.3 INTERPOLATION METHODS

The basic idea of applying interpolation methods is to fall back on the probability estimation of
subsequences shorter thanN if the frequencies of theN -gramsv = v1 : : : vN cannot be reliably
estimated. An example is thelinear interpolationbetween all the shorter subsequences up to the full
lengthN :P̂ (vN jv1 : : : vN�1) = �0 1L + �1 ~P (vN ) + �2 ~P (vN jvN�1) + : : :+ �N ~P (vN jv1 : : : vN�1) (4)

The fraction(1=L) accounts for unseen events and ensures that no probability is set to zero.
Equation 4 contains only one vector of interpolation coefficients, no matter if allthe subsequences

up to lengthN really occured in the training data. Obviously, the interpolation approach loses its
eligibility if some of the summands~P (vN j�) with larger context are equal to zero because the training
sample does not contain all possibleN -grams. Indeed, this is likely to happen when a large numberN is chosen and the available training data cannot account for the increasing amount of parameters.
The solution lies in the estimation of different interpolation weights�i(H) depending on the available
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length of the historyH. Such a model has the implicit effect of estimatingN -grams of different
context and is therefore calledpolygram modelaccording to (Kuhn et al., 1994).

The interpolation weights�i(H) are optimized with respect to the Maximum Likelihood criterion
by using an Expectation Maximization approach where the weights are regarded ashidden variables
in a doubly stochastic process (see Schukat-Talamazzini et al., 1997). With thisapproach, the initial
probabilities for theN -grams (equation 3) are reestimated using a second disjoint part of the training
sample. Afterwards, a large weight will be assigned to those frequencies which can be reliably esti-
mated; if only sparse data is at hand, the weights belonging to shorter subsequences will be increased.

Setting all the weights�0 : : : �N�1 to zero and�N to one results again in the well-known oligomer
approach; the models with linear and polygram interpolation are a straightforwardgeneralization of
this approach combining oligomers of different length. The advantage of an interpolationscheme is
that the model can take into account statistics of a higher order without running into the danger of
overfitting the model to the training data.

A drawback of the linear and polygram interpolation scheme is certainly the inability to handle the
particularN–grams individually. For example, the probability of anN–gramx of context six might
be very large and the interpolation weight�6 should therefore be large, whereas another 6-gramy
occurs quite seldomly. By introducing an additional functiongi(v0) which scores the reliability of the
(N � 1)–gramv0 = v1 : : : vN�1 monotonically, the linear interpolation can be extended to handle this
problem accurately: P̂ (vN jv0) = PNi=0 �i � gi(v0) � ~Pi(vN jv0)PNi=0 �i � gi(v0) ; (5)

where ~Pi(vN jv0) denotes the frequency ofvN�i : : : vN . This interpolation scheme is calledratio-
nal interpolationand uses only one vector of coefficients in contrast to the linear interpolation of
polygrams which usesN vectors of increasing length1 : : : N . The functiongi(v0) is chosen to be a
sigmoid funtion which is dependent of the frequency of the lasti symbols ofv0:gi(v0) = #i(v0)#i(v0) + C (6)

In the case ofC = 0, the functiongi is always equal to one and equation 5 becomes equivalent
to the linear interpolation; we heuristically choseC to be equal to10. In the rational case, the com-
putation of optimal interpolation weights is carried out with a gradient descent algorithm instead of
the EM approach which is used for linear coefficients. The details are omitted at this point and can be
found in (Schukat-Talamazzini et al., 1997).

2.4 CLASSIFICATION OF A SEQUENCE

After a polygram model has been trained for each of the considered classes, the models can be used
to classify a sequence. Let us assume that we haveK classes
1 : : :
K , andPk denotes the language
model for classk, k 2 f1; : : : ; Kg. Then we can compute the likelihoodP (wj
k) = Pk = TYt=1 P̂ (wtjwt�N+1 : : : wt�1) (7)

for each model and classify the sequence into sequence classk̂ by computing thea posterioriproba-
bility using Bayes’ rule:
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k̂ = argmaxk P (w;
k) = argmaxk (pk � P (wj
k)) (8)

As we have no exact knowledge about thea priori probabilities of our sequence classes, the valuespk are assumed to be uniformly distributed and are therefore neglected. Nevertheless, we are able to
tune the models with respect to sensitivity and specificity. In this paper, the following approach is
used: If only one class is of interest — i. e. we are only interested if the sequence is a promoter or
not, no matter how many models we have trained for non-promoter sequences — we can compute
the likelihoodPk for each class
k with the language models and determine the difference between
the score for the model of interestPp and the best of the remaining modelsPn. Including a length
normalization, we obtain the following equation for the total scoreS:S(w) = Pn(w)� Pp(w)len(w) (9)

In practice, the logarithms of the probabilities are used because of the more efficient computation
and the prevention of numerically unstable values when regarding long sequences. Infigure 1 an
overview of the system structure discussed so far is given.

Choosing a suitable threshold value on the total scoreS, the selection of any percentage of false
positives is feasible. The resulting curve of false positive rate vs. recognition rate over the whole range
is calledreceiver operating characteristic(ROC) and gives us the full description of the performance
of a classificator: When comparing two ROC curves resulting from differentclassificators, one can
see instantly which one is better suited for the considered problem.

As asinglenumber which also describes the performance of a classificator when consideringtwo
classes thecorrelation coefficientcan be used:CC = (TP � TN)� (FN � FP )q(TP + FN) � (TN + FP ) � (TP + FP ) � (TN + FN) (10)

Herein, TP stands for true positives, TN for true negatives, FP for false positives, and FN for false
negatives; these numbers denote the absolute numbers of correctly and wrongly classified sequences.
The CC value lies within�1 and1; the latter number occurs when a completely correct classification
is available, a zero means arbitrary classification, and when all the classifications are wrong, the CC
value is equal to�1. The correlation coefficient can be evaluated at the same corresponding values
for recognition rate and false positive rate as the ROC curve; the best CC value then shows for which
threshold the considered method gives the results deviating most from arbitraryclassification. The
CC value cannot substitute the complete ROC curves, but the measure is quite common and gives a
first impression when comparing different models which were trained on the same data sets.

2.5 SEARCHING FOR PROMOTERS IN CONTIGUOUS SEQUENCES

To search for promoters in contiguous sequences by means of language models, we use a sliding
window with a length of 300 bases. Every ten bases, the actual sequence in the window is classified
as promoter or non-promoter. Because a whole promoter region is very likely to cause multiple
predictions of several overlapping windows, a prediction is only made for each local minimum of
the difference between non-promoter and promoter score which lies below the chosenthreshold. The
transcription start site is then assumed to be located at a specified position within the window; this
location is used to evaluate the accuracy of the prediction.
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Figure 1: Promoter prediction with language models. A window of fixed length is shifted along
the sequence, and every couple of bases the sequence in the window is judged by all the language
models. The output is the difference between the best non-promoter and the promoter model score;
the sequence of scores for the windows is then further processed as described in section 2.5.

To eliminate single false predictions, a post processing operation is applied onthe score functionS
which is evaluated every ten bases over the whole sequence. By smoothing the resulting curve, single
false promoter predictions as well as single non-promoter predictions within a promoter region are
filtered out. We chose to apply the hysteresis threshold smoothing algorithm: A cursor of a chosen
height is shifted over the curve from left to right, and the middle position of the cursor is always
emitted as new output. As long as the next considered value lies within the cursor area, the cursor
position is not moved vertically. If the next value lies above the cursor, itis moved up so that the
upper rim corresponds with the value; if it lies below the cursor, it is moved down in an analogous
way. With increasing cursor width, the curve is smoothed more and more.

3 DATA SETS

For training and evaluation of the methods, we usedD. melanogasterand human data sets containing
promoters, coding, and noncoding sequences. For the human promoter data set, we extractedall
non-related vertebrate sequences except retroviruses from the Eukaryotic Promoter Database EPD
rel. 50 (Perier et al., 1998). Retrieving only human promoter sequences from EPD would result in too
small a dataset; EPD rel. 50 contained only 181 independent human sequences because each entry
is rigorously validated and must be experimentally proven. Taking all vertebrate sequences instead
is experimentally justified because vertebrate organisms share a reasonable amount of transcription
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Figure 2: Receiver operating characteristics for different interpolationmethods and context length
seven, evaluated on the fixed length sequence set of promoters and coding sequences.

elements such as the well-known CAAT- and GC-boxes. Sequences with less than 40 bases upstream
or 5 bases downstream from the annotated transcription start site were discarded to assure that at least
the possible TATA-box and the initiator site were contained in each entry. This resulted in 565 entries,
from which sequences up to 300 bases length (250 upstream and 50 downstream, if available) were
extracted. As aDrosophilapromoter set, we used the compilation of (Arkhipova, 1995), enriched by
new sequences taken from EPD. Altogether, we had 256Drosophilasequences with more than 40
bases upstream and 5 bases downstream.

For the coding and noncoding sequences, we used the exon and intron sequences of human and
Drosophilagenes contained in the data set for the GENIE genefinding system (Kulp et al., 1996).
The exons were concatenated to form long coding sequences. Then, 300 bases long non-overlapping
sequences were extracted. We divided the human data in five cross-validation sets containing 113
promoter, 180 coding, and 869 non-coding sequences each; theDrosophiladata was divided in three
sets, each comprising 85 promoters, 237 coding, and 80 non-coding sequences. In the remaining text,
these sets will be referred to as ”sequences of fixed length” and can be obtained from the authors upon
request to make a thorough comparison with other methods possible.

To evaluate the performance of the system on long contiguous sequences, we made use of the
independent data set in (Fickett and Hatzigeorgiou, 1997). Using this data set we additionally have
the possibility to compare the system’s behaviour with other programs aimed at promoter recognition.
The original data set consists of 18 mammalian sequences containing 24 annotated andexperimentally
proven promoters with a total of 33,120 bp, from which 17 sequences — two of them enrichedby new
flanking sequences — could be retrieved; those 17 sequences had a total of 34,284 bp and contained
22 promoters. None of these sequences was contained in the training set. The evaluation on the
contiguous sequences was carried out on both strands; recognition results are therefore given in base
pairs instead of single bases.
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false recognized promoters (%)
positives promoter vs. promoter vs. promoter vs.

(%) CDS intron CDS/intron
0.0 63.5 (0.72) 12.6 (0.33) 6.9 (0.24)
1.0 76.1 (0.80) 22.9 (0.48) 34.5 (0.49)
2.0 80.7 (0.82) 44.1 (0.53) 43.9 (0.52)
3.0 83.9 (0.83) 49.2 (0.53) 50.4 (0.53)
4.0 89.2 (0.86) 51.3 (0.51) 54.2 (0.52)
5.0 92.0 (0.87) 53.3 (0.50) 59.1 (0.53)
6.0 94.0 (0.87) 57.5 (0.50) 61.7 (0.52)
7.0 94.3 (0.87) 60.0 (0.50) 63.7 (0.51)
8.0 95.6 (0.87) 63.5 (0.51) 66.2 (0.50)
9.0 95.9 (0.86) 64.6 (0.49) 68.3 (0.50)

Table 1: Promoter classification on vertebrate sequences with stochasticlanguage models using ratio-
nal interpolation and context length seven. For a certain percentage of false positives, the correspond-
ing cross-validated recognition rate and the correlation coefficient is given. The recognition rate with
the highest correlation coefficient is printed in bold (CDS = coding sequence).

4 RESULTS AND DISCUSSION

As a first step, we determined experimentally whichN–gram context and interpolation method were
best suited for promoter recognition. We appliedN–grams with different context lengths using the
three interpolation methods on the fixed length sequence set, comprising human promoters and coding
sequences. Four of the five parts were used as training and one part as an independent test set. Figure 2
shows a part of the receiver operating characteristics obtained on this setusing language models with
context length seven for which we could obtain the best results. The figure shows clearly that rational
interpolation outperforms the linear and polygram approaches, and that no improvementcould be
achieved using polygram instead of linear interpolation; nevertheless, even the linear scheme shows
very good results. With increasing context length, no considerable improvement was achieved. We
therefore applied a careful cross-validation experiment on the fixed length sequence set, using models
trained with a context of seven and rational interpolation. Table 1 shows the recognition rate on
the sets of fixed length sequences for three discrimination tasks: promoter vs. coding sequences,
promoter vs. intron sequences, and promoters vs. both coding and non-coding sequences. Here,the
depicted numbers were obtained by averaging the results of five experiments; in each experiment the
model was trained on four parts of the sequence data, leaving one part out at a time and evaluating
the performance on the part not used for training.

The discrimination performance between promoters and coding regions is stunning; at afalse
positive rate of 5 % already 92 % of the promoter sequences were classified correctly (correlation
coefficient 0.87). Nevertheless it is also very clear that a classification between promoter and introns
is much more difficult — the best CC value obtained was 0.53, at a false positive rate of 3 % and a
recognition rate of 49.2 %. Most probably this stems from the much weaker information contained in
the introns compared to the strong coding information of the exons. On applying models on the three-
part set of promoters, non-coding, and coding sequences, the results are comparable to the two-class
problem of promoters and coding sequences, resulting from the much larger sample size of intronic
sequences.

Corresponding results obtained by making a threefold cross-validation on the set ofpromoters,
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false recognized promoters (%)
positives promoter vs. promoter vs. promoter vs.

(%) CDS intron CDS/intron
0.0 49.5 (0.63) 9.0 (0.21) 10.15 (0.29)
1.0 66.3 (0.75) 18.0 (0.28) 27.0 (0.43)
2.0 75.3 (0.78) 23.8 (0.31) 35.9 (0.49)
3.0 82.8 (0.82) 23.8 (0.31) 39.1 (0.48)
4.0 86.3 (0.83) 30.5 (0.35) 44.1 (0.49)
5.0 93.0 (0.86) 35.2 (0.37) 50.8 (0.53)

10.0 96.9 (0.81) 45.3 (0.39) 69.5 (0.59)
15.0 97.3 (0.76) 49.6 (0.37) 78.9 (0.58)
20.0 97.7 (0.70) 60.2 (0.41) 87.1 (0.58)
25.0 98.0 (0.65) 67.6 (0.43) 90.6 (0.55)

Table 2: Promoter classification onD. melanogastersequences with stochastic language models us-
ing rational interpolation and context length six. For a certain percentage of false positives, the cor-
responding cross-validated recognition rate and the correlation coefficient is given. The recognition
rate with the highest correlation coefficient is printed in bold (CDS = coding sequence).

coding, and noncoding regions ofD. melanogastercan be seen in table 2. Here, again rational inter-
polation, but with a smaller context of six proved to deliver the best recognition rate. Obtaining the
best result with a smaller context is most probably a consequence of the more limited training sample
size. One can see that the overall performance is somewhat comparable to those on human sequences,
but especially the discrimination between non-coding sequences and promoters is worse. This is pos-
sibly due to the more than twentyfold larger sample of non-coding sequences which was available
for the training of the human model. Because of the much smaller average intron size inDrosophila
genes, the effect of the poor promoter vs. non-coding discrimination on the overall performance is not
as strong as for human sequences.

We compared the performance of our language models with the oligomer statistics — that is a
stochastic language model without any interpolation. For this purpose we trained one modelusing
hexamer statistics and another SLM with rational interpolation and context length six and evaluated
both on one cross-validation experiment for the promoter vs. coding sequence recognition task. The
obtained results show that, using the available limited data, the hexamer model cannot be as reliably
trained as the interpolated models: At a false positive rate of 1 %, the modelwith rational interpolation
can recognise over ten percent more promoter sequences than the hexamer model. This clearly shows
that the SLMs are able to estimate the statistics much better whereasthe hexamers are overfitting to
the sparse training data and perform much worse on unseen test sequences.

Finally, we applied one model trained on promoters, coding, and non-coding sequences to the
task of finding promoter regions in longer vertebrate DNA sequences, using the set of contiguous
sequences cited in the promoter prediction program survey of (Fickett and Hatzigeorgiou, 1997). In
this survey, a prediction is judged as correct if an annotated transcription start site lies within 200
bases downstream and 100 bases upstream from the predicted site. That means that a prediction
is correct as long as it is made somewhere within a large part of the regulatoryregion. Using this
criterion, we could detect 12 out of 22 (54.5 %) of the promoters while having one false prediction on
average every 504 base pairs. The two programs which achieved the best performance in the survey
could detect 54 % and 42 % of the promoters with a false positive rate of 1/460 bp and 1/789bp,
respectively (Reese and Eeckman, 1998; Solovyev and Salamov, 1997). These numbers show that the
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Figure 3: Output of the system on a large contiguous sequence, before and after applying the auto-
mated post processing step. The system makes three predicitons, one for each local minimum below
a certain threshold. The predictions are located at positions 920, 3690, and 4740; the annotated
transcription start site is located at position 935.

performance of the polygram models is comparable to the best available tools for promoter prediction,
but the number of test sequences is far too small to make a fair and exact comparison possible.

The results were further improved by smoothing the output score function with the hysteresis
algorithm as described in section 2.5. By applying this post-processing step witha heuristically
chosen cursor width of 0.015, the number of false predictions could be drastically reducedto one every
797 bp while making no forfeits on the recognized promoters. An example of the performance on one
human test sequence, the human phenol sulfotransferase gene (GenBank accession codeHSU54701),
is shown in figure 3. In this example, within a sequence of about 6,000 bases length three predictions
are made, one of which is located close to the annotated transcription start site.

5 CONCLUSIONS

In this paper we showed that stochastic language models can be successfully usedto discriminate
between promoter and non-promoter (coding and non-coding) regions. The application on contigu-
ous sequences achieves promising results — after applying a postprocessing step, ourmodels give
recognition results comparable to the best methods described in the recent survey of (Fickett and
Hatzigeorgiou, 1997): We identified the transcription start sites of 12 out of 22 promoters, with a
false prediction every 800 bp. Two of the non-identified transcription start sites were located very
close to the sequence start, so that no complete 300 base pair long sequence — the length our models
were trained on — was available. One of the eight remaining promoters missedwas also not detected
by any of the nine programs evaluated in (Fickett and Hatzigeorgiou, 1997). At the moment, we have
no non-promoter model for intergenic sequences; if a reliable training sample for this sequence class
can be obtained, the performance is likely to improve because of the more accurate sequence model-
ing. Obtaining such a sample though is difficult; most database entries contain only single genes, and
additional sequence parts outside the gene sequence are not definitely annotated.

10



The prediction accuracy of the TSS location was quite good despite the fact that SLMs do not use
location specific information. From the 12 promoters recognized, no prediction was further than 100
bases away from the annotated TSS, and seven of them were made within 20 basesfrom the true start
site.

Compared to oligomer statistics which can be seen as a special case, thepower of approaches
using interpolated statistics lies in a much stabler parameter estimation, especially when only sparse
data is at hand as is actually the case for promoter sequences. In the authors’ opinion, this is the
reason for the considerable improvement made by SLMs on the promoter recognition task. With a
recognition rate as high as the one which can now be achieved, one can think about an integration of
a promoter recognition module in a large-scale gene finding system like GENIE (Kulp et al., 1996).
Thereby, the modules for gene structure determination and promoter recognition are likely to benefit
from each other: On the one hand, the large number of false promoter predictions may be reduced
because of the absence of an exon region following it; on the other hand, an improved accuracy on
the detection of the first exon is yielded, and the separation of multigenic sequencesinto single genes
becomes possible. An exact promoter prediction can also be useful to identify thecorrect full length
cDNA.

We also combined the search-by-content method of this paper with the search-by-signal method
of the time delay neural networks as described in (Reese and Eeckman, 1998). Preliminary results
show that on the set of fixed length sequences, the number of false predictions made by the neural
network alone could be reduced by half when applying both methods on the sequences and combining
the scores appropriately. This exploitation of different knowledge will be the topicof future research.

This work was partially supported by a grant of the Boehringer Ingelheim Fonds to Uwe Ohler.
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