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ABSTRACT: We present a newearch-by-conteniethod to identify transcriptional regulatory
regions in eukaryotic genomic sequences. The method is based on stochastic languag&mokel
are a straightforward generalization of oligomer statistics. We desstire theoretical background and
different parameter estimation techniques used to build the models. Thigng$anguage models
are applied to classify fixed length sequences into the classes of pro@oedensn-promoters, and to
search for transcription start sites in contiguous sequences. Detaibasifficlation results for human
andDrosophiladata sets are presented, and the practical applicability of the models is deatexhs
on an independent test set of vertebrate genomic sequences. On this set, whatleddhs been
used to compare different computational approaches for promoter recognition, thengexter of
our method is comparable to the best algorithms described so far. The numbee @fdsiisves can
be further reduced by a post processing step on the output scores. Examining both sttheds of
independent test set, the models thus are able to identify about half of the annetasedtion start
sites (12 out of 22) while making a false prediction roughly every 800 base pairs.

1 INTRODUCTION

Computer based analysis of DNA primary sequences, especially of requlajargsdike promoters,

is a challenging problem within the field of bioinformatics. As more and more kggle sequencing
projects give rise to the number of long contiguous genomic sequences which may contgtemul
genes, the need for computational methods to seperate these genes and find theag@acolabe
transcription start site and of the first exon is increasingly urgent. Methoddwainé available up to
now still do not fulfill the requirements imposed on the prediction accuracy. i$higinly caused
by the highly complex structure of eukaryotic polymerase Il promoter sequences. Remgass on
the structure and function of polymerase Il promoters is reviewed for exampik®mliferg, 1996)
and (Roeder, 1996).



In a eukaryotic promoter, several signals are scattered within the reggatetl near the tran-
scription start site. These signals are binding sites of interactingctiphien factors which regulate
the expression of the particular gene by the eukaryotic polymerase Il enzyme. The amstgnt
signals are certainly the signals within the core promoter region: The sald#lEA-box which is
the binding site of the TFIID transcription factor that is involved in the ratdon between DNA
and eukaryotic polymerase Il (Burley and Roeder, 1996), the initiator sequence trttsts itself
(O’Shea-Greenfeld and Smale, 1992), and the downstream promoter eleméset éBdrkKadonaga,
1997). What makes promoter recognition difficult is the fact that signals otherhbaa in the core
region may occur in different numbers, spacing, and order. All of the occuring sicaralse weakly
conserved or missing altogether, showing a large dependency among each othéerssearching
for particular signals, one might miss a large number of weakly conserved promOiethe other
hand, the functionality of a signal seems to be determined not only by its sequencsdohy ahe
context in which it appears. Search methods are therefore plagued by a large ptifalserpositives
caused by single well conserved signals.

In (Fickett and Hatzigeorgiou, 1997) the available methods for promoter recognii@recently
reviewed. On an independent test set the best methods were able to locate about 408 ttief
promoters with a false prediction every 500-800 base pairs. The methods revimeted signal
search methods, which either rely on the prominent signals around the traoscsigiit site (Reese
and Eeckman, 1998) or on a large collection of weight matrices for known tranearfptitors bind-
ing sites (Prestridge, 1995), as well as content search methods based otighessté short words
(oligomerg which do not look for particular signals (Audic and Claverie, 1997; Hutchinson, 1996).
In (Solovyev and Salamov, 1997) the two approaches are combined by judging a sequence hising bot
weight matrices for the TATA-box and the initiator, and content based scordssfapstream region.

The method described here is a search-by-content method based on interpoldtastistésm-
guage models (SLMs). These models have been widely used for classificationgaumpepeech
recognition (Jelinek, 1990; Kuhn et al., 1994; Schukat-Talamazzini et al., 1997). Integp8aMs
can be regarded as a straightforward generalization of oligomer swtastid we will show that they
significantly outperform the oligomer approach.

2 METHODS
2.1 STOCHASTIC LANGUAGE MODELS

Recognising promoter sequences with a search-by-content method means to idertdie aeg-
ulatory region of fixed length within a contiguous genomic sequence. The position of thvgutat
transcription start site is associated with a specific position witierregion. The general approach
thus is to slide a window of suitable length over the complete sequence in stepavwobases and
judge the sequence in the window. Therefore the problem can be broken down to tHieatassof
a fixed length sequenee = w, ... wr, Where each symbad; is taken from a finite vocabulary.

For simplicity, we first regard only one class of sequences. The probaBility) of the occurence
of a particular sequenoe can be written as follows, using the chain rule:

T
P(w) =[] P(wilw: ... w;_1), (1)
i=1
which means that one symbol in a sequence is dependent on all its predecessorstheaisiary
of preceding symbols.



If we can establish a model which computes this probability, we have the needetetmine how
likely a sequence will occur in a specific class. A stochastic language nsoebehctly such a model
which assigns a probability to a sequence of symbols.

2.2 ESTIMATION OF PARAMETERS

The right hand side of equation 1 contains a history of possibly infinite length which canhahbe
dled; therefore, an approximation is made by imposing a restriction on the Histgtph. A possible
approximation of the probabilit?(w) is made by choosing the upper history length equé¥'te 1:

P(W) ~ l:IP(w,-|wi,N+1...w,-,1) (2)

The resulting language model is calldegrammodel; it is equivalent to the well-known oligomer
approach withV as the length of the oligomer, which in turn is equivalent to a Markov chain of orde
N — 1. We also refer to the paramet®ras the considerecbntext

Using a training sample, the Maximum Likelihood estimatl%(m,-\w,-,NH ...w;_1) of the con-
ditional probabilities with contextv can be performed simply by counting:

#(w,,NH...wZ) , (3)
#(wi N1 wi1)
where # denotes the frequency of its argument in the training sample. Of courseoolidike to
choose a large context — the approximation made by a language model of higher order gets closer
to the real probability as denoted in equation 1. Unfortunately, the number of paramtich have
to be estimated increases exponentially with the numbéf,@nd thus the ML estimates become far
from being reliable because of the limited training sample size.

A compromise with respect to this trade-off between the model context andathaty sample

size can be made by introducing a weighted interpolation scheme.

ﬁ(wi|wi,N+1 c. wi,l) =

2.3 INTERPOLATION METHODS

The basic idea of applying interpolation methods is to fall back on the probabilityagin of
subsequences shorter thanif the frequencies of théV-gramsv = v;...wvx cannot be reliably
estimated. An example is tti@ear interpolationbetween all the shorter subsequences up to the full
length V:

A ~

P(oylvy...on 1) = poz + p1P(vy) + p2P(un|on-—1) + ...+ pyP(on|vr ... on 1) 4)

The fraction(1/L) accounts for unseen events and ensures that no probability is set to zero.

Equation 4 contains only one vector of interpolation coefficients, no mattetifefubsequences
up to lengthV really occured in the training data. Obviously, the interpolation approach ltse
eligibility if some of the summandB(vy|-) with larger context are equal to zero because the training
sample does not contain all possilifegrams. Indeed, this is likely to happen when a large number
N is chosen and the available training data cannot account for the increasing amouainoétess.
The solution lies in the estimation of different interpolation weight${) depending on the available
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length of the historyH. Such a model has the implicit effect of estimatiNggrams of different
context and is therefore callgublygram modeaccording to (Kuhn et al., 1994).

The interpolation weights;(#) are optimized with respect to the Maximum Likelihood criterion
by using an Expectation Maximization approach where the weights are regardietdles variables
in a doubly stochastic process (see Schukat-Talamazzini et al., 1997). Wigpghnsach, the initial
probabilities for theV-grams (equation 3) are reestimated using a second disjoint part of the training
sample. Afterwards, a large weight will be assigned to those frequencieb wdun be reliably esti-
mated; if only sparse data is at hand, the weights belonging to shorter subsequerimeswsitased.

Setting all the weightgy . .. pxy_1 t0 zero ang to one results again in the well-known oligomer
approach; the models with linear and polygram interpolation are a straightfogeaetalization of
this approach combining oligomers of different length. The advantage of an interpaahieme is
that the model can take into account statistics of a higher order without runnindhenttahger of
overfitting the model to the training data.

A drawback of the linear and polygram interpolation scheme is certainly theitgabihandle the
particular N—grams individually. For example, the probability of Air-gramx of context six might
be very large and the interpolation weight should therefore be large, whereas another 6-gram
occurs quite seldomly. By introducing an additional functigiv’) which scores the reliability of the
(N — 1)-gramv’ = v; ... vy _; monotonically, the linear interpolation can be extended to handle this
problem accurately:

Yo pi - gi(v') - Pi(un|v)
>N pir gi(v') ,

Whereﬁ’i(vN\v’) denotes the frequency afy_;...vyx. This interpolation scheme is calledtio-

nal interpolationand uses only one vector of coefficients in contrast to the linear interpolation of

polygrams which used’ vectors of increasing length. .. N. The functiong;(v') is chosen to be a
sigmoid funtion which is dependent of the frequency of thedagimbols ofv':

: #i(v')
W) =gy v o ©
In the case oC = 0, the functiong; is always equal to one and equation 5 becomes equivalent
to the linear interpolation; we heuristically chaSeo be equal td 0. In the rational case, the com-
putation of optimal interpolation weights is carried out with a gradient desdgaotihim instead of
the EM approach which is used for linear coefficients. The details are dmittlis point and can be
found in (Schukat-Talamazzini et al., 1997).

P(oy|v') = (5)

2.4 CLASSIFICATION OF A SEQUENCE

After a polygram model has been trained for each of the considered classesdéks wan be used
to classify a sequence. Let us assume that we Raglasses); ...k, and P, denotes the language
model for clas%, k € {1,..., K'}. Then we can compute the likelihood

T
P(w|u) =P, =1]] P(wy|wy—no1 - . wit) (7)

t=1

for each model and classify the sequence into sequenceictassomputing the posterioriproba-
bility using Bayes’ rule:



k = arg max P(w,Qy) = arg ml?x(pk - P(w|)) (8)

As we have no exact knowledge about &ariori probabilities of our sequence classes, the values
pr are assumed to be uniformly distributed and are therefore neglected.tivdess, we are able to
tune the models with respect to sensitivity and specificity. In this paperfallowing approach is
used: If only one class is of interest — i. e. we are only interested if the seque a promoter or
not, no matter how many models we have trained for non-promoter sequences — waTgaute
the likelihood P, for each class$, with the language models and determine the difference between
the score for the model of intereB}, and the best of the remaining modéts. Including a length
normalization, we obtain the following equation for the total score

Ba(w) — Bp(w)
len(w) ©

In practice, the logarithms of the probabilities are used because of the morergfiomputation
and the prevention of numerically unstable values when regarding long sequendegirdnl an
overview of the system structure discussed so far is given.

Choosing a suitable threshold value on the total s&orhe selection of any percentage of false
positives is feasible. The resulting curve of false positive rate vegration rate over the whole range
is calledreceiver operating characteristi@®OC) and gives us the full description of the performance
of a classificator: When comparing two ROC curves resulting from diffezkssificators, one can
see instantly which one is better suited for the considered problem.

As asinglenumber which also describes the performance of a classificator when consigering
classes theorrelation coefficientan be used:

S(w) =

(TP-TN) - (FN - FP)
/(TP + FN)-(IN + FP)-(IP+FP)- (TN + FN)

Herein, TP stands for true positives, TN for true negatives, FP for falséysessiand FN for false
negatives; these numbers denote the absolute numbers of correctly and wrondigdlasguences.
The CC value lies within-1 and1; the latter number occurs when a completely correct classification
is available, a zero means arbitrary classification, and when alldlssifications are wrong, the CC
value is equal to-1. The correlation coefficient can be evaluated at the same corresponding value
for recognition rate and false positive rate as the ROC curve; the bestlG€than shows for which
threshold the considered method gives the results deviating most from arlsitxasjfication. The
CC value cannot substitute the complete ROC curves, but the measure is quitercamingives a
first impression when comparing different models which were trained on the data sets.

CC =

(10)

2.5 SEARCHING FOR PROMOTERS IN CONTIGUOUS SEQUENCES

To search for promoters in contiguous sequences by means of language models, we diag a sli
window with a length of 300 bases. Every ten bases, the actual sequence imttoewis classified

as promoter or non-promoter. Because a whole promoter region is very likely te oaulsple
predictions of several overlapping windows, a prediction is only made for @aeth tninimum of

the difference between non-promoter and promoter score which lies below the tihvestrold. The
transcription start site is then assumed to be located at a specifigmpagihin the window; this
location is used to evaluate the accuracy of the prediction.
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Figure 1: Promoter prediction with language models. A window of fixed length iseshitong
the sequence, and every couple of bases the sequence in the window is judged by aliubgda
models. The output is the difference between the best non-promoter and the promotercoel s
the sequence of scores for the windows is then further processed as descrisettbma5.

To eliminate single false predictions, a post processing operation is applied score functioy
which is evaluated every ten bases over the whole sequence. By smoothieguti@g curve, single
false promoter predictions as well as single non-promoter predictions within a moregion are
filtered out. We chose to apply the hysteresis threshold smoothing algorithm: ér cfira chosen
height is shifted over the curve from left to right, and the middle position of thisce is always
emitted as new output. As long as the next considered value lies within the cuesoittee cursor
position is not moved vertically. If the next value lies above the cursas, mioved up so that the
upper rim corresponds with the value; if it lies below the cursor, it is moveehdo an analogous
way. With increasing cursor width, the curve is smoothed more and more.

3 DATASETS

For training and evaluation of the methods, we uBethelanogasteand human data sets containing
promoters, coding, and noncoding sequences. For the human promoter data set, we edtracted
non-related vertebrate sequences except retroviruses from the Eukaryotictétr@atabase EPD

rel. 50 (Perier et al., 1998). Retrieving only human promoter sequences from EP®nesult in too
small a dataset; EPD rel. 50 contained only 181 independent human sequences bataasayea

is rigorously validated and must be experimentally proven. Taking all vertielsequences instead

is experimentally justified because vertebrate organisms share a reasamatlint of transcription
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Figure 2: Receiver operating characteristics for different interpolatiethods and context length
seven, evaluated on the fixed length sequence set of promoters and coding sequences.

elements such as the well-known CAAT- and GC-boxes. Sequences withdes4a bases upstream
or 5 bases downstream from the annotated transcription start site weaedeéid¢o assure that at least
the possible TATA-box and the initiator site were contained in each entrg.rébulted in 565 entries,
from which sequences up to 300 bases length (250 upstream and 50 downstreartghfegguaere
extracted. As ®rosophilapromoter set, we used the compilation of (Arkhipova, 1995), enriched by
new sequences taken from EPD. Altogether, we had@%8ophilasequences with more than 40
bases upstream and 5 bases downstream.

For the coding and noncoding sequences, we used the exon and intron sequences of human and
Drosophilagenes contained in the data set for the GENIE genefinding system (Kulp et al., 1996).
The exons were concatenated to form long coding sequences. Then, 300 bases long npphoyerla
sequences were extracted. We divided the human data in five cross-validgtarostaining 113
promoter, 180 coding, and 869 non-coding sequences eachradsephiladata was divided in three
sets, each comprising 85 promoters, 237 coding, and 80 non-coding sequences. In thiegamdj
these sets will be referred to as "sequences of fixed length” and can be diitamehe authors upon
request to make a thorough comparison with other methods possible.

To evaluate the performance of the system on long contiguous sequences, we made use of the
independent data set in (Fickett and Hatzigeorgiou, 1997). Using this data set weredigi have
the possibility to compare the system’s behaviour with other programs aimed atterascognition.

The original data set consists of 18 mammalian sequences containing 24 annotabeokaimdentally

proven promoters with a total of 33,120 bp, from which 17 sequences — two of them erfsiched/
flanking sequences — could be retrieved; those 17 sequences had a total of 34,284 bp andicontaine
22 promoters. None of these sequences was contained in the training set. Théevaludahe
contiguous sequences was carried out on both strands; recognition results aczdlgveh in base

pairs instead of single bases.



false recognized promoters (%)
positives | promoter vs.| promoter vs.| promoter vs.
(%) CDS intron | CDS/intron
0.0| 63.5(0.72)] 12.6(0.33)] 6.9(0.24)
1.0| 76.1(0.80)] 22.9(0.48)] 34.5(0.49)
2.0| 80.7(0.82)] 44.1(0.53)| 43.9(0.52)
3.0| 83.9(0.83)] 49.2(0.53) | 50.4(0.53)
4.0 89.2(0.86)] 51.3(0.51)] 54.2(0.52)
5.0 92.0(0.87) | 53.3(0.50)] 59.1(0.53)
6.0| 94.0(0.87)] 57.5(0.50)| 61.7 (0.52)
7.0| 94.3(0.87)] 60.0(0.50)| 63.7 (0.51)
8.0/ 95.6(0.87)] 63.5(0.51)| 66.2(0.50)
9.0/ 95.9(0.86)] 64.6(0.49)| 68.3(0.50)

Table 1: Promoter classification on vertebrate sequences with stodaagt@ge models using ratio-
nal interpolation and context length seven. For a certain percentage of falegsosne correspond-
ing cross-validated recognition rate and the correlation coefficient&ngivhe recognition rate with
the highest correlation coefficient is printed in bold (CDS = coding sequence).

4 RESULTS AND DISCUSSION

As a first step, we determined experimentally whi¢hgram context and interpolation method were
best suited for promoter recognition. We appli®dgrams with different context lengths using the
three interpolation methods on the fixed length sequence set, comprising human ps@mdiding
sequences. Four of the five parts were used as training and one part as an indepstskinfigure 2
shows a part of the receiver operating characteristics obtained on thsisgianguage models with
context length seven for which we could obtain the best results. The figure sheanly that rational
interpolation outperforms the linear and polygram approaches, and that no improveukhbe
achieved using polygram instead of linear interpolation; nevertheless, lewdinéar scheme shows
very good results. With increasing context length, no considerable improverasrdachieved. We
therefore applied a careful cross-validation experiment on the fixed leegtiesce set, using models
trained with a context of seven and rational interpolation. Table 1 shows togniion rate on
the sets of fixed length sequences for three discrimination tasks: promoteodsg cequences,
promoter vs. intron sequences, and promoters vs. both coding and non-coding sequenceéise Here,
depicted numbers were obtained by averaging the results of five experimergshiexg@eriment the
model was trained on four parts of the sequence data, leaving one part out at a tinvalaatre
the performance on the part not used for training.

The discrimination performance between promoters and coding regions is stunnintglsg a
positive rate of 5% already 92 % of the promoter sequences were classifiedtlyofcorrelation
coefficient 0.87). Nevertheless it is also very clear that a classifithetween promoter and introns
is much more difficult — the best CC value obtained was 0.53, at a false positvefra % and a
recognition rate of 49.2 %. Most probably this stems from the much weaker infam@intained in
the introns compared to the strong coding information of the exons. On applying models loredie t
part set of promoters, non-coding, and coding sequences, the results are comparabiededass
problem of promoters and coding sequences, resulting from the much larger sareéisizonic
sequences.

Corresponding results obtained by making a threefold cross-validation on the menubters,



false recognized promoters (%)
positives | promoter vs.| promoter vs.| promoter vs.
(%) CDS intron | CDS/intron
0.0| 49.5(0.63)] 9.0(0.21)| 10.15(0.29)
1.0| 66.3(0.75)] 18.0(0.28)] 27.0(0.43)
2.0| 75.3(0.78)] 23.8(0.31)| 35.9(0.49)
3.0| 82.8(0.82)] 23.8(0.31)] 39.1(0.48)
40| 86.3(0.83)] 30.5(0.35)| 44.1(0.49)
5.0 93.0(0.86) | 35.2(0.37)] 50.8(0.53)
10.0| 96.9(0.81)] 45.3(0.39)] 69.5(0.59)
15.0| 97.3(0.76)] 49.6(0.37)] 78.9(0.58)
20.0| 97.7(0.70)] 60.2(0.41)] 87.1(0.58)
25.0] 98.0(0.65)] 67.6(0.43) | 90.6 (0.55)

Table 2: Promoter classification @ melanogastesequences with stochastic language models us-
ing rational interpolation and context length six. For a certain percentagesefgakitives, the cor-
responding cross-validated recognition rate and the correlation coeffisigivein. The recognition
rate with the highest correlation coefficient is printed in bold (CDS = codaugience).

coding, and noncoding regions bf melanogastecan be seen in table 2. Here, again rational inter-
polation, but with a smaller context of six proved to deliver the best recognitite. Obtaining the
best result with a smaller context is most probably a consequence of the moesl liraihing sample
size. One can see that the overall performance is somewhat compardlgsd@h human sequences,
but especially the discrimination between non-coding sequences and promotersds Wihis is pos-
sibly due to the more than twentyfold larger sample of non-coding sequences whiclvailabla

for the training of the human model. Because of the much smaller average irteon Birosophila
genes, the effect of the poor promoter vs. non-coding discrimination on the overalparice is not

as strong as for human sequences.

We compared the performance of our language models with the oligomer statistitat-s &
stochastic language model without any interpolation. For this purpose we trained oneusiodel
hexamer statistics and another SLM with rational interpolation and contaythesix and evaluated
both on one cross-validation experiment for the promoter vs. coding sequence recogsiionte
obtained results show that, using the available limited data, the hexamel caadet be as reliably
trained as the interpolated models: At a false positive rate of 1 %, the matiehtional interpolation
can recognise over ten percent more promoter sequences than the hexamer meaé&ailitishows
that the SLMs are able to estimate the statistics much better whieehexamers are overfitting to
the sparse training data and perform much worse on unseen test sequences.

Finally, we applied one model trained on promoters, coding, and non-coding sequences to the
task of finding promoter regions in longer vertebrate DNA sequences, using the settigiuous
sequences cited in the promoter prediction program survey of (Fickett andyétagiou, 1997). In
this survey, a prediction is judged as correct if an annotated transcrigtidrsge lies within 200
bases downstream and 100 bases upstream from the predicted site. That meansredéction
is correct as long as it is made somewhere within a large part of the regutathon. Using this
criterion, we could detect 12 out of 22 (54.5 %) of the promoters while having one falsetmedin
average every 504 base pairs. The two programs which achieved the best pedelimthe survey
could detect 54 % and 42 % of the promoters with a false positive rate of 1/460 bp andbp/,789
respectively (Reese and Eeckman, 1998; Solovyev and Salamov, 1997). These nbmbénatthe
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Figure 3: Output of the system on a large contiguous sequence, before and after applying-the aut
mated post processing step. The system makes three predicitons, one for ahohifooum below

a certain threshold. The predictions are located at positions 920, 3690, and 4740; the dnnotate
transcription start site is located at position 935.

performance of the polygram models is comparable to the best available tools for erpmeatiction,
but the number of test sequences is far too small to make a fair and exact ongerssible.

The results were further improved by smoothing the output score function with therésist
algorithm as described in section 2.5. By applying this post-processing steavduristically
chosen cursor width of 0.015, the number of false predictions could be drastically redwcedevery
797 bp while making no forfeits on the recognized promoters. An example of the perfcgroa one
human test sequence, the human phenol sulfotransferase gene (GenBank accessiSiuéddel),
is shown in figure 3. In this example, within a sequence of about 6,000 bases length ¢aliegqrs
are made, one of which is located close to the annotated transcriptiontstart s

5 CONCLUSIONS

In this paper we showed that stochastic language models can be successfully dssiminate
between promoter and non-promoter (coding and non-coding) regions. The application on contigu-
ous sequences achieves promising results — after applying a postprocessing stepdelsrgive
recognition results comparable to the best methods described in the recemt clutFeckett and
Hatzigeorgiou, 1997): We identified the transcription start sites of 12 out of 22 prosnetth a
false prediction every 800 bp. Two of the non-identified transcription stas sfere located very
close to the sequence start, so that no complete 300 base pair long sequence —hlmilangdels
were trained on — was available. One of the eight remaining promoters missealso not detected
by any of the nine programs evaluated in (Fickett and Hatzigeorgiou, 1997). At thembone have
no non-promoter model for intergenic sequences; if a reliable training sampledaetiience class
can be obtained, the performance is likely to improve because of the moretacsegaence model-
ing. Obtaining such a sample though is difficult; most database entries containmgié/genes, and
additional sequence parts outside the gene sequence are not definitely annotated.
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The prediction accuracy of the TSS location was quite good despite the fact tatdginot use
location specific information. From the 12 promoters recognized, no predictionuviasifthan 100
bases away from the annotated TSS, and seven of them were made within 2fddraghs true start
site.

Compared to oligomer statistics which can be seen as a special capowibeof approaches
using interpolated statistics lies in a much stabler parameteratgtim especially when only sparse
data is at hand as is actually the case for promoter sequences. In the authom,opiisi is the
reason for the considerable improvement made by SLMs on the promoter recogrskoeh a
recognition rate as high as the one which can now be achieved, one can think aboujr@tiamntef
a promoter recognition module in a large-scale gene finding system like GENIg éal., 1996).
Thereby, the modules for gene structure determination and promoter recognitidiesreol benefit
from each other: On the one hand, the large number of false promoter predictions maycedre
because of the absence of an exon region following it; on the other hand, an improueacsicon
the detection of the first exon is yielded, and the separation of multigenic sequetocgagle genes
becomes possible. An exact promoter prediction can also be useful to identdyrtieet full length
cDNA.

We also combined the search-by-content method of this paper with the search-dyrstjmad
of the time delay neural networks as described in (Reese and Eeckman, 1998hinarglresults
show that on the set of fixed length sequences, the number of false predictions madenkyral
network alone could be reduced by half when applying both methods on the sequences and combining
the scores appropriately. This exploitation of different knowledge will be the tdgidure research.

This work was patrtially supported by a grant of the Boehringer Ingelheim Fonds to Uwe Ohler
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