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ABSTRACT

The distribution of color values in color images depends on
the illumination which varies widely under real–world con-
ditions. We present a new approach for color normalization
which adjusts the statistical properties of the distribution to
predefined values. We introduce two algorithms based on
geometric manipulations of the color cluster. Our new color
rotation algorithm is tested on some natural and synthetic
images.

1. INTRODUCTION

The importance of color for computer vision is currently
increasing [2, 4, 9, 10]. Although illumination of a scene
may change, the human observer perceives the color of the
objects in the scene almost independently from the illumi-
nation variations.

Many color spaces exist and are used in different
applications. For computer vision, mostly RGB is used
since it is directly technically available and most quality
cameras supply RGB signals.

In this contribution we present new results of our ap-
proach to color normalization [7], whose results are similar
to those of [9], but no neural algorithm is used and all com-
putations are done in RGB rather than in some other color
space.

In Sect. 2 we review color constancy algorithms.
Such algorithms can play an important role for image retrival
from image databases. Model based computer vision using
color images also depends on standardized data. In Sect. 3
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we describe cluster analysis which is applied in Sect. 4 for
geometric transformations and in Sect. 5 for statistical analy-
sis. In Sect. 6 we investigate the effect of our normalization
algorithms on natural and synthetic images. First results
of ongoing research on object localization using histogram
backprojection [10] in combination with color normalization
are presented as well.

2. COLOR NORMALIZATION ALGORITHMS

One of the most frequently cited papers in the area of color
algorithms is [10]; in order to identify color objects in a
scene color histograms are used. However, a disadvantage
of this so called color indexing method is its sensitivity to
illumination changes. The so called comprehensive color
image normalization presented in [2] is shown to increase
localization and object classification results in combination
with color indexing. The idea of this iterative two–stage
algorithm is to normalize each color pixel first, using thergb color space in which the intensity is normalized; second,
each color channel is normalized separately so that the sum
of the color components is equal to one third of the number of
pixels. These two steps are repeated, until no more changes
occur. Since global intensity changes are eliminated from
the normalized images, and since the number of color values
may be reduced considerably, the images may look less
natural to the observer, although the recognition rates using
these images is higher.

Pomierski and Gross [9] propose to use an artificial
neural network (ANN) to compute principal components
of color clusters with a technique described in [6]. The
color space used in this work is (RG;BY;WB) (red–green,
blue–yellow, white–black) which is motivated by neuro–
physiology. The color space transformations from a color
vector f in RGB to a vector ef = Af in RG;BY;WB use
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Fig. 1: Conversion of Pomierski (partially from [9])
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After finding the principal component of the color clus-
ter in (RG;BY;WB), i.e. the direction of the eigenvec-
tor belonging to the greatest eigenvalue, the cluster is ro-
tated so that this vector points to the WB direction of the(RG;BY;WB)�cube. The last step is a nonlinear stretch-
ing so that the cluster is distributed along this axis. As in
the comprehensive color normalization, no reference image
or calibration is required in order to transform an arbitrary
image to normalized colors. In many cases, the normalized
image looks “better” to the human observer.

One question now is whether we can yield similar
results for computer vision, as [9] demonstrates for human
vision, without an explicit transformation to another color
space. This is depicted as 4 in Fig. 1.

3. COLOR CLUSTER ANALYSIS

Our new approach starts with color cluster analysis of a color
image [f ij ]1�i�N;1<�j<M in the following steps which are
common to the two algorithms described in Sect. 4 and
Sect. 5 (we write f for pixels f ij in the following):

1. Compute the cluster center of all pixels f by m =E [f ] which is the vector pointing to the center of
gravity.

2. LetC be the (3 � 3)–matrix defined byC = E h(f �m)(f �m)T
i

whose eigenvalues�1; �2; �3 and eigenvectors are sim-
ply computed directly.

3. Denote the eigenvector belonging to the largest eigen-
value by v = (a; b; c)T.

The vector denoting the principal orientation ṽ of the
cluster in (RG;BY;WB) is computed in a similar way fromeC = ACAT.
Now two approaches have been tried, an idea which we
called color rotation in RGB (Sect. 4) and the adaptation of
the whitening transform (Sect. 5, [3]). Both are based on
the same idea as [9], namely that in technical environments
most of the objects are gray. The mean of the color vectors
is expected on the gray–axis in the color system. If it is not
there it will be rotated to this position.

4. COLOR ROTATION IN RGB–SPACE

From geometric considerations we proceed as follows in
order to rotate the cluster to the main diagonal (Fig. 2):

4. Find the normaln0 through the origin on the plane de-
fined by the main diagonal in the RGB–cube and the
principal component of the cluster: n0 = (a; b; c)T �

1p
3
(1; 1; 1)T, where � denotes the vectorial product

in IR3. The rotation angle �0 is computed from the
dot product of eigenvector and the diagonal: cos�0 =
(a; b; c)T � 1p

3
(1; 1; 1)T.

In order to rotate with�, we use the Rodrigues formula
[1, p. 150] for the rotation by an angle � around an
axis expressed as a vector n : R3(�;n) = Id3 �
sin� U(n) + (1 � cos�)U 2(n) where U 2(n) =nnT � Id3 and knk = 1.
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Fig. 2: Color rotation in RGB
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5. Let m0 = kmk

cos�0 (1; 1; 1)T :
Convert each pixel f to normalized f 0 by f 0 =U(n0)(f �m) +m0.

6. Scaling by a variable factor is allowed (default is no
scaling). The overflows above 255 and the underflows
under 0 are clipped to 255 and 0, respectively.

The result is a color image which has a normalized
color distribution; the mean of the color vectors is on the
main diagonal of the RGB–cube; the first principal compo-
nent of the cluster is on the same diagonal.

3Color images are included on the CD–ROM

As the conversion matrix (1) is not orthogonal, the
results of this rotation are not the same, as those resulting
from the algorithm in [9]. We can, however, apply the same
formulas to create a rotation matrix eR which rotates ṽ to
the WB–axis in (RG;BY;WB). The normalized color
vectors f 0 in RGB are then computed by f 0 = A�1 eRf̃ 0.
The normalization can thus be done entirely in RGB byf 0 = A�1 eRA (f �m) +A�1 eRAm : (2)

5. WHITENING TRANSFORM

In Fukunaga [3] the whitening transform is introduced,which
is an orthonormal transform mapping the principal compo-
nents of a cluster into the (orthogonal) eigenvectors, and at
the same time a scaling is done with 1p�i . In this section
we examine whether the above transform can be used for
image normalization and we compare the results with those
of section 4. We first perform steps 1–3 as described in
Sect. 3 and then proceed as follows:

4. Compute the eigenvector matrix V ofC, and denote� = 0B@ 255p�1
0 0

0 255p�1
0

0 0 255p�1

1CA
where �1 is the greatest eigenvalue of C. We note
that 255 appears in the dominator instead of 1, since
255 is the scale in which R, G and B may vary. We
also note that here we modified the original transform
not wanting to scale each principal component with
the corresponding fraction involving its eigenvalue, as
this would change the shape of the cluster more than
it is desirable.

5. For each pixel f , let us form f 0 = �V T (f �m) :
6. Rotate the cluster along theR axis by 45 degrees in the

positive direction, and then rotate the image along theB axis with 45 degrees again and shift the image along
the main axis of the RGB-cube by (128; 128; 128)T.
After clipping the values by 255 we get the result.



The result again is a color image which has a normalized
color distribution; the mean of the color vectors is on the
main diagonal of the RGB–cube; the first principal compo-
nent of the cluster is on the same diagonal. In addition, the
second axis of the cluster is rotated to the diagonal (0; 1; 1)T

in the RGB–cube.

6. EXPERIMENTS

We integrated both algorithms in our image analysis system
[8] and made experiments with both synthetic and real im-
ages. Fig. 3 shows one scene as captured from the camera.
The results of a conversion with our first algorithm (Sect. 4)
is shown in Fig. 4.4 Fig. 5 illustrates the results of the
modified whitening transform (Sect. 5). The result of the
algorithm in [9] is shown in Fig. 6.5

Experiments on synthetic images show that the al-
gorithms work even for unusual directions of the principal
components.

A red object (Fig. 7 (left)) and a blue object (Fig. 7
(right)) are both captured with a high focal length setting
for a zoom camera. These objects are present in two scenes
(Fig. 8 (top) and Fig. 8 (bottom)) captured with different
settings of the zoom lens and different lighting conditions.

Fig. 7: Two objects captured from the camera with high
focal length.

The effects of color normalization on object local-
ization based on color backprojection [10] are presented in
Fig. 9 and Fig. 10; the images show backprojected values,
filtered by a median filter of the approximate size of the
object. No advantage of color normalization can be seen
for the first object Fig. 7 (left), since the general shift of
colors to red increases the number of red pixels and thus
deteriorates the backprojection of a red object. The results
for the second object (Fig. 7 (right)) are shown in Fig. 10.
Here, the modified whitening transform improves the results
of backprojection, since the rotation of the second principal
component helps discriminating blue color from the others.
The results of the comprehensive color normalization look

4For the printout, all color images are vector quantized to 32 colors
using the median cut algorithm [5].

5Thanks to T. Pomierski for providing this image.

Fig. 8: Two scenes containing the objects shown in Fig. 7

better than those of the color rotation, although the red object
in Fig. 8 (bottom) is not found.

7. CONCLUSION

We presented two established algorithms and two new ap-
proaches to color normalization: one was inspired by [9];
the other is based on an extension of the whitening trans-
form [3]. We claim that color normalization can facilitate
more reliable object localization under changing lighting
conditions. The best choice for the proposed normalization
algorithms, however, depends on the object to be localized,
but not on the scene. Further investigations will be done in
order to optimize object localization using backprojection as
in [10] in combination with our algorithms for color normal-
ization and with other correction algorithms and strategies
which compensate for color changes, such as [4, 2].

8. REFERENCES

[1] O. Faugeras. Three–Dimensional Computer Vision –
A Geometric Viewpoint. MIT Press, Cambridge, Mas-
sachusetts, 1993.

[2] G.D. Finlayson, B. Schiele, and J.L. Crowley. Compre-
hensive colour image normalization. In H. Burkhard
and B. Neumann, editors, Computer Vision — ECCV
’98, pages I/475–490, Heidelberg, 1998. Springer.

[3] K. Fukunaga. Introduction to Statistical Pattern Recog-
nition. Academic Press, Boston, 1990.



Fig. 9: Backprojection of the object in Fig. 7 (left) to the
scenes in Fig. 8. Line 1: without normalization; line 2: using
the comprehensive color normalization [2] line 3: with color
rotatation (Sect. 4); line 4: using the modified whitening
transform (Sect. 5)

[4] B. V. Funt and G. D. Finlayson. Color constant color
indexing. IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), 17(5):522–529, 1995.

[5] P. Heckbert. Color image quantization for frame buffer
display. Computer Graphics, 16(3):297–307, July
1982.

[6] E. Oja and J. Parkkinen. On Subspace Clustering.
In Proc. Int. Conf. on Acoustics, Speech, and Signal
Processing, pages 692–695. San Diego, 1984.

[7] D. Paulus and L. Csink. On color normalization. In
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